4 research outputs found

    The effect of person order on egress time: a simulation model of evacuation from a neolithic visitor attraction.

    Get PDF
    Objective: The aim of this study was to model the egress of visitors from a Neolithic visitor attraction. Background: Tourism attracts increasing numbers of elderly and mobility-impaired visitors to our built-environment heritage sites. Some such sites have very limited and awkward access, were not designed for mass visitation, and may not be modifiable to facilitate disabled access. As a result, emergency evacuation planning must take cognizance of robust information, and in this study we aimed to establish the effect of visitor position on egress. Method: Direct observation of three tours at Maeshowe, Orkney, informed typical time of able-bodied individuals and a mobility-impaired person through the 10-m access tunnel. This observation informed the design of egress and evacuation models running on the Unity gaming platform. Results: A slow-moving person at the observed speed typically increased time to safety of 20 people by 170% and reduced the advantage offered by closer tunnel separation by 26%. Using speeds for size-specific characters of 50th, 95th, and 99th percentiles increased time to safety in emergency evacuation by 51% compared with able-bodied individuals. Conclusion: Larger individuals may slow egress times of a group; however, a single slow-moving mobility-impaired person exerts a greater influence on group egress, profoundly influencing those behind. Application: Unidirectional routes in historic buildings and other visitor attractions are vulnerable to slow-moving visitors during egress. The model presented in this study is scalable, is applicable to other buildings, and can be used as part of a risk assessment and emergency evacuation plan in future work

    Route Guidance Map for Emergency Evacuation

    Get PDF
    An efficient process of emergency evacuation must be guided. In the event of an evacuation instruction, a significant amount of time is spent by evacuees looking for a place of relative safety or an exit. Due to the ensuing stress and confusion evacuees try to follow others, consequently, all the exits are not used effectively. Therefore, it is important to develop a route guidance map for the emergency. The focus of the map is to help both, the evacuees and the authorities to perform evacuation efficiently. This paper presents a route guidance map for pedestrians that aims an efficient evacuation in case of an emergency. An agent-based simulation framework is used for the simulation of various scenarios to prepare the guiding map. A real world case study of Sarojini Nagar, Delhi is presented to test the presented methodology. Eventually, several strategic recommendations are provided for improving safety of existing infrastructure

    EVAQ: Person-Specific Evacuation Simulation for Large Crowd Egress Analysis

    Get PDF
    Timely crowd evacuation in life-threatening situations such as fire emergency or terrorist attack is a significant concern for authorities and first responders. An individual’s fate in this kind of situation is highly dependent on a host of factors, especially (i) agent dynamics: how the individual selects and executes an egress strategy, (ii) hazard dynamics: how hazards propagate (e.g., fire and smoke spread, lone wolf attacker moves) and impair the surrounding environment with time, (iii) intervention dynamics: how first responders intervene (e.g., firefighters spread repellents) to recover environment. This thesis presents EVAQ, a simulation modeling framework for evaluating the impact of these factors on the likelihood of survival in an emergency evacuation. The framework captures the effect of personal traits and physical habitat parameters on occupants’ decision-making. In particular, personal (i.e., age, gender, disability) and interpersonal (i.e., agent-agent interactions) attributes, as well as an individual’s situational awareness are parameterized in a deteriorating environment considering different exit layouts and physical constraints. Further, the framework supports a variety of hazard propagation schemes (e.g., fire spreading in a given direction, lone wolf attacker targeting individuals), and intervene schemes (e.g., firefighters spreading repellents, police catch the attacker) to support a wide range of emergency evacuation scenarios. The application of EVAQ to crowd egress planning in an airport terminal and a shopping mall in the fire emergency is presented in this thesis, and results are discussed. Result shows that the likelihood of survival decreases with a decrease in availability of the nearest exits and a resulting increase in congestions in the environment. Also, it is observed that the incorporation of group behavior increases the likelihood of survival for children, as well as elderly and disabled people. In addition, several verifications and validation tests are performed to assess the reliability and integrity of EVAQ in comparison with existing evacuation modeling tools. As personalized sensing and information delivery platforms are becoming more ubiquitous, findings of this work are ultimately sought to assist in developing and executing more robust and adaptive emergency mapping and evacuation plans, ultimately aimed at promoting people’s lives and wellbeing

    Biomechanical Locomotion Heterogeneity in Synthetic Crowds

    Get PDF
    Synthetic crowd simulation combines rule sets at different conceptual layers to represent the dynamic nature of crowds while adhering to basic principles of human steering, such as collision avoidance and goal completion. In this dissertation, I explore synthetic crowd simulation at the steering layer using a critical approach to define the central theme of the work, the impact of model representation and agent diversity in crowds. At the steering layer, simulated agents make regular decisions, or actions, related to steering which are often responsible for the emergent behaviours found in the macro-scale crowd. Because of this bottom-up impact of a steering model's defining rule-set, I postulate that biomechanics and diverse biomechanics may alter the outcomes of dynamic synthetic-crowds-based outcomes. This would mean that an assumption of normativity and/or homogeneity among simulated agents and their mobility would provide an inaccurate representation of a scenario. If these results are then used to make real world decisions, say via policy or design, then those populations not represented in the simulated scenario may experience a lack of representation in the actualization of those decisions. A focused literature review shows that applications of both biomechanics and diverse locomotion representation at this layer of modelling are very narrow and often not present. I respond to the narrowness of this representation by addressing both biomechanics and heterogeneity separately. To address the question of performance and importance of locomotion biomechanics in crowd simulation, I use a large scale comparative approach. The industry standard synthetic crowd models are tested under a battery of benchmarks derived from prior work in comparative analysis of synthetic crowds as well as new scenarios derived from built environments. To address the question of the importance of heterogeneity in locomotion biomechanics, I define tiers of impact in the multi-agent crowds model at the steering layer--from the action space, to the agent space, to the crowds space. To this end, additional models and layers are developed to address the modelling and application of heterogeneous locomotion biomechanics in synthetic crowds. The results of both studies form a research arc which shows that the biomechanics in steering models provides important fidelity in several applications and that heterogeneity in the model of locomotion biomechanics directly impacts both qualitative and quantitative synthetic crowds outcomes. As well, systems, approaches, and pitfalls regarding the analysis of steering model and human mobility diversity are described
    corecore