14,706 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepianโ€“Wolf and Wynerโ€“Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Garbage collection auto-tuning for Java MapReduce on Multi-Cores

    Get PDF
    MapReduce has been widely accepted as a simple programming pattern that can form the basis for efficient, large-scale, distributed data processing. The success of the MapReduce pattern has led to a variety of implementations for different computational scenarios. In this paper we present MRJ, a MapReduce Java framework for multi-core architectures. We evaluate its scalability on a four-core, hyperthreaded Intel Core i7 processor, using a set of standard MapReduce benchmarks. We investigate the significant impact that Java runtime garbage collection has on the performance and scalability of MRJ. We propose the use of memory management auto-tuning techniques based on machine learning. With our auto-tuning approach, we are able to achieve MRJ performance within 10% of optimal on 75% of our benchmark tests

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ์ €์žฅ์žฅ์น˜์˜ ์„ฑ๋Šฅ ๋ฐ ์ˆ˜๋ช… ํ–ฅ์ƒ์„ ์œ„ํ•œ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™” ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๊น€์ง€ํ™.์ปดํ“จํŒ… ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด, ๊ธฐ์กด์˜ ๋Š๋ฆฐ ํ•˜๋“œ๋””์Šคํฌ(HDD)๋ฅผ ๋น ๋ฅธ ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ธฐ๋ฐ˜ ์ €์žฅ์žฅ์น˜(SSD)๋กœ ๋Œ€์ฒดํ•˜๊ณ ์ž ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ตœ๊ทผ ํ™œ๋ฐœํžˆ ์ง„ํ–‰ ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ง€์†์ ์ธ ๋ฐ˜๋„์ฒด ๊ณต์ • ์Šค์ผ€์ผ๋ง ๋ฐ ๋ฉ€ํ‹ฐ ๋ ˆ๋ฒจ๋ง ๊ธฐ์ˆ ๋กœ SSD ๊ฐ€๊ฒฉ์„ ๋™๊ธ‰ HDD ์ˆ˜์ค€์œผ๋กœ ๋‚ฎ์•„์กŒ์ง€๋งŒ, ์ตœ๊ทผ์˜ ์ฒจ๋‹จ ๋””๋ฐ”์ด์Šค ๊ธฐ์ˆ ์˜ ๋ถ€์ž‘์šฉ์œผ ๋กœ NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ˆ˜๋ช…์ด ์งง์•„์ง€๋Š” ๊ฒƒ์€ ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์—์„œ์˜ SSD์˜ ๊ด‘๋ฒ”์œ„ํ•œ ์ฑ„ํƒ์„ ๋ง‰๋Š” ์ฃผ์š” ์žฅ๋ฒฝ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ตœ๊ทผ์˜ ๊ณ ๋ฐ€๋„ ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ˆ˜๋ช… ๋ฐ ์„ฑ๋Šฅ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ์˜ ๊ฐœ์„  ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ ๋œ ๊ธฐ๋ฒ•์€ ์‘์šฉ ํ”„๋กœ ๊ทธ๋žจ์˜ ์“ฐ๊ธฐ ๋ฌธ๋งฅ์„ ํ™œ์šฉํ•˜์—ฌ ๊ธฐ์กด์—๋Š” ์–ป์„ ์ˆ˜ ์—†์—ˆ๋˜ ๋ฐ์ดํ„ฐ ์ˆ˜๋ช… ํŒจํ„ด ๋ฐ ์ค‘๋ณต ๋ฐ์ดํ„ฐ ํŒจํ„ด์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ, ๋‹จ์ผ ๊ณ„์ธต์˜ ๋‹จ์ˆœํ•œ ์ •๋ณด๋งŒ์„ ํ™œ์šฉํ–ˆ ๋˜ ๊ธฐ์กด ๊ธฐ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•จ์œผ๋กœ์จ ํšจ๊ณผ์ ์œผ๋กœ NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์„ฑ๋Šฅ ๋ฐ ์ˆ˜๋ช…์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ I/O ์ž‘์—…์—๋Š” ๋ฌธ๋งฅ์— ๋”ฐ๋ผ ๊ณ ์œ ํ•œ ๋ฐ์ดํ„ฐ ์ˆ˜๋ช…๊ณผ ์ค‘ ๋ณต ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด์ด ์กด์žฌํ•œ๋‹ค๋Š” ์ ์„ ๋ถ„์„์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ๋ฌธ๋งฅ ์ •๋ณด๋ฅผ ํšจ๊ณผ ์ ์œผ๋กœ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ (์“ฐ๊ธฐ ๋ฌธ๋งฅ) ์ถ”์ถœ ๋ฐฉ๋ฒ•์„ ๊ตฌํ˜„ ํ•˜์˜€๋‹ค. ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ ์ •๋ณด๋ฅผ ํ†ตํ•ด ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜ ๋ถ€ํ•˜์™€ ์ œํ•œ๋œ ์ˆ˜๋ช…์˜ NAND ํ”Œ ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ฐœ์„ ์„ ์œ„ํ•œ ๊ธฐ์กด ๊ธฐ์ˆ ์˜ ํ•œ๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ๋ฉ€ํ‹ฐ ์ŠคํŠธ๋ฆผ SSD์—์„œ WAF๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ์ˆ˜๋ช… ์˜ˆ์ธก์˜ ์ •ํ™• ์„ฑ์„ ๋†’์ด๋Š” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ I/O ์ปจํ…์ŠคํŠธ๋ฅผ ํ™œ์šฉ ํ•˜๋Š” ์‹œ์Šคํ…œ ์ˆ˜์ค€์˜ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์˜ ํ•ต์‹ฌ ๋™๊ธฐ๋Š” ๋ฐ์ดํ„ฐ ์ˆ˜๋ช…์ด LBA๋ณด๋‹ค ๋†’์€ ์ถ”์ƒํ™” ์ˆ˜์ค€์—์„œ ํ‰๊ฐ€ ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ ํ”„ ๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ์ดํ„ฐ์˜ ์ˆ˜๋ช…์„ ๋ณด๋‹ค ์ •ํ™•ํžˆ ์˜ˆ์ธกํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๊ธฐ๋ฒ•์—์„œ LBA๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ์ดํ„ฐ ์ˆ˜๋ช…์„ ๊ด€๋ฆฌํ•˜๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค. ๊ฒฐ๋ก ์ ์œผ ๋กœ ๋”ฐ๋ผ์„œ ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜์˜ ํšจ์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ˆ˜๋ช…์ด ์งง์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜๋ช…์ด ๊ธด ๋ฐ์ดํ„ฐ์™€ ํšจ๊ณผ์ ์œผ๋กœ ๋ถ„๋ฆฌ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์“ฐ๊ธฐ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ์˜ ์ค‘๋ณต ๋ฐ์ดํ„ฐ ํŒจํ„ด ๋ถ„์„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถˆํ•„์š”ํ•œ ์ค‘๋ณต ์ œ๊ฑฐ ์ž‘์—…์„ ํ”ผํ•  ์ˆ˜์žˆ๋Š” ์„ ํƒ์  ์ค‘๋ณต ์ œ๊ฑฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ค‘๋ณต ๋ฐ ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜์ง€ ์•Š๋Š” ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ๊ฐ€ ์กด์žฌํ•จ์„ ๋ถ„์„์ ์œผ๋กœ ๋ณด์ด๊ณ  ์ด๋“ค์„ ์ œ์™ธํ•จ์œผ๋กœ์จ, ์ค‘๋ณต์ œ๊ฑฐ ๋™์ž‘์˜ ํšจ์œจ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ค‘๋ณต ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฐœ์ƒ ํ•˜๋Š” ํŒจํ„ด์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๊ธฐ๋ก๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ด€๋ฆฌํ•˜๋Š” ์ž๋ฃŒ๊ตฌ์กฐ ์œ ์ง€ ์ •์ฑ…์„ ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, ์„œ๋ธŒ ํŽ˜์ด์ง€ ์ฒญํฌ๋ฅผ ๋„์ž…ํ•˜์—ฌ ์ค‘๋ณต ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ฑฐ ํ•  ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์ด๋Š” ์„ธ๋ถ„ํ™” ๋œ ์ค‘๋ณต ์ œ๊ฑฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ ๋œ ๊ธฐ์ˆ ์˜ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์‹ค์ œ ์‹œ์Šคํ…œ์—์„œ ์ˆ˜์ง‘ ๋œ I/O ํŠธ๋ ˆ์ด์Šค์— ๊ธฐ๋ฐ˜ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ‰๊ฐ€ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์—๋ฎฌ๋ ˆ์ดํ„ฐ ๊ตฌํ˜„์„ ํ†ตํ•ด ์‹ค์ œ ์‘์šฉ์„ ๋™์ž‘ํ•˜๋ฉด์„œ ์ผ๋ จ์˜ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ๋ฉ€ํ‹ฐ ์ŠคํŠธ๋ฆผ ๋””๋ฐ”์ด์Šค์˜ ๋‚ด๋ถ€ ํŽŒ์›จ์–ด๋ฅผ ์ˆ˜์ •ํ•˜์—ฌ ์‹ค์ œ์™€ ๊ฐ€์žฅ ๋น„์Šทํ•˜๊ฒŒ ์„ค์ •๋œ ํ™˜๊ฒฝ์—์„œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜ ์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ์‹œ์Šคํ…œ ์ˆ˜์ค€ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ด ์„ฑ๋Šฅ ๋ฐ ์ˆ˜๋ช… ๊ฐœ์„  ์ธก๋ฉด์—์„œ ๊ธฐ์กด ์ตœ์ ํ™” ๊ธฐ๋ฒ•๋ณด๋‹ค ๋” ํšจ๊ณผ์ ์ด์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ–ฅํ›„ ์ œ์•ˆ๋œ ๊ธฐ ๋ฒ•๋“ค์ด ๋ณด๋‹ค ๋” ๋ฐœ์ „๋œ๋‹ค๋ฉด, ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ์ดˆ๊ณ ์† ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์˜ ์ฃผ ์ €์žฅ์žฅ์น˜๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋ฐ์— ๊ธ์ •์ ์ธ ๊ธฐ์—ฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Replacing HDDs with NAND flash-based storage devices (SSDs) has been one of the major challenges in modern computing systems especially in regards to better performance and higher mobility. Although the continuous semiconductor process scaling and multi-leveling techniques lower the price of SSDs to the comparable level of HDDs, the decreasing lifetime of NAND flash memory, as a side effect of recent advanced device technologies, is emerging as one of the major barriers to the wide adoption of SSDs in highperformance computing systems. In this dissertation, system-level lifetime improvement techniques for recent high-density NAND flash memory are proposed. Unlike existing techniques, the proposed techniques resolve the problems of decreasing performance and lifetime of NAND flash memory by exploiting the I/O context of an application to analyze data lifetime patterns or duplicate data contents patterns. We first present that I/O activities of an application have distinct data lifetime and duplicate data patterns. In order to effectively utilize the context information, we implemented the program context extraction method. With the program context, we can overcome the limitations of existing techniques for improving the garbage collection overhead and limited lifetime of NAND flash memory. Second, we propose a system-level approach to reduce WAF that exploits the I/O context of an application to increase the data lifetime prediction for the multi-streamed SSDs. The key motivation behind the proposed technique was that data lifetimes should be estimated at a higher abstraction level than LBAs, so we employ a write program context as a stream management unit. Thus, it can effectively separate data with short lifetimes from data with long lifetimes to improve the efficiency of garbage collection. Lastly, we propose a selective deduplication that can avoid unnecessary deduplication work based on the duplicate data pattern analysis of write program context. With the help of selective deduplication, we also propose fine-grained deduplication which improves the likelihood of eliminating redundant data by introducing sub-page chunk. It also resolves technical difficulties caused by its finer granularity, i.e., increased memory requirement and read response time. In order to evaluate the effectiveness of the proposed techniques, we performed a series of evaluations using both a trace-driven simulator and emulator with I/O traces which were collected from various real-world systems. To understand the feasibility of the proposed techniques, we also implemented them in Linux kernel on top of our in-house flash storage prototype and then evaluated their effects on the lifetime while running real-world applications. Our experimental results show that system-level optimization techniques are more effective over existing optimization techniques.I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Garbage Collection Problem . . . . . . . . . . . . . 2 1.1.2 Limited Endurance Problem . . . . . . . . . . . . . 4 1.2 Dissertation Goals . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . 7 II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 NAND Flash Memory System Software . . . . . . . . . . . 9 2.2 NAND Flash-Based Storage Devices . . . . . . . . . . . . . 10 2.3 Multi-stream Interface . . . . . . . . . . . . . . . . . . . . 11 2.4 Inline Data Deduplication Technique . . . . . . . . . . . . . 12 2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.1 Data Separation Techniques for Multi-streamed SSDs 13 2.5.2 Write Traffic Reduction Techniques . . . . . . . . . 15 2.5.3 Program Context based Optimization Techniques for Operating Systems . . . . . . . . 18 III. Program Context-based Analysis . . . . . . . . . . . . . . . . 21 3.1 Definition and Extraction of Program Context . . . . . . . . 21 3.2 Data Lifetime Patterns of I/O Activities . . . . . . . . . . . 24 3.3 Duplicate Data Patterns of I/O Activities . . . . . . . . . . . 26 IV. Fully Automatic Stream Management For Multi-Streamed SSDs Using Program Contexts . . 29 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.1 No Automatic Stream Management for General I/O Workloads . . . . . . . . . 33 4.2.2 Limited Number of Supported Streams . . . . . . . 36 4.3 Automatic I/O Activity Management . . . . . . . . . . . . . 38 4.3.1 PC as a Unit of Lifetime Classification for General I/O Workloads . . . . . . . . . . . 39 4.4 Support for Large Number of Streams . . . . . . . . . . . . 41 4.4.1 PCs with Large Lifetime Variances . . . . . . . . . 42 4.4.2 Implementation of Internal Streams . . . . . . . . . 44 4.5 Design and Implementation of PCStream . . . . . . . . . . 46 4.5.1 PC Lifetime Management . . . . . . . . . . . . . . 46 4.5.2 Mapping PCs to SSD streams . . . . . . . . . . . . 49 4.5.3 Internal Stream Management . . . . . . . . . . . . . 50 4.5.4 PC Extraction for Indirect Writes . . . . . . . . . . 51 4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . 53 4.6.1 Experimental Settings . . . . . . . . . . . . . . . . 53 4.6.2 Performance Evaluation . . . . . . . . . . . . . . . 55 4.6.3 WAF Comparison . . . . . . . . . . . . . . . . . . . 56 4.6.4 Per-stream Lifetime Distribution Analysis . . . . . . 57 4.6.5 Impact of Internal Streams . . . . . . . . . . . . . . 58 4.6.6 Impact of the PC Attribute Table . . . . . . . . . . . 60 V. Deduplication Technique using Program Contexts . . . . . . 62 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Selective Deduplication using Program Contexts . . . . . . . 63 5.2.1 PCDedup: Improving SSD Deduplication Efficiency using Selective Hash Cache Management . . . . . . 63 5.2.2 2-level LRU Eviction Policy . . . . . . . . . . . . . 68 5.3 Exploiting Small Chunk Size . . . . . . . . . . . . . . . . . 70 5.3.1 Fine-Grained Deduplication . . . . . . . . . . . . . 70 5.3.2 Read Overhead Management . . . . . . . . . . . . . 76 5.3.3 Memory Overhead Management . . . . . . . . . . . 80 5.3.4 Experimental Results . . . . . . . . . . . . . . . . . 82 VI. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . 88 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2.1 Supporting applications that have unusal program contexts . . . . . . . . . . . . . 89 6.2.2 Optimizing read request based on the I/O context . . 90 6.2.3 Exploiting context information to improve fingerprint lookups . . . . .. . . . . . 91 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Docto

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    The Economics and Psychology of Personality Traits

    Get PDF
    This paper explores the interface between personality psychology and economics. We examine the predictive power of personality and the stability of personality traits over the life cycle. We develop simple analytical frameworks for interpreting the evidence in personality psychology and suggest promising avenues for future research.personality traits, lifecycle effects, psychology, economics

    The Economics and Psychology of Personality Traits

    Get PDF
    This paper explores the interface between personality psychology andeconomics. We examine the predictive power of personality and the stability ofpersonality traits over the life cycle. We develop simple analytical frameworksfor interpreting the evidence in personality psychology and suggest promisingavenues for future research.education, training and the labour market;

    The Economics and Psychology of Personality Traits

    Get PDF
    This paper explores the interface between personality psychology and economics. We examine the predictive power of personality and the stability of personality traits over the life cycle. We develop simple analytical frameworks for interpreting the evidence in personality psychology and suggest promising avenues for future research.lifecycle effects, personality traits

    Towards Automated Performance Bug Identification in Python

    Full text link
    Context: Software performance is a critical non-functional requirement, appearing in many fields such as mission critical applications, financial, and real time systems. In this work we focused on early detection of performance bugs; our software under study was a real time system used in the advertisement/marketing domain. Goal: Find a simple and easy to implement solution, predicting performance bugs. Method: We built several models using four machine learning methods, commonly used for defect prediction: C4.5 Decision Trees, Na\"{\i}ve Bayes, Bayesian Networks, and Logistic Regression. Results: Our empirical results show that a C4.5 model, using lines of code changed, file's age and size as explanatory variables, can be used to predict performance bugs (recall=0.73, accuracy=0.85, and precision=0.96). We show that reducing the number of changes delivered on a commit, can decrease the chance of performance bug injection. Conclusions: We believe that our approach can help practitioners to eliminate performance bugs early in the development cycle. Our results are also of interest to theoreticians, establishing a link between functional bugs and (non-functional) performance bugs, and explicitly showing that attributes used for prediction of functional bugs can be used for prediction of performance bugs
    • โ€ฆ
    corecore