2,486 research outputs found

    Very fast watermarking by reversible contrast mapping

    Full text link
    Reversible contrast mapping (RCM) is a simple integer transform that applies to pairs of pixels. For some pairs of pixels, RCM is invertible, even if the least significant bits (LSBs) of the transformed pixels are lost. The data space occupied by the LSBs is suitable for data hiding. The embedded information bit-rates of the proposed spatial domain reversible watermarking scheme are close to the highest bit-rates reported so far. The scheme does not need additional data compression, and, in terms of mathematical complexity, it appears to be the lowest complexity one proposed up to now. A very fast lookup table implementation is proposed. Robustness against cropping can be ensured as well

    Data Security using Reversible Data Hiding with Optimal Value Transfer

    Get PDF
    In this paper a novel reversible data hiding algorithm is used which can recover image without any distortion. This algorithm uses zero or minimum points of an image and modifies the pixel. It is proved experimentally that the peak signal to noise ratio of the marked image generated by this method and the original image is guaranteed to be above 48 dB this lower bound of peak signal to noise ratio is much higher than all reversible data hiding technique present in the literature. Execution time of proposed system is short. The algorithm has been successfully applied to all types of images

    Color space adaptation for video coding

    Get PDF
    Processament d'imatges abans de ser codificades pel codificador HEVC amb la finalitat d'augmentar la qualitat i la fidelitat.[ANGLÈS] Project on the objective and subjective improvements by pre-processing images to be encoded into a video.[CASTELLÀ] Proyecto sobre la repercusión en la mejora de calidad objetiva y subjetiva del pre-procesado de imágenes a codificar con vídeo.[CATALÀ] Projecte sobre la repercussió en la millora de la qualitat objectiva i subjectiva del pre-processament d'imatges a codificar amb vídeo

    Medical image integrity control combining digital signature and lossless watermarking

    No full text
    International audienceEnforcing protection of medical content becomes a major issue of computer security. Since medical contents are more and more widely distributed, it is necessary to develop security mechanism to guarantee their confidentiality, integrity and traceability in an autonomous way. In this context, watermarking has been recently proposed as a complementary mechanism for medical data protection. In this paper, we focus on the verification of medical image integrity through the combination of digital signatures with such a technology, and especially with Reversible Watermarking (RW). RW schemes have been proposed for images of sensitive content for which any modification may aspect their interpretation. Whence, we compare several recent RW schemes and discuss their potential use in the framework of an integrity control process in application to different sets of medical images issued from three distinct modalities: Magnetic Resonance Images, Positron Emission Tomography and Ultrasound Imaging. Experimental results with respect to two aspects including data hiding capacity and image quality preservation, show different limitations which depend on the watermark approach but also on image modality specificities

    A Real Time Image Processing Subsystem: GEZGIN

    Get PDF
    In this study, a real-time image processing subsystem, GEZGIN, which is currently being developed for BILSAT-1, a 100kg class micro-satellite, is presented. BILSAT-1 is being constructed in accordance with a technology transfer agreement between TÜBITAK-BILTEN (Turkey) and SSTL (UK) and planned to be placed into a 650 km sunsynchronous orbit in Summer 2003. GEZGIN is one of the two Turkish R&D payloads to be hosted on BILSAT-1. One of the missions of BILSAT-1 is constructing a Digital Elevation Model of Turkey using both multi-spectral and panchromatic imagers. Due to limited down-link bandwidth and on-board storage capacity, employment of a realtime image compression scheme is highly advantageous for the mission. GEZGIN has evolved as an implementation to achieve image compression tasks that would lead to an efficient utilization of both the down-link and on-board storage. The image processing on GEZGIN includes capturing of 4-band multi-spectral images of size 2048x2048 8- bit pixels, compressing them simultaneously with the new industry standard JPEG2000 algorithm and forwarding the compressed multi-spectral image to Solid State Data Recorders (SSDR) of BILSAT-1 for storage and down-link transmission. The mission definition together with orbital parameters impose a 6.5 seconds constraint on real-time image compression. GEZGIN meets this constraint by exploiting the parallelism among image processing units and assigning compute intensive tasks to dedicated hardware. The proposed hardware also allows for full reconfigurability of all processing units

    A New Paradigm for Improved Image Steganography by using Adaptive Number of Dominant Discrete Cosine Transform Coefficients

    Full text link
    Image steganography camouflages secret messages in images by tampering image contents. There is a natural desire for hiding maximum secret information with the least possible distortions in the host image. This requires an algorithm that intelligently optimizes the capacity keeping the required imperceptibility of the image. This paper presents an image steganography scheme that preserves an adaptively chosen block of dominant coefficients from each Discrete Cosine Transform coefficients, whereas the rest of the coefficients are replaced with normalized secret image pixel values. Secret image pixel value are normalized in an adaptively chosen range. Embedding such kind of normalized data in adaptively chosen non-square L- shaped blocks utilize maximum embedding space available in each block that consequently results in maximizing payload capacity, while maintaining the image quality. This scheme achieved payload capacity up to 21.5 bit per pixel (bpp), while maintaining image quality of 38.24 dB peak signal to noise ratio.Comment: 9 page
    corecore