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ABSTRACT

IMPLEMENTATION OF POST-COMPRESSION RATE
DISTORTION OPTIMIZATION WITHIN EBCOT IN JPEG2000

Name: Benjamin T. Fortener
University of Dayton, 2009

Advisor: Eric J. Balster

JPEG2000 is the latest standard in image compression with the Joint Photographic 

Experts Group (JPEG) committee publishing Part 1, second edition of the standard 

in September 2004. The JPEG2000 compression system improves upon the original 

JPEG compression standard mostly through the use of a wavelet transform and an 

Embedded Block Coding with Optimal Truncation (EBCOT) technique that allows 

for a compression advantage over JPEG of about 30 percent on average. EBCOT 

depends on an arithmetic entropy coder called the MQ Coder that processes data and 

outputs the final image bit-stream that is stored in a JPEG2000 file. After the MQ 

Coder, the bit-stream can be truncated at points defined during the encoding process, 

and this truncation may be done optimally to minimize the amount of distortion 

introduced to the decoded image. The method of removing data from the code stream 

is called the Post-Compression Rate Distortion Optimization (PCRD-opt) algorithm. 

This thesis details the PCRD-opt algorithm and presents a working implementation 

that out-performs that of the mainstream reference encoders JasPer and Kakadu.
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CHAPTER 1

Introduction

JPEG2000 is the latest standard in image compression with the Joint Photo­

graphic Experts Group (JPEG) committee publishing Part 1, second edition of the 

standard in September 2004. The JPEG2000 compression system improves upon the 

original JPEG compression standard through the use of a wavelet transform and an 

Embedded Block Coding with Optimal Truncation (EBCOT) technique that allows 

for a compression advantage over JPEG of about 10% to 25% for images compressed 

to about 0.5 to 1 bits per pixel [4]. This improvement is much higher at lower bit 

rates. JPEG2000’s EBCOT algorithm depends upon its Tier 1 portion that contains 

an arithmetic coder called the MQ Coder. Tier 1 consists of three coding passes that 

act on bit planes of blocks of wavelet coefficients called code blocks, which are usu­

ally 32x32 or 64x64 coefficients in size and are coded independently by Tier 1. The 

resulting bit stream from the MQ Coder is what makes up the compressed file stream 

in JPEG2000, and this file stream can be truncated at specified positions within it 

in order to meet a rate constraint for a compressed image. In order to achieve an 

optimal code stream truncation, a distortion is calculated for every truncation point. 

The rates per truncation point and calculated distortions are used in an optimization 

problem that can be solved using Lagrange multipliers.
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Optimal code stream truncation is referred to as Post-Compression Rate Distor­

tion Optimization (PCRD-opt) and is one of the most significant portions of the 

JPEG2000 encoding scheme, providing a fine-grain inspection of small portions of 

the stream and how much they contribute to distortion after decoding. Most of the 

literature regarding PCRD-opt or EBCOT focus on speed or quality improvements 

and assume a working implementation of the algorithm. This is a problem for custom 

JPEG2000 encoders that have not implemented an optimal truncation algorithm; the 

literature defining implementation is sparse. Because the JPEG2000 specification de­

fines only the format of the compressed code stream, implementations of the EBCOT 

algorithm vary widely. Most implementations in literature use the well-known con­

strained optimization by method of Lagrange multipliers defined by the standard 

[cite]. Portions within this algorithm have been modified to increase compression 

speed or performance at some cost. A few of these methods of modification are 

explored in researching the PCRD-opt algorithm for this thesis.

In order to forgo calculation of distortions during Tier 1 encoding, Zhu et al. [18] 

assumes minimal distortion contribution from the fractional bits of the normalized

version of a coefficient sample. In their proposed algorithm, these bits are disregarded 

and the quantization median of 0.5 is used in place of the fractional bits. They point 

out that the majority of the distortion contribution is due to the wavelet energy gain, 

the bitplane’s level, and the number of pixels involved in the distortion calculation. 

Removing the fractional bits results in a slight decrease of PSNR of the decoded im­

ages, but a significant speed increase in the PCRD algorithm as well as an advantage 

for a hardware implementation.
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Yeung et al. [17] proposed a ’’Priority Scanning” method that estimates the 

order of truncation points by coding passes within a bitplane and by bitplane level. 

The codeblocks’ coding passes are then coded in this order until a rate constraint 

is met. Using this priority scanning method eliminates the Tier 1 coding portion 

for data that would be removed afterward by the optimal truncation process. Their 

algorithm produces the same results as the standard JPEG2000 EBCOT algorithm 

while reducing the Tier 1 encoding time at a cost of increased complexity.

While many papers have presented alternatives to the PCRD-opt algorithm, the 

implementation proposed in this paper uses the algorithm defined in [9] in order to 

get an integrated solution with as little modification as possible to existing code and 

to adhere to suggestions from the standard. This serves as a proof-of-concept imple­

mentation that will allow for further efforts in integrating a PCRD-opt algorithm in 

a hardware Tier 1 solution in an existing JPEG2000 encoder, henceforth referred to 

as the UDJPEG2000 Encoder [5],[7],[10]. This thesis presents a detailed look at the 

EBCOT algorithm with a focus on the PCRD-opt portion and explains the algorithm 

in detail so as to facilitate its implementation in existing platforms. This paper is 

organized as follows: following the Introduction, Chapter 2 gives a background on 

digital imagery in general, and Chapter 3 explains the JPEG2000 encoding process 

and the benefits of its file format. Then, the significant portions of the JPEG2000 

algorithm that are needed to understand what is done in the PCRD algorithm are 

further detailed in Chapters 4 through 6. The post-compression rate-distortion al­

gorithm used for optimal truncation is explained in Chapter 7 before presenting the 

results from integrating the algorithm into the UDJPEG2000 Encoder in Chapter

3



8. The results demonstrate equivalent peak signal-to-noise ratio (PSNR) for a vari­

ety of images to the JasPer and Kakadu encoders—reference implementations of the 

JPEG2000 standard. Finally, conclusions and future work are proposed in Chapter

9.
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CHAPTER 2

Digital Imagery

Digital imagery has been a prominent format for imagery for a number of decades. 

As with other media, imagery and video have been increasingly captured in a digital 

format. While film may still have the edge for resolution [6], digital cameras are fast 

becoming industry standard. W ith all the data that is being captured and stored 

in digital memory, a big concern becomes storage space. Raw image data from a 

camera is usually stored as a matrix of pixels for each color component, each pixel 

having a value representing the intensity of a single sample within that component. 

For color images, the standard three color planes, red, green, and blue, are all stored. 

For a grayscale image, there is only one component, the luminance component. A 

fast-growing field of infrared imagery and images that are created by capturing other 

wavelengths can also be displayed as grayscale images. The range of values each pixel 

can take is determined by how many bits are used to store each sample value. With 

8 bits, the range is between 0 and 28 — 1, or 255. Typically, black is represented 

by 0, and the lightest white is represented by 255. The colors between are linear 

increments of brightness creating a gradient of gray, hence, grayscale. W ith 8 bits 

per pixel (one byte per pixel) and 3 color planes per color image, a 10 megapixel raw 

image has a storage size of 30 million bytes; 30 megabytes for a single image. The 

problem becomes more evident when considering storing high resolution surveillance
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video at 30 frames per second for days, weeks, months, or even years at a time. A 

solution to this problem lies in data compression.

Traditionally, the most popular format for data compression has been the JPEG 

format [16], and is prevalent in digital cameras and the Internet. However, the stan­

dard JPEG format is somewhat lacking; the discrete cosine transform it performs 

is done on small, 8x8 blocks of pixels, resulting in severe blocking artifacts at high 

compression ratios. Another drawback is that lossless JPEG compression (JPEG-LS) 

uses a completely different algorithm than if performing lossy compression. Most im­

portantly, JPE G ’s file format is not very flexible for providing some desirable features. 

The JPEG committee has released a new compression standard called JPEG2000 that 

addresses these and many other issues. The next section describes the JPEG2000 al­

gorithm and introduces many of the benefits it provides over JPEG.
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CHAPTER 3

JPEG2000 Background

JPEG2000 was ratified as an international standard in December 2000 [12] and has 

since had a second edition published in September 2004 [9]. The JPEG2000 standard 

improves upon the original JPEG standard in a multitude of ways: JPEG2000 has 

superior performance at low bit-rates when JPEG artifacts become noticeable. The 

wavelet transform used in JPEG2000 is applied to the whole image, so the compressed 

image becomes blurry at very low bit rates as opposed to very blocky with original 

JPEG. Blurriness in an image is more acceptable to the human visual system than is 

blockiness [3]. JPEG2000 is one of the only standard image formats that can handle 

continuous-tone grayscale and color imagery with greater than 16 bits per component 

per sample, and its compression of bi-level imagery (l-bit per sample) is comparable 

to other standards specifically designed to compress single bit imagery [12]. The file 

format for JPEG2000 is one of the greatest improvements over JPEG. It allows for 

progressive decoding of small parts of the image and of increasing pixel accuracy, 

meaning that the decoder can display a blurry-looking image almost immediately, 

and the image becomes clearer as more data is received and decoded. This becomes 

significant on slow data links and with very large imagery. The JPEG2000 file format 

can also contain multiple resolutions (image sizes) within one file with no redundant 

data. W ith the original JPEG, if more than one resolution of an image is desired, the



original image must be compressed multiple times to multiple files. In this case, the 

largest resolution image contains a large amount of redundant data already stored in 

the smaller resolution images. JPEG2000 compresses an image once and stores the 

multiple resolutions in a single file without the redundant data.

W ith all the obvious benefits to JPEG2000, some drawbacks exist that have slowed 

the adoption of the standard in the industry where original JPEG still dominates. 

The most significant reason is that the computational requirement for the JPEG2000 

compression algorithm is more than 30 times as great compared to the current base­

line JPEG encoder [1], This suggests that encoding to a JPEG2000 file takes much 

longer than encoding to a JPEG file. In some real-time applications, this computa­

tion boundary must be overcome before adoption of the technology can take place. 

Another reason adoption has been slow is that the majority of applications do not 

inherently support the JPEG2000 file format. Even if the industry were to start using 

JPEG2000, most standard image file viewers and Internet browsers cannot currently 

display the JPEG2000 image format.

3.1 Lossy Versus Lossless Compression

Data can either be compressed to a form that can be completely restored to the 

original (lossless, or reversible, compression), or it can be compressed using a means of 

removing data so that it cannot be fully restored (lossy, or irreversible, compression). 

Lossy compression is more typical in most applications because of the much higher 

compression ratios it can achieve. Lossless compression typically achieves a com­

pression ratio between 1.5:1 and 2.5:1 [2], In image compression, lossy compression 

can achieve much higher compression ratios and still preserve visual quality, because
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most of the energy content in typical images resides in the lower frequencies. This 

allows much of the higher frequencies to be compressed more aggressively while pre­

serving the most important visual content. When performing lossless compression, 

data must be stored as integers; some floating point numbers cannot be stored with 

infinite precision with a finite number of bits, and performing division may result in 

irrational numbers. Therefore, if a mathematical operation is performed on data using 

non-integers, the inverse operation to restore the data may not be able to perfectly 

restore the data to its original value, thus resulting in a loss of precision.

3.2 Encoding Process

Image compression is a process of decorrelating visual data, removing some of that 

data in the case of lossy compression, and then coding the data. JPEG2000 follows 

this procedure while introducing novel methods of coding to achieve a compression 

efficiency very close to the entropy limit of the data [1]. An image is preprocessed by 

a level offset, a color transform (for multi-component images), a wavelet transform, 

and quantization. It is then encoded by JPEG2000’s Tier 1 coder, the portion of 

the JPEG2000 process that achieves entropy coding. For lossy compression, optimal 

truncation is then performed before assembling the code stream in JPEG2000’s Tier 

2 portion. The output of Tier 2 is a fully-compliant, JPEG2000 image file. This 

process flow is shown in Figure 3.1.

3.2.1 Level Offset

When image data is captured, the pixel data is usually stored as unsigned values 

from 0 to 2s  — 1, where B  is the number of bits used to store each pixel value. 

This gives the data a mean value of However, the entropy coder works most
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Wavelet
Transform

Optimal Truncation is performed here.

Figure 3.1: A simplified overview of the JPEG2000 encoding process.

efficiently when the mean value of the data is 0. The level offset, then, converts the 

unsigned data to signed data with values from —2S_1 to 2S_1 — 1, giving the data a 

mean value of 0. The data itself is not changed; its representation is just different. 

The two representations are shown below in Figure 3.2.

O 1 2 7  2 5 5

Figure 3.2: Top: unsigned representation of 8-bit, grayscale pixel data. Bottom: 
signed representation after level offset.
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3.2.2 Color Transform

In a color image, pixels are formed typically from three color planes, or color 

components: red, green, and blue (RGB). Each color component c is stored with a 

number of bits B c, with the sum of all three being the total bit depth B. For color 

images, typically, B  = 24 and B c = 8.

When pixel data is stored as RGB, the data is highly correlated between color 

planes, and there is a lot of redundant visual information in all three components. A 

color transform is used to move the visual information mostly into one component and 

to decorrelate the data. The transform used takes the signed R G B  pixel values and 

converts them to luminance and chrominance components (YC rCb). Y  represents the 

luminance component—the grayscale version of the image—that shows the amount of 

light intensity of each pixel. The chrominance components Cr and Cb are formed by 

taking the difference between the red component and the green component (R  — G) 

and between the blue component and the green component (B  — G), respectively. 

Using the Pythagorean theorem, the green component can be reproduced from the Y  

Cr and Cb components [15].

For lossless, or reversible, compression, Equations 3.1 and 3.2 are used for the 

forward and reverse color transforms, respectively, to keep all the data as integers 

and reconstruct the data exactly.

1 Y  \ /  |^ + 2G + B j \

Cb = B - G\ C r ) I  R ~ G  /
(3-1)

(  G \ f  Y  c„+cT \

= Cb + G "
\ r ) c r + G  y

(3-2)
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Equations 3.3 and 3.4 below show the lossy, or irreversible, forward and in­

verse color transforms, respectively, used in JPEG2000. All these color transform 

equations—for reversible and irreversible processing—can be found in [12],

/  y
cb

\ cr
/ 0.299 0.587 0.114 \ f  R \

-0.168736 -0.331264 0.5 G
\ 0.5 -0.418688 -0.081312 )

(3.3)

/ 1 0 1.402 (  Y \
1 -0.344136 -0.714136 c b
1 1.772 0 \ C r )

(3.4)
R
G
B

\
)

Implementing the color transform results in the original, R G B  color data to be­

come Y C rCb data. An example of this is shown with the Baboon image in Figure

3.3.

Figure 3.3: Example of the color transform on the Baboon.bmp image.

Another benefit to using the color transform when using lossy compression is that, 

since a majority of the important data resides in the luminance (y ) component, the

12



chrominance (Cr and Cb) components can be subsampled in order to further reduce 

the amount of information needed to be coded without a large loss in quality. A 

subsampling of 2:1 is typically employed by JPEG and MPEG for the Cb and Cr 

components [12]. Subsampling by 2 decreases the size of the color components by 4 

and thus significantly decreases the amount of data to be coded. An example of this 

is shown in Figure 3.4.

Figure 3.4: Example of subsampling the Cr and Cb color components after the color 
transform.

3.2.3 Wavelet Transform

After the color transform, the signed pixel values are passed through a discrete 

wavelet transform to decorrelate the data in the spatial and frequency domains. This 

process “pushes” the energy in the image into the upper left corner through the use of 

low- and high-pass filters. These filters process the rows and columns of the image in
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sequence to produce four quadrants, each quadrant having been passed through the 

set of filters in a different order. In order to further decorrelate the data, additional 

passes may be performed on the quadrant that was passed through the low-pass filter 

twice. The data resulting from the wavelet transform is no longer pixel values but 

wavelet coefficients, which can be passed through the inverse wavelet transform to 

reconstruct the original pixel values. Mathematically, the discrete wavelet transform 

is completely reversible, or lossless. However, when representing floating point values 

with a finite number of bits, some precision may be lost resulting in small differences 

in the reconstructed pixels. If the wavelet is integer-based, the transform is lossless 

both mathematically and in implementation.

3.2.4 Quantization

Quantization is one of the places in the JPEG2000 process where data is removed 

in order to achieve a higher compression ratio and is therefore not performed in lossless 

compression. The process of quantization takes the wavelet coefficients, x[n], from 

the wavelet transform and divides them by a quantization step size, A(,. Dividing 

the coefficients reduces the number of bits required to represent a coefficient’s value, 

and in turn introduces more zeros into the entropy coder, allowing it to encode code 

blocks more efficiently. The equation for quantization is

where x [n] are the quantized wavelet coefficients.
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3.2.5 Tier 1

The Tier 1 portion of the encoder processes the quantized wavelet coefficients 

through three coding passes that determine the type of entropy coding that is per­

formed within the arithmetic coder. Based on statistical modeling of many different 

images, the three coding passes generate contexts and binary decision values for every 

bit within an image. The decision bits are encoded using a context-adaptive arith­

metic entropy coder called the MQ Coder, and the context information is used to 

select the estimated probability value from a lookup table, which the MQ Coder uses 

to create the compressed bit stream [13].

3.2.6 Tier 2

Once a compressed bit stream exists for every codeblock of the image, the JPEG2000 

file stream is then assembled. Tier 2 functions as the assembler of all the pieces of 

the JPEG2000 file. Header information, including the width and height of the image, 

how many component planes there were, how many wavelet transform levels were per­

formed, as well as information on coding style and other options JPEG2000 supports 

is included prior to the compressed data stream. The compressed stream, organized 

into bit streams for each codeblock, can be arranged in a progression scheme. In the 

JPEG2000 standard, there exists a set of five schemes to order and construct the final 

code stream that determines ease of access of specific data within the file. Depending 

upon which scheme is chosen, all the packets for a certain resolution, layer, component, 

or spatial position may be arranged together. The five progressions defined in the
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standard are: Layer-Resolution-Component-Position (LRCP), Resolution-Layer- 

Component-Position (RLCP), Resolution Position Component Layer (RPCL), Position 

Component-Resolution-Layer (PCRL), and finally Component-Position-Resolution- 

Layer (CPRL). Once all the header information is included and the compressed data 

organized, the JPEG2000 file is complete.

An example of the structure of a progression scheme is given in Figure 3.5 for 

the LRCP progression. Note that all the image data in a JPEG2000 file is stored as 

packets, which contain precincts of compressed codeblock bit streams. A progression 

defines where a packet for a specific precinct will fall within the file. For the LRCP 

progression, the highest level is the layer, meaning any packets containing codeblock 

data that has been included for a layer’s specified bitrate will be organized together.

In the examples in Figures 3.5, 3.6, and 3.7, there are two layers, and all the data 

for a single layer is contiguous. The same logic applies for the next level, resolution. 

Within a specified layer, all the packets of codeblock data for a single resolution are 

contiguous. Within a resolution, all the data for a single component is contiguous,

etc.

The first example, Figure 3.5 shows the required data to parse the entire image. 

Intuitively, this requires all the data, and is thus shown. In the second example, Figure 

3.6 shows the parsing needed to view a grayscale version of the middle resolution of 

the image. Finally, in the third example, Figure 3.7 shows what is needed to parse a 

portion of the color image at a lower quality.

The advantage one progression scheme gives over another is evident when specific 

data is constantly needed to be retrieved from an image or many images. If one is 

always looking at the bottom-right portion of a stream of images, that bottom-right

16



Layers
Resolutions

Components
Position

Data

Figure 3.5: An example of the LRCP progression and the data required for the entire 
image.

portion must continuously be parsed out of the larger file and displayed. Parsing a 

certain position out of an image is time consuming when using a progression in which 

position is the lowest level of ordering. In the LRCP example, one must parse out the 

bottom-right corner for every component for every resolution for every layer. If the 

PCRL progression scheme was chosen, however, the position would be the highest 

level order, meaning that bottom-right corner’s data is all contiguous.
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Figure 3.6: An example of the LRCP progression and the data required for a grayscale 
version of the middle resolution of the image.
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Figure 3.7: An example of the LRCP progression and the data required for just the 
eye portion of the color image at a lower quality.
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CHAPTER 4

Discrete Wavelet Transform

The discrete wavelet transform (DWT) used in the JPEG2000 compression system 

improves upon the original JPE G ’s discrete cosine transform (DCT) by performing 

the transform on the entire image that is to be encoded. The JPEG DCT is performed 

on 8x8 pixel blocks of an image, causing blocking artifacts at higher compression 

ratios. The DWT, as implemented in JPEG2000, does not have this problem and only 

causes the image to lose its higher frequencies when compressed more aggressively, 

smoothing and blurring it. Blurriness in an image is more acceptable to the human 

visual system than is blockiness [3]. As the DWT operates on the entire image, it 

can be performed multiple times at coarser levels as in a filter bank. Figure 4.1 

shows a typical cascaded, 3-level, FIR filter bank. A one-dimensional, D-level filter 

bank would consist of subbands L d and Hi through H d , where D  is the number of

transform iterations.

The filter bank breaks up the input signal into scaling coefficients and wavelet 

coefficients at higher levels of coarseness by filtering the output of the low-pass filter 

recursively. A number of different levels may be used, and Figure 4.1 shows three levels 

as an example. The ho and hi represent the low pass and high pass impulse response 

coefficients for the FIR fitter. When these coefficients are convoived with an input sig­

nal, the resulting output is a filtered signal. The output of each high- or low-pass filter
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Figure 4.1: A cascaded filter bank, D  =  3.

is called a subband, denoted b, where b = {Hj, La} represents each filter the signal 

was processed by. This design is modified to two dimensions for the rows and columns 

of an image to create the two-dimensional wavelet transform used in JPEG2000. In 

the case of two dimensions, b is a two-dimensional subband representing which two 

filters the signal has been processed by, where b = {HHd, HLd, LHd, LLd}- Figure 4.2 

shows an example of what the output of a one-level, two-dimensional wavelet trans­

form looks like after processing the baboon image. The subbands are easily visible

and are labeled.

4.1 Lifting

As Figure 4.1 shows, the method of implementing the wavelet transform using 

convolution requires operations on all of the samples by each filter and then down- 

sampling both of the outputs. This is very inefficient, as half of the data is thrown 

away after processing. A method of factoring the discrete wavelet filter and imple­

menting the transform on even- and odd-numbered samples that have already been 

downsampled was introduced by W. Sweldons [11]. Downsampling the input signal 

before filtering allows processing on only the data that is used, making the lifting
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scheme very efficient. Lifting allows for a simpler implementation of symmetric ex­

tension for the borders of an image, and also results in a signal size that is exactly the 

same as the input signal size, and therefore no extra processing is needed to remove 

boundary artifacts caused by convolution. The JPEG2000 specification calls for im­

plementation of the lossless compression scheme to use lifting to create the wavelet 

coefficients in order to preserve reversibility [9]. Figure 4.3 shows how the input signal 

x[n] is split into even and odd samples, x e[n\ and xo[n], which are passed through the 

lifting steps separately, effectively downsampling the data before filtering it.
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Figure 4.3: Lifting implementation of the discrete wavelet filter process.

4.2 Wavelets In JPEG2000

Two transforms are used for the wavelet transform in JPEG2000; Daubechie’s 9/7 

is used for irreversible, or lossy, compression, and the LeGall 5/3 uses an integer-to- 

integer transform to achieve reversible, or lossless, compression. The ’’loss” associated 

with the 9 /7  transform is only the loss of precision when representing floating point 

numbers with a finite number of bits. This thesis focuses on the 9/7 wavelet used 

in irreversible compression, as optimal truncation and the PCRD algorithm remove 

data from an image in order to provide irreversible compression.

The 9 and 7 in ’’Daubechie’s 9/7” stand for the number of taps in the low- and 

high-pass analysis filters, respectively. For the analysis, or forward, transform, the 

low-pass coefficients are denoted ho while the high-pass coefficients are hi. For the 

synthesis, or inverse, transform, the low-pass coefficients are denoted go and the high- 

pass coefficients . The coefficients used for the analysis and synthesis transforms 

in this paper are shown in Tables 4.1 and 4.2 and are defined in the JPEG2000 ISO 

standard [9].

It should be noted that the coefficients in Tables 4.1 and 4.2 are different than

the lifting coefficients used in many implementations to apply the wavelet transform.
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Table 4.1: Daubechie’s 9/7 Analysis Wavelet Coefficients

z h0(2) M z)
0 0.602 949 018 236 360 1.115 087 052 457 000
1,-1 0.266 846 118 442 875 -0.591 271 763 114 250
2,-2 -0.078 223 266 528 990 -0.057 543 526 228 500
3,-3 -0.016 864 118 442 875 0.091 271 763 114 250
4,-4 0.026 748 757 410 810

Table 4.2: Daubechie’s 9/7 Synthesis Wavelet Coefficients

z 9o(z) 5i(2)
0 1.115 087 052 457 000 0.602 949 018 236 360
1,-1 0.591 271 763 114 250 -0.266 846 118 442 875
2,-2 -0.057 543 526 228 500 -0.078 223 266 528 990
3,-3 -0.091 271 763 114 250 0.016 864 118 442 875
4,-4 0.026 748 757 410 810

This is because the lifting scheme uses coefficients obtained from factoring the original 

wavelet coefficients into lifting steps that operate on the even and odd pixels of an 

row or column. These lifting steps require a different set of coefficients: a , /?, 7, and 

8, with a scaling factor of K . These lifting coefficients for Daubechie’s 9/7 are given 

in Table 4.3 [5],

Table 4.3: Daubechie’s 9/7 Lifting Wavelet Coefficients

a -1.586 134 342
0 -0.052 980 118 54

0.882 911 076 2
8 0.443 506 852 2
K 1.149 604 398
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4.3 Energy Gain from the Transform

As the transform operates on subsequent levels of coefficients, the energy in the 

subbands has a gain associated with it. Depending upon the filter tap coefficients 

used and the method of performing the transform, this gain can differ between im­

plementations. The coefficients given in Table 4.1 and the lifting coefficients derived 

from those and given in Table 4.3 have a unity gain when used to apply the forward 

wavelet transform. The synthesis coefficients, however, apply the inverse transform, 

which, in this case, has a non-unity gain. This gain is important to account for when 

performing quantization or distortion calculations in the PCRD algorithm.

Wavelet gain from a biorthogonal wavelet transform is typically unity for the low- 

pass filter and 2 for the high-pass filter. In the two-dimensional wavelet transform, 

the gain is unity for the LL subband, 2 for the LH and HL subbands, each filtered 

by the high-pass filter once, and 4 for the HH subband, which has been filtered by 

the high-pass filter twice. The JPEG2000 standard specifies that decoders should 

expect coefficients from the wavelet transform to have these gains, so if using a for­

ward transform with unity gain, the biorthogonal wavelet transform gains need to be 

separately applied to the coefficients.

To calculate gains for the forward and inverse wavelet transforms, a reference basis 

vector, St, defined as a vector with elements that are the high- or low-pass coefficients, 

is used to find the translates of the basis vector, whose L2-norms are the subband 

gains. The basis vector and its translates are defined in [12] as:

=»»["], (4.1)
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(4.2)
sij ["] = X  s'«-' Wsol™ -  2fc]

k
StfdM =  12 sHd- i  [fc]$o[n -  2k]

k

Equation 4.2 is very similar to a conventional down-sampled convolution of the 

previous reference vector and the low-pass filter tap coefficients. However, the down- 

sampling occurs in the variable k, which is the index of the summation. Depending 

on whether n is even or odd, the convolution of the previous reference vector and 

the even or odd samples of the low-pass filter is calculated. The gain associated with 

each level of the wavelet transform is calculated using the square of the L2-norm of 

the appropriate reference vector. Subband gain is shown in Equation 4.3.

Gb = ||sb||2 (4.3)

These subband gains must be used when calculating distortion for the PCRD 

algorithm as well as before quantization to account for the gain applied by the inverse 

transform. Table 4.4 shows the subband gains for 7 wavelet transform levels of the 

9/7 wavelet.

Table 4.4: Daubechie’s 9/7 Wavelet Subband Gain Factors Gb Used in Distortion 
Weighting

d Glhjhla GhHh
1 3.86534814957796 1.02280984035474 0.27064572945149
2 16.9975586827024 3.98802169718592 0.93568243264315
3 70.8608348870272 r l 7.5056459762554 4.32464056533563
4 286.925741944958 72.8615766103804 18.5023808256588
5 1151.50823940491 294.860759763489 75.5034698607394
6 4610.39714362674 1183.17015313397 303.637966026903
7 18447.9631384652 4736.97625448668 1216.33721116798
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4.3.1 Distortion Weighting Based on Energy Gain

Energy gain from the synthesis, or inverse, wavelet transform must be taken into 

account when removing data from the image, as in quantization, or when calculating 

distortion associated with removing certain data from the image, as in optimal trun­

cation. It is this gain that is the reason for weighting the distortion calculations in the 

optimal truncation algorithm [12]. Weights are needed in order to correctly determine 

the distortion associated with truncation and to determine how to properly quantize 

a certain subband when the inverse wavelet transform applies different amounts of 

gains to each of those subbands. The wavelet weight is defined by the amount of 

squared error introduced by a unit error in a transformed coefficient bit. This unit 

error differs based on which subband the coefficient is in. The reason the weight 

depends on subband is that the low- and high-pass filters have different gains, so each 

subband b of the resulting coefficients will have its own gain. Since we are finding 

distortion introduced after decoding, we use the synthesis vectors associated with 

each subband in the gain calculation. These synthesis vectors are simply translates 

of a reference basis vector s/,.

Each subband b has a gain associated with it from the wavelet transform’s low- and 

high-pass filters. Even though the transform may be implemented using the lifting 

scheme, lifting coefficients are simply found from factoring the low- and high-pass 

filter coefficients, and the gain is the same for both implementations. This gain is 

calculated from translations of a reference basis vector Sf, based on how many times a 

coefficient in subband b has been passed through each filter. For the two-dimensional 

wavelet transform, the subbands are labeled by level and with which filter has been
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applied to create the subband in question. Figure 4.4 shows the labels of these 

subbands. The gain Gb for each subband b is labeled accordingly.

ll3 hl3
hl2

HL,
lh3 hh3

lh2 hh2

LH, HH,

Figure 4.4: Subbands of a 3-level, 2D wavelet transform.

4.3.2 Calculating the Subband Gains

Equations 4.1 and 4.2 show the calculations of the reference vectors used in sub­

band gain calculations. The reference vectors are calculated for the low- and high-pass 

filters, and are therefore one-dimensional. Since the distortion weighting is applied to 

a two-dimensional subband, the one-dimensional vectors are multiplicative and are 

simply multiplied together to achieve the two-dimensional synthesis vectors, S(,d, where 

b = {LL, LH, H L, H H }. The energy gain from the wavelet transform is the amount 

of squared error introduced by a unit error in a transformed coefficient. Therefore, 

the squared norm of the two-dimensional synthesis vectors is needed to calculate the
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energy gain, shown in Equation 4.3. This equation can apply to both one-dimensional 

and two-dimensional vectors. Equation 4.4 from [12] shows the relationship between 

the one- and two-dimensional gains and synthesis vectors.

slld = sldsld => GLLd -  GLd ■ GLd 
sHLd = SHdSLd = >  GHLd = GHd ■ GLd 
sLHd -  sLdSHd => GLHd = GLd ■ GHi 
SHHi = sHdSHd = >  GHHd = GHd ■ GHd

(4.4)

29



CHAPTER 5

Quantization

Quantization is a method of removing data from an image in order to improve Tier 

1 coding efficiency. The process of removing data involves dividing the coefficients 

resulting from the wavelet transform by a value, At, depending upon the desired 

compression ratio and a gain factor resulting from the inverse wavelet transform. As 

the wavelet coefficients are stored in memory with a number of bits per component, 

Bc, dividing the coefficients will shift their values toward zero and introduce zeros in 

the most significant bits. These most significant bit planes will then contain a large 

amount of zeros, which become zero coded within the entropy coder allowing for a 

much higher compression ratio. Figure 5.1 shows an example of a group of coefficients 

before and after quantization, and how the division introduces a plane of zeros into 

the resulting coefficients.

5.1 Quantization as a Means of Removing Data

In JPEG2000, there exist two methods of removing data to gain compression ef­

ficiency. Quantization is the coarse—and quicker—method, and optimal truncation 

via the Post-Compression Rate Distortion algorithm is the more fine-grained—and 

slower—method. Optimal truncation is generally the more preferred method, because 

it produces optimal (a minimum) mean-square error between the original image and
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Figure 5.1: Example of binary coefficient values before and after quantization by a 
A6 of 2.

the reconstructed image for a given rate. When removing data with optimal trun­

cation, the default quantization value is typically set to unity to preserve all the 

coefficient data going into the entropy coder.

In the case of using a non-unity quantization value, however, data is removed 

uniformly from a subband. Each subband can have a different quantization value, 

and a derived quantization method is defined to calculate optimal values for each 

subband based on the gain introduced by the inverse wavelet transform.

5.1.1 Derived Quantization

Derived quantization requires only a single quantization parameter to be given 

before performing the quantization on the subband data. It relies on the synthesis 

wavelet subband gain parameter, G5, calculated in Section 4.3, to derive the result­

ing quantization steps for each subband. This method effectively scales the desired 

quantization step by the gain factor applied by the inverse wavelet transform in or­

der to properly divide each subband by the correct step size. Derived quantization 

provides an optimal quantization of each subband in a mean-squared error sense. An
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explanation of synthesis wavelet energy gain applied to a default step size is given in

Section 5.2.

5.1.2 Expounded Quantization

Expounded quantization allows one to specify the quantization step parameter for 

each subband explicitly. Although this does not mean that the synthesis wavelet gain 

cannot be applied to each explicit step size, the result of expounded quantization will 

not be as optimal in a mean-squared error sense as derived quantization. Benefits 

of expounded quantization may be decreased Tier 1 processing time by preserving 

low frequencies and applying a very high quantization to the larger, high frequency 

subbands. Explicitly setting subband step sizes also allows for preservation of specific 

frequency data while quantizing other data in the image.

5.2 Inverse Wavelet Transform Gain in Quantization

When performing the inverse wavelet transform, there is a gain applied to the 

resulting data. This gain is the same gain used to calculate bit distortions within 

optimal truncation, the calculations of which are shown in Section 4.3.2. As there 

is a gain applied to the data by the inverse transform, a uniform division of the 

coefficients in all subbands results in an effectively different division of each subband. 

Quantizing the higher frequencies more than the lower ones might be desirable, but 

the effective amount of quantization is dependent upon the inverse transform gain. 

Because of this gain, a default quantization step A j that is the desired amount by 

which to quantize the data must first be scaled according to which subband in which 

is will be used. The amount by which to scale the default quantization step is given 

by [12] and shown in Equation 5.1 below, where A^ is the default quantization step
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size that has the inverse wavelet gain applied to it. Scaling the default step size by 

the subband-dependent gain Gb produces an array of quantization steps A5 that are 

used on their respective subbands to properly quantize the data.
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CHAPTER 6

Tier 1

JPEG2000’s compression performance gains over standard JPEG come mainly 

from the Tier 1 portion of the encoding process. Tier 1 contains the an entropy coder 

called the MQ Coder that encodes binary decision bits using most probable symbols 

based on contexts for each bit. The binary decision bits and contexts are generated 

for every bit used to store the resulting coefficients from the wavelet transform. This 

process reduces the amount of bits necessary to store the coefficients, resulting in 

data compression.

ft is important to understand the details of the Tier 1 process, because the PCRD 

algorithm uses information obtained during Tier 1 coding and the calculations used 

for distortion are derived from the coding pass operations.

6.1 Lookup Tables

In order to generate the contexts for each bit within a bitplane, the coding passes 

use statistical lookup tables provided by the JPEG committee in the standard, [9], 

that use subband information and number of significant neighbors to define which

context in the table to use.
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6.2 Coding Passes

Tier 1 consists of three coding passes-the significance propagation pass (SPP), the 

magnitude refinement pass (MRP), and the clean-up pass (C U P)-that scan the data 

to determine which type of entropy coding will be applied. The coding passes operate 

on bitplanes of small portions of each subband called codeblocks. Codeblocks are 

either 32x32 or 64x64 coefficients in dimension, together making up all the subbands 

that were produced by the wavelet transform. These codeblocks do not cross subband 

boundaries and thus some codeblocks on the edges of the subbands may be smaller 

than the set size. Figure 6.1 gives an example of how the codeblocks make up the 

subbands. As a codeblock is made up of coefficients that have a bit depth Bc, the 

codeblocks themselves have a depth. The set of bits at one level of the coefficients 

within a codeblock make up a plane of bits for that codeblock. The codeblocks, then, 

have B c bitplanes. The coding passes operate on one bitplane at a time, and each 

codeblock is encoded by the Tier 1 coding passes independently. The coding passes 

produce context and binary decision bits for the bits from a bitplane of a component 

in an image.

6.2.1 Order of Coding Pass Operation

The most significant bitplane of a codeblock is operated on by the coding passes 

first, followed by the second-most significant bitplane and so on down to the least 

significant bitplane. All of the bits for each bitplane are encoded by the coding passes, 

but no bit is encoded by more than one pass. For the most significant bitplane, only 

the clean-up pass is run, and thus creates the contexts and decision bits for each bit 

in the most significant bitplane. The subsequent bitplanes are encoded by all three
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Figure 6.1: Subbands of a two-level wavelet transform, showing codeblock boundaries. 
Notice the codeblocks do not cross subbands.

coding passes with the significance propagation pass running first, followed by the 

magnitude refinement pass and finally the clean-up pass. This technique is called 

fractional bitplane coding, as each coding pass only operates on a fraction of the 

total number of bits. Once one pass codes a bit from a bitplane, it records that the 

bit has been coded in a state table, cr1. The coding passes refer to the a' state table 

to determine if the bit has already been coded by another pass; if it has, the coding 

pass skips that bit.
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Each pass scans through each bitplane of a codeblock by taking vertical stripes 

of four coefficients at a time and examining the stripe’s neighborhood, a selection of 

coefficients surrounding the stripe. For the stripes at the edges of a codeblock, zeroes 

are used for the neighbors where no coefficients exist. An example of the scanning 

pattern is shown in Figure 6.2, and the zero padding technique is shown in Figure 6.3. 

In the figures, the current bit being coded is shown in white, and its neighborhood 

is within the box. Horizontal neighbors are green, vertical neighbors are red, and 

diagonal neighbors are blue. In the case of Figure 6.3, the bits shown in black are the 

zero-padded bits at the edges of a codeblock.

Figure 6.2: Scanning pattern of a coding pass, showing current bit and its neighbor­
hood.

6.2.2 Significance Propagation Pass

The Significance Propagation Pass is the first coding pass to run on all the bit- 

planes below the most significant bitplane. It scans through the bits, and when it 

encounters one that is not significant, it assigns that bit as significant by setting a
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Top-Left of a Codeblock

Figure 6.3: Zero-padding technique in a coding pass used at the edges of a codeblock.

corresponding bit within a binary state table, <7, if any of its neighbors are already 

significant. The a state table is used in the table lookup for generating contexts. The 

SPP lookup table is shown below in Figure 6.4. In the lookup tables, the values h, 

u, and d correspond to the sum of the horizontal, vertical, and diagonal neighboring 

bits, respectively.

6.2.3 Magnitude Refinement Pass

The Magnitude Refinement Pass (MRP) runs only on coefficients that have already 

become significant, as indicated by the u state table. However, the MRP could 

encounter a bit that has been made significant by the SPP and would thus skip it, as 

only one coding pass codes a single bit. The coding pass membership state table, a', 

ensures this is the case. Once a bit has become significant, all of its bits in the lesser 

significant bitplanes are coded by the MRP. Contexts for the MRP are generated from
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LH Subb«id(dso used for LL) 
(vertically highpass)

HL S ubband 
(horizortally high-pass)

HH Subband 
(diagonally high pass)

h V d context h V d context d ta+v context

2 X X 8 X 2 X 8 23 X 8

1 21 X 7 21 1 X 7 2 21 7

1 0 21 6 0 1 21 6 2 0 6

I 0 0 5 0 1 0 5 1 22 5

0 2 X 4 2 0 X 4 1 1 4

0 1 2 3 1 0 X 3 1 0 3

0 0 22 2 0 0 22 2 0 22 2
0 0 1 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0

Figure 6.4: Lookup table used to produce contexts for the Significance Propagation 
Pass.

a lookup table depending upon the significance recorded in cr and delayed significance, 

which is based on the value within a.

6.2.4 Clean-Up Pass

The clean-up pass acts much like the significant propagation pass, but will perform 

a run-length coding on a bit whose neighbors all have a significance of zero. This is 

what allows for a large compression gain when encountering large sections of all zeroes 

within a bitplane. The clean-up pass runs last on all the bitplanes except the most 

significant, and will thus code any bit that was not coded by the SPP or the MRP.

6.3 MQ Coder

Contexts and decision bits resulting from the coding passes are passed into the 

MQ Coder, a context-adaptive binary arithmetic encoder. Using a lookup table, the 

MQ Coder creates a stream of bits that are output a byte at a time to construct the
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final, JPEG2000 data stream. Codeblock bitstreams are embedded, meaning they can 

be independently truncated and included into the final bitstream. This truncation is 

what makes optimal truncation and the PCRD algorithm possible by removing data 

after compression to achieve an optimal distortion per bitrate. In order to determine 

which portion of each codeblocks’ bitstream contains the most important information 

so that truncation can be made at the optimal place, a knowledge of what happens 

within the MQ Coder is needed. The distortion calculations that are made on a 

coding pass basis are explained in Section 7, but the rates (length in bytes) of the 

bitstream outputs are a direct result of the process that takes place within the MQ

Coder.

6.3.1 MQ Coder Internals

Within the MQ Coder, there exist a set of registers which determine the coder’s 

state. As contexts and decision bits are passed into and are encoded by the MQ 

Coder, the registers are changed based on probability lookup tables, and the coder’s 

state therefore changes as well. The most important registers within the MQ Coder 

are a 16-bit A register, a 28-bit C register (partitioned into a carry bit, a partial code 

byte, three spacer bits, and a 16-bit active region), and an 8-bit byte out register. 

These registers are portrayed in Figure 6.5.

The A register is context-dependent and changes based on the probability lookup 

table values chosen by the context and decision bit input. The A register then replaces 

the active region of the C register. It is called the active region because the values 

are being constantly updated for every new context input. During coding, the active 

region of the C register gets shifted into the rest of the C register one bit at a time.
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16-bit A register I I H  I H  I I I I I H  I I I

28-bitC register M I ! i I I i I I I I I I I I I I I I I H  ! H  I I 1
v  v  J

Carry bit Partial code byte Spacer bits Active region

8-bit byte out register 1 1 I 1 I I i I 1

Figure 6.5: Important state registers within the MQ Coder.

When the active portion has been shifted eleven times, the partial code byte has been 

filled, and the partial code byte is placed into the byte out register. The next time the 

partial code byte is full, the byte out register is placed onto the end of the codeblock 

code stream and the byte out register is again replaced with the partial code byte 

portion of the C register. This process is illustrated in Figure 6.6.

16-bit A register nn n

28-bitC register M b  |b lb |b |b |b |b  |b |b |b |b |b ib jb |b |b | | [ | |

8-bit byte out register fb jb  jb |b I b | b j b | b i

Code stream

Figure 6.6: The process flow of creating a codeblock bit stream.
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6.3.2 End of a Coding Pass

The MQ process is repeated during a single coding pass while that coding pass 

creates contexts and decision bits for the bits that it encodes within a bitplane. At 

the end of a single coding pass, the bits tha t have been shifted into partial code byte 

register may not completely fill that register. The byte out register may also contain 

a byte that has yet to be appended to the end of the codeblock bitstream. These bits 

and the byte out register are left where they are and the next coding pass may begin, 

meaning that some of the bits attributed to one coding pass may actually belong to 

the coding pass before it. This must be accounted for when calculating the rate at 

which a truncation of the code stream may occur so that the decoder can receive all 

the data from the coding pass it is decoding. In order to preserve this data for use 

when truncating a codeblock, the MQ Coder’s state variables are saved at the end of 

every coding pass. Figure 6.7 shows how the registers may contain data at the end 

of a coding pass.

28-bitC register (still being filled)

b ib lb lf lb |* | i i tttt

8-bit byte out register (full) | b[ b |b | b | b| b | b | b |

Code stream

Figure 6.7: End of a single coding pass. When the encoder finishes a single coding 
pass, some bits may still be left in the byte out register and in the C register. These 
bits are left in there, and the next coding pass runs.
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6.3.3 End of a Codeblock

At the end of a codeblock, the extra data that was leftover from the final coding 

pass needs to ’’flushed” onto the end of the code stream so the decoder can fully 

decode the final coding pass. This flush places the residual bits left in the registers 

onto the end of the code stream for that codeblock. When a truncation point is chosen 

for a codeblock by the PCRD algorithm, the state variables that were saved at the end 

of the coding pass corresponding to the chosen truncation point are restored, and an 

MQ Coder flush is performed as if the end of the coding pass at which the codeblock 

was truncated was actually the end of the codeblock during the encoding process. 

This allows the residual data that was included in the next coding pass output to be 

included, so that the decoder may correctly decode the entire coding pass. Figure 6.8 

shows the flush procedure.

Figure 6.8: End of a codeblock. An MQ Coder flush occurs that pushes the residual 
bits onto the end of the code stream.
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CHAPTER 7

Post-Compression Rate-Distortion Optimization 
(PCRD-Opt)

Post-Compression Rate Distortion Optimization is the algorithm that implements 

optimal truncation, the process of truncating codeblock bit streams to achieve a higher 

compression ratio and an optimal rate per distortion introduced into the decoded 

image. [9] and [12] describe the optimization algorithm in detail, using the well- 

known solution to constrained optimization problems of Lagrange multipliers. This 

section defines the distortions and rates tha t are used in the optimization problem 

and details the algorithm used to find optimal truncation points for each codeblock.

7.1 Distortion and Rate

A distortion, 79, for a given image is defined as the mean-squared error (MSE) 

between the decoded wavelet coefficients, q[n\. and the original wavelet coefficients, 

q[n], prior to compression. The equation for distortion is given in Equation 7.1.

=  (7.1)
n

The rate, 72, of an image is the number of bytes used to store it. The goal of 

the PCRD-Opt algorithm is to find an optimal distortion per a constrained rate for a 

compressed image. In order to achieve a given rate, the PCRD algorithm finds a set of
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truncation points, Zj, for each codeblock. The set Zj consists of individual truncation 

points, nc, for each coding pass, c, used to encode that codeblock. These truncation 

points specify the rates at which a codeblock’s code stream may be truncated, thus 

reducing the overall rate of the image and increasing the resulting distortion after 

decoding. The optimization problem is given by [9] as: find the set of zf values which 

minimizes D subject to the constraint R  < Rmax, where Rmax is the max desired file 

size of the image after compression.

7.1.1 Distortion Optimization

To solve the optimization problem subject to the constraint given, a Lagrange 

multiplier, A, is used so that a set of truncation points {zj, A} minimizes

D (A) +  XR (A) =  52 +  Afi!^’A)) (7.2)
i

for some A > 0. It is then easy to see that the distortion, D, cannot be further 

reduced without increasing the rate, R. If a value of A is found such that the set of 

truncation points, {ni,A}, minimizes Equation 7.2, and R  = Rmax, then that set of 

truncation points is a solution to the optimization problem [12], Typically, because 

the set of truncation points is discrete, a A that minimizes Equation 7.2 and yields 

a rate R  = Rmax will not be found. However, as there are many truncation points 

and many codeblocks within an image, a A can typically be found that yields a rate 

R  sufficiently close to Rmax.

7.1.2 Distortion In EBCOT

Because the truncation points used in the optimal truncation algorithm are defined 

for each coding pass, the amount of distortion introduced to the decoded image by
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removing that coding pass is needed. Each coding pass codes a fraction of the bits 

in a bitplane and outputs a bit stream. Truncating a coding pass involves removing 

the bit stream for that coding pass and each coding pass performed after it. In order 

to determine the amount of distortion introduced by removing a specific coding pass, 

the distortion for each coding pass must be known. To find distortion associated with 

a coding pass, the distortion introduced by removing a single bit from a codeblock 

can be calculate for every bit coded by a coding pass. These distortions are called

bit-distortions.

7.1.3 Bit-Distortion Calculations

Bit-distortions are calculated for every bit of a sample once that sample has be­

come significant. Because decoders do not estimate a decoded coefficient using mid­

point reconstruction if the coefficient after truncation is zero [9], two equations are 

needed for bit-distortion estimation: one for when a sample is just becoming sig­

nificant, and one for a magnitude refinement after a sample has become significant. 

When the significance propagation pass or the clean up pass is truncated, the entire 

coefficient’s magnitude is truncated, resulting in a value of zero. The reason for this 

is that the SPP and CUP only code coefficients until they become significant; once 

they are significant, the magnitude refinement pass codes those coefficients. If an 

SPP or CUP is truncated, the resulting coefficient is zero. Bit-distortions are de­

noted Dp[n], where p is the bit-level within a sample, and n is the position within 

the codeblock. Equation 7.3 shows the distortion calculation for a sample that has 

just become significant (either by the SPP or the CUP), and Equation 7.4 shows
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distortion calculation for a sample whose magnitude is being refined (by the MRP). 

These equations are defined in the JPEG2000 standard [9].

Dp[n] =  22pGbA 2d[vp[n]2 -  (up[n] -  1.5)2] (7.3)

Dp[n] =  22pGbA d[(vp[n\ -  l ) 2 -  (rp[n] -  0.5 -  r;)2] (7.4)

Here, Gb is the wavelet gain calculated in Equation 4.3 for the subband b within which 

the sample s[n] resides. A d is the error produced by the default quantization step 

size for subband b. v  is the value of the bit at bit-level p, G {0,1}. The bit-distortion 

2?p[n] also depends on a value r p[n], which is defined as the normalized difference 

between the magnitude of sample s[n] and the largest quantization threshold in the 

previous bit-plane which was not larger than the magnitude [9]. This is just the 

normalized representation of the sample s[n] at the bit-plane p  and below. Because 

the equations given in the standard are for normalized bit-distortion, the normalized 

representation is used. That is, for a sample whose 8-bit binary representation is 

OOOIOOII2, for bit-plane p — 4, vp[n] =  I.OOII2 =  1.1875iq. up[n] is calculated by

wp[n] =  2 p|s[n]| — 2 (7.5)

As seen in Equations 7.3 and 7.4, the bit-distortions are weighted by the energy 

gain factor calculated from the wavelet basis functions. Any gain that is applied to 

the signal by the inverse wavelet transform is accounted for by this weight factor when 

calculating distortion introduced to the decoded image by removing the selected bit. 

The 22p accounts for the fact that the distortion is for a single bit at level p. It can be 

shown that [wp[n]2 — (up[n] — 1.5)2] and [(up[n]2 — l ) 2 — (t>p[n] — 0.5 — v)2] in Equations
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7.3 and 7.4 calculate the squared difference between keeping the specified bit and 

removing it, depending upon which coding pass coded it.

Thus, with the bit level p, the wavelet gain Gb, the step size from quantization A, 

and the difference between keeping a bit and removing it all accounted for, a correct 

bit-distortion is calculated and recorded for every bit coded in Tier 1. The majority 

of a coding pass’s distortion accumulation comes from the wavelet gain factor and 

the quantization step size as well as the number of bits coded by that pass [18]. 

This makes the calculation of the wavelet gain crucial to achieve correct distortion

calculations.

7.2 Rate

Size of a codeblock’s bit stream is dependent upon the output of the MQ Coder. 

For every coding pass of a codeblock, some amount of bytes were output by the MQ 

Coder and added onto the end of the codeblock’s bit stream. These rates, along with 

the state of the MQ Coder at the end of each coding pass, c, are recorded during 

Tier 1. In determining the rate for a specific truncation point nc within the set of 

truncation points Zi, for codeblock i, the bytes included by the flush method described 

in Section 6.3.3 must be accounted for. Given the MQ Coder’s state at the end of the 

coding pass associated with truncation point nc, a fake flush can be performed which 

only determines the amount of bytes output by the flush, and that amount can be

added to the final rate.
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7.3 Rate-Distortion Slopes

Once a rate and distortion is available for every coding pass, a set of rate-distortion 

slopes, Si, are calculated by taking the change in distortion between the current 

truncation point and the previous one divided by the change in rate between the 

current truncation point and the previous one. This is shown in Equation 7.6.

SPC =
R ^ ’ -  R\

(7.6)( n - c - l )

The graph of these slopes is a rate-distortion slope graph for a single codeblock, 

and each point on the graph represents a truncation point, which has an associated 

rate and distortion. These rate-distortion slopes are used to find the optimal reduc­

tions in rate per increases in distortion when truncating a codeblock. Given some 

value of A, the set of truncation points that minimizes Equation 7.2 and yields a 

desired rate, R, can be found by recursively searching through the truncation points 

for each codeblock and determining how much each one contributes to the overall 

rate of the image. The sum of all these rates is the final rate, R.

In order to ensure truncation produces an optimal distortion per rate, a constraint 

is set on the set of truncation points for a single codeblock to force the rate-distortion 

slopes to form a convex hull.

7.3.1 Feasible Truncation Points

Figure 7.1 shows an example of a graph of a single codeblock’s rate-distortion 

slopes and truncation points. As the truncation points’ rates decrease, their distortion 

increases. It can be seen that some truncation points result in a small rate reduction 

and a much larger distortion increase, where the very next truncation point may
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result in a much larger rate reduction for a small distortion increase. The best case 

truncation point is one that whose rate is significantly smaller than the one before it

and whose distortion is as close to the one before it. This means that the truncation

point’s slope would be close to zero.

Figure 7.1: All truncation points for a codeblock in an image.

If the slopes are followed “up the graph” (meaning starting from the largest rate 

and working toward a smaller rate), some truncation points lie inside of a strictly 

convex hull formed by the slopes. Figure 7.2 shows an example of a rate-distortion 

slope graph that labels the invalid truncation points to be removed, forming a strictly 

convex hull. Rate-distortion slopes that form a strictly convex hull are desired because
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for every truncation point selected on the graph, the rate reduction per distortion 

increase is better than the one before it. This places a limit on the number of valid—or 

feasible—truncation points, which significantly simplifies finding the truncation point 

that is optimal for a specific codeblock. The invalid truncation points are removed 

from the set of possible truncation points, and are not included when selecting the 

optimal truncation points.

Figure 7.2: Feasible truncation points for a codeblock in an image.
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7.4 Optimal Truncation

When truncating a codeblock at a point nc, the resulting bit stream for that 

codeblock is now the end of the codeblock. The MQ Coder flush must be performed 

on that coding pass as if it was the end of the codeblock, which is why the MQ 

Coder’s state was saved for the end of each coding pass during Tier 1. When an 

optimal truncation point is selected for a codeblock, the MQ Code flush is performed 

for that coding pass, adding the final bytes of that coding pass onto the bit stream. 

The rate for that codeblock is reduced and the number of coding passes included in the 

final codeblock bit stream is recorded so that it can be placed in the JPEG2000 file’s 

header information so that the decoder can properly decode the truncated codeblocks.

In performing the codeblock truncation, the Lagrange method is typically used 

to find the optimal truncation points and is what is defined in both [9] and [12]. A 

simple recursive method may be applied, however, but is more processing intensive.

7.4.1 Using the Lagrange Method

In order to find the optimal truncation points used to truncate the codeblock code 

streams, the A value selected is used as an inverse codeblock quality parameter. The 

smaller the A, the larger the rates of each codeblock can be in Equation 7.2, and thus 

the larger the final rate, R, will be. After selecting a A value and finding the optimal 

truncation point for each codeblock, which minimizes P ; + XR- , the overall rate, 

R, will be the summation of all the rates of the truncated codeblocks. If the resulting 

rate is larger than Rmax, the A value can be increased and the algorithm repeated.
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In order to increase the speed of the algorithm, a bisection method may be used 

to halve a working interval defined by a A"1*” and a Amai, between which the optimal 

A resides [12].

7.4.2 Using the Recursive Method

Since the invalid truncation points were removed from the rate-distortion slope 

graph, each subsequent slope is more negative than the previous. In order to  find 

the first coding pass that should be removed from a codeblock, all the slope values 

for the final coding pass may be compared, and the one closest to zero (the optimal 

distortion reduction per rate decrease) can be truncated. This process is repeated 

until the summation of the rates of each codeblock is less than or equal to the desired 

rate, Rm ax-
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CHAPTER 8

Results

Implementation of the Post-Compression Rate-Distortion algorithm within the 

EBCOT encoding scheme resulted in a marked improvement in compression ratio 

versus visual quality of the decoded image compared to the derived quantization 

method described in 5.1.1. In comparisons against mainstream JPEG2000 encoders, 

the implementation described in Section 7 matched performance and at some com­

pression ratios outperformed that of the JasPer encoder and the Kakadu encoder.

A variety of images were used in comparison testing. Smaller images (with di­

mensions in the range of 256x256 to 512x512) commonly used in signal and image 

processing were taken from the USC Signal and Image Processing Institute’s online 

database, [14]. These are shown in Figure 8.1 below. Larger images are becoming 

more common for image processing testing as resolutions of standard formats increase, 

and three images from the Standard Color Image Data, [8], as well as an image com­

monly used for compression testing given in [12] were used for high resolution image 

testing and are shown in Figure 8.2. Table 8.1 lists all the images used and their sizes 

and bit depths.

8.1 PSNR Results Comparisons

Because the PCRD algorithm is based on finding an optimal distortion per a 

given rate, and distortion is defined as the mean-squared error (MSE) between the
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Figure 8.1: Small images used for PCRD algorithm performance comparisons.

decoded wavelet coefficients and the original wavelet coefficients, measuring algorithm 

performance is typically done using peak signal-to-noise ratio (PSNR). PSNR takes 

the max pixel value in an image—for 8 bit images, this is 255— and divides it by the 

root MSE. PSNR, measured in decibels, is then calculated by

P S N R  = 20 ■ log10
255 \

Vm s e ) (8.1)
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Figure 8.2: Large images used for PCRD algorithm performance comparisons.

The comparison of image quality using PSNR after decoding the image should not 

be confused with the calculation of distortion during Tier 1, which is part of the en­

coding process. Distortion measurements used in the PCRD algorithm implemented
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Table 8.1: Image Information for Images Used in Results Testing

Image W idth x Height Bit Depth (bpp) File Size (bytes)
C ameraman. bmp 256x256 8 65,536
Peppers.bmp 512x512 8 262,144
Baboon.bmp 512x512 8 262,144
Lena.bmp 512x512 8 262,144
Goldhill.bmp 512x512 8 262,144
Barbara.bmp 512x512 8 262,144
Boat.bmp 512x512 8 262,144
Water.bmp 1465x1999 8 2,928,535
Woman.bmp 2048x2560 8 5,242,880
Bike.bmp 2048x2560 8 5,242,880
Cafe.bmp 2048x2560 8 5,242,880

during encoding represent the squared difference between wavelet coefficients, which is 

not the same as squared error of a decoded image and the original. The reason for this 

is because of the transform done on the data before taking distortion measurements. 

It should also be noted that minimum mean-squared error and maximum PSNR does 

not necessarily mean optimal visual quality. Mean-squared error is a standard means 

by which to measure difference of a decoded image from the original, but it is possible 

for an image that has a larger MSE to appear visibly closer to the original, and much 

of this has to do with the human visual system and its sensitivity to certain frequency 

ranges. The human eye’s contrast sensitivity function (CSF) is well known and can 

be used to weight certain spatial frequencies higher when calculating distortion [12], 

JPEG2000 provides a set of visual weights to modify bit-distortion calculations in 

order to achieve a better visual quality image, while possibly lowering the resulting 

peak signal-to-noise ratio [9].
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8.2 Encoder Comparisons

Tests were performed by compressing the images listed in Table 8.1 with the UD- 

JPEG2000 Encoder using quantization only and using optimal truncation with the 

proposed PCRD algorithm, with the Kakadu encoder, and with the JasPer encoder. 

Images were compressed multiple times each at increasing compression ratios to show 

performance at multiple bitrates. Each compression engine was set to use the follow­

ing JPEG2000 parameters: 32x32 codeblocks, 5 wavelet levels, and the 9/7 wavelet 

for lossy compression. The graphs produced display PSNR versus compressed file size 

in bytes (rate).

Because the results of the following tests are very similar, the graphs and tables 

are given to show uniform performance across a variety of images. Explanation and 

a summary of these results is given for the Peppers image in Figure 8.3 and its table, 

Table 8.2, and applies to Figures 8.4 through 8.13 and Tables 8.3 through 8.12.

It should be noted that the JasPer encoder would not produce a compressed image 

with a rate of 4 bits per pixel and higher. In order to achieve this, the UDJPEG2000 

Encoder scales the quantization steps down by 2, increasing the resulting coefficients 

from quantization, thus preserving more precision bits going into the Tier 1 process. 

It would appear that the Kakadu encoder also does this, as it achieves PSNR values 

on par with the UDJPEG2000 Encoder for a rate of 4 bits per pixel and above.

8.2.1 Peppers

Figure 8.3 shows PSNR results for the four encoding methods used on the Peppers 

image. It can be seen from the graph that the proposed PCRD algorithm with optimal 

truncation outperforms that of the reference encoders as well as quantization at high
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bitrates. This performance difference is minimized as compression ratio increases 

and the resulting file size gets smaller. At very low file sizes, the proposed PCRD 

algorithm performs very closely to tha t of the reference encoders JasPer and Kakadu. 

Table 8.2 lists each file size and PSNR, showing how little the difference in PSNR is 

at the higher compression ratios. Bolded values in the tables show results when one 

encoder produced a smaller rate than the others while maintaining a higher PSNR. 

As mentioned above, the results for the rest of the images in Figures 8.4 through 8.13 

and Tables 8.3 through 8.12 follow those shown for the Peppers image in Figure 8.3

and Table 8.2.
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Encoder Comparison With Peppers

File Size (bytes,

Figure 8.3: Encoder comparison results for the Peppers image.

Table 8.2: File Sizes and PSNR Values for the Encoded Peppers Image

UD-Quant UD-PCRD Kakadu JasPer
Size PSNR Size PSNR Size PSNR Size PSNR

144,278 51.944 130,897 51.954 131,022 51.494 105,713 47.036
104,399 47.088 65,231 43.024 65,516 43.099 65,513 42.961
63,179 41.834 32,544 38.317 32,810 38.365 32,758 38.212
28,809 37.331 16,350 35.877 16,429 35.906 16,495 35.704
12,213 34.235 8,079 33.425 8,269 33.525 8,121 33.117
6,163 31.496 3,937 30.47 4,164 30.731 4,160 30.366
3,169 28.59 1,839 26.854 2,122 27.52 2,084 27.093
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8.2.2 Baboon

Encoder Comparison With Baboon
501"! ! ! I ! I I I I I ! I ! I ! I ! 1' I' I I ! 'I '! ! I 'I ! I I I ! ! ! I

File Size (bytes)

Figure 8.4: Encoder comparison results for the Baboon image.

Table 8.3: File Sizes and PSNR Values for the Encoded Baboon Image

UD-Quant UD-PCRD Kakadu JasPer
Size PSNR Size PSNR Size PSNR Size PSNR

149,516 46.799 130,957 47.399 131,157 45.444 150,467 46.736
113,710 41.299 65,451 35.611 65,605 35.42 65,519 35.357
78,851 35.867 32,559 29.006 32,850 28.997 32,760 28.875
47,393 30.803 16,130 25.342 16,457 25.35 16,497 25.26
23,024 26.357 7,830 22.959 8,177 23.004 8,101 22.915

3,949 21.458 4,119 21.524 4,175 21.485
1,879 20.462 2,136 20.564 2,088 20.474
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8.2.3 Lena

Encoder Comparison With Lena

Figure 8.5: Encoder comparison results for the Lena image.

Table 8.4: File Sizes and PSNR Values for the Encoded Lena Image

UD-Quant UD-PCRD Kakadu JasPer
Size PSNR Size PSNR Size PSNR Size PSNR

131,623 52.015 130,825 53.723 131,083 51.584 91,978 47.103
91,041 47.143 65,437 44.724 65,557 44.705 65,523 44.511
51,298 42.135 32,605 40.302 32,839 40.297 32,732 40.228
23,846 38.084 16,335 37.239 16,463 37.192 16,513 37.108
11,772 34.902 8,069 34.041 8,274 34.051 8,117 33.804
5,918 31.797 3,948 30.782 4,148 30.909 4,194 30.808

1,848 27.63 2,129 28.079 2,095 27.851
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8.2.4 Cameraman

Encoder Comparison With Cameraman

File Size (bytes)

Figure 8.6: Encoder comparison results for the Cameraman image.

Table 8.5: File Sizes and PSNR Values for the Encoded Cameraman Image

UD-Quant UD-PCRD Kakadu JasPer
Size PSNR Size PSNR Size PSNR Size PSNR

44,428 54.29 32,406 54.29 32,831 51.7 25,506 47.337
34,852 52.089 16,137 54.29 16,460 43.932 16,358 43.844
25,258 47.399 7,835 52.143 8,230 36.412 8,144 36.016
16,604 42.502 3,938 43.807 4,179 31.028 4,116 30.606
10,827 38.052 1,879 36.125 2,131 27.445 2,011 26.786
6,589 33.575 842 30.834 1,100 24.476 1,043 23.778
3,463 29.336 328 26.997 597 21.966 517 20.666
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8.2.5 Gold Hill

Encoder Comparison With Goldhill

Figure 8.7: Encoder comparison results for the Gold Hill image.

Table 8.6: File Sizes and PSNR Values for the Encoded Gold Hill Image

UD-Quant UD-PCR.D Kakadu JasPer
Size PSNR Size PSNR Size PSNR Size PSNRn

152,499 51.903 130,966 51.652 131,137 51.405 114,602 46.891
113,265 46.94 65,546 41.895 65,534 41.759 65,524 41.711
73,300 41.617 32,680 36.563 32,823 36.477 32,744 36.394
39,133 36.806 16,293 33.212 16,448 33.153 16,491 33.078
17,762 32.913 8,082 30.521 8,276 30.523 8,119 30.389
7,336 29.744 3,925 28.321 4,154 28.426 4,182 28.36

1,846 26.314 2,149 26.67 2,080 26.48
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8.2.6 Barbara

az
z

Encoder Comparison With Barbara

File Size (bytes)

Figure 8.8: Encoder comparison results for the Barbara image.

Table 8.7: File Sizes and PSNR Values for the Encoded Barbara Image

UD-Quant UD-PCRD Kakadu JasPer
Size

140,183
PSNR
51.992

Size
130,896

PSNR
52.738

Size
131,114

PSNR
51.746

Size
101,217

PSNR
47.038

100,167 47.093 65,366 43.903 65,594 43.866 65,504 43.817
63,212 42.087 32,612 38.015 32,822 38.048 32,750 37.947
37,172 37.616 16,287 32.85 16,408 32.855 16,514 32.769
21,209 33.393 8,033 28.751 8,275 28.887 8,123 28.609
10,758 29.354 3,877 25.609 4,147 25.838 4,194 25.738

1,843 23.568 2,143 23.945 2,028 23.668

65



8.2.7 Boat

Encoder Comparison With Boat

Figure 8.9: Encoder comparison results for the Boat image.

Table 8.8: File Sizes and PSNR Values for the Encoded Boat Image

UD-Quant UD-PCRD Kakadu JasPer
Size PSNR Size PSNR Size PSNR Size PSNR

151,936 51.94 131,075 51.947 131,126 51.572 114,263 46.921
112,692 46.973 65,542 41.999 65,560 41.832 65,494 41.755

72,890 41.659 32,478 36.674 32,822 36.649 32,733 36.56
39,042 36.857 16,307 33.307 16,387 33.249 16,515 33.197
18,389 33.065 8,041 30.048 8,266 30.066 8,110 29.854
8,889 29.8 3,947 27.255 4,137 27.318 4,189 27.22

1,764 24.718 2,129 25.172 2,095 25.019
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8.2.8 Water

Encoder Comparison With Water
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Figure 8.10: Encoder comparison results for the Water image.

Table 8.9: File Sizes and PSNR Values for the Encoded Water Image

UD-Quant UD-PCRD Kakadu JasPer
Size PSNR Size PSNR Sizej PSNR Size PSNR

1,571,125 56.181 1,466,611 55.629 1,147,244 51.913 674,364 47.541
1,127,004 52.31 734,270 48.984 732,198 48.757 674,364 47.541

656,267 47.565 367,447 44.535 366,116 44.453 365,341 44.302
236,080 43.097 184,149 42.679 183,089 42.599 184,484 42.607
44,344 40.501 92,125 41.445 91,535 41.41 90,740 41.393
12,644 39.331 46,167 40.757 45,768 40.732 46,846 40.747
5,282 38.063 22,980 40.159 23,142 40.147 23,409 40.146
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8.2.9 Woman

Encoder Comparison With Woman

Figure 8.11: Encoder comparison results for the Woman image.

Table 8.10: File Sizes and PSNR Values for the Encoded Woman Image

UD-Quant UD-PCRD Kakadu JasPer
Size PSNR Size PSNR Size PSNR Size PSNR

2,769,554 51.928 2,625,791 52.187 2,621,516 51.493 1,999,661 47.02
1,973,844 47.071 1,314,648 43.899 1,310,718 43.849 1,309,673 43.818
1,230,933 42.05 658,132 38.432 655,437 38.343 655,275 38.275

702,950 37.672 329,746 33.677 327,759 33.555 330,299 33.51
386,853 33.649 165,081 30.044 163,908 29.95 162,512 29.823
185,218 29.836 82,616 27.386 81,997 27.325 83,869 27.317

41,112 25.619 41,310 25.593 41,937 25.569
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8.2.10 Bike

Encoder Comparison With Bike

Figure 8.12: Encoder comparison results for the Bike image.

Table 8.11: File Sizes and PSNR Values for the Encoded Bike Image

UD-Quant UD-PCRD Kakadu JasPer
Size PSNR Size PSNR Size PSNR Size PSNR

2,772,755 51.908 2,625,777 51.111 2,621,511 51.243 2,015,244 47.112
1,987,833 47.19 1,314,652 43.741 1,310,711 43.779 1,310,341 43.816
1,267,638 42.207 658,716 38.065 655,435 37.963 655,353 37.877

736,357 37.722 330,332 33.557 327,765 33.394 330,278 33.29
406,113 33.666 165,628 29.686 163,909 29.523 162,508 29.312
211,548 29.864 82,867 26.427 81,995 26.3 83,861 26.229

41,446 23.839 41,370 23.776 41,918 23.679
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8.2.11 Cafe

Encoder Comparison With Cafe

Figure 8.13: Encoder comparison results for the Cafe image.

Table 8.12: File Sizes and PSNR Values for the Encoded Cafe Image

UD-Quant UD-PCRD Kakadu JasPer
Size PSNR Size PSNR Size PSNR Size PSNR

2,610,516 46.97 2,625,855 49.207 2,621,500 49.341 2,637,100 46.884
1,875,294 41.691 1,314,565 39.086 1,310,783 38.947 1,310,600 38.879
1,245,804 36.661 658,542 32.093 655,414 31.898 655,337 31.784

773,164 31.957 329,834 26.871 327,722 26.671 330,283 26.597
435,931 27.547 165,202 23.201 163,912 23.065 162,529 22.926

82,568 20.794 81,991 20.705 83,821 20.681
41,229 19.072 41,360 19.025 41,928 18.991
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8.3 PCRD Algorithm Processing Intensity Versus Quantiza­
tion

In order to find how much complexity and overhead including optimal truncation 

with the PCRD algorithm to the UD JPEG2000 Encoder added, the number of coding 

passes performed in Tier 1 is recorded when using optimal truncation and compared 

to that number when using quantization. Uniform quantization effectively removes 

entire bitplanes from codeblocks, which then do not have to be coded in Tier 1. As 

Tier 1 takes 70% to 80% of the encoding processing time, quantization can signifi­

cantly speed up the overall process [7]. Tables 8.13 through 8.23 display the number 

of coding passes processed when using optimal truncation and when using quantiza­

tion for the images listed in Table 8.1 for multiple compressed rates. These results 

show that, when using optimal truncation, the number of coding passes processed is 

always the total number of coding passes needed to process every bit plane. This is 

straightforward, as optimal truncation encodes all the bit planes, and then truncates 

the resulting bitstreams after coding. Quantization, on the other hand, removes data 

prior to the Tier 1 process, which then only codes the bit planes that have not been

removed.

Since adding optimal truncation adds a significant amount of time to the encoding 

process—as indicated by the increased number of coding passes processed in Tier 1— 

some work may need to be done to decrease this processing cost while keeping the 

benefits of optimal truncation. Some ideas that may be included in future versions 

of the UDJPEG2000 Encoder are suggested in the following section.
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Table 8.13: Number of Coding Passes Processed for the Peppers Image

UD-Quant UD-PCRD
Size Coding Passes Size Coding Passes

144278 1321 130897 1531
104399 1111 65231 1531
63179 901 32544 1531
28809 691 16350 1531
12213 481 8079 1531
6163 297 3937 1531
3169 166 1839 1531

Table 8.14: Number of Coding Passes Processed for the Baboon Image

UD-Quant UD-PCRD
Size Coding Passes Size Coding Passes

144278 1321 130897 1531
104399 1111 65231 1531
63179 901 32544 1531
28809 691 16350 1531
12213 481 8079 1531
6163 297 3937 1531
3169 166 1839 1531

Table 8.15: Number of Coding Passes Processed for the Lena Image

UD-Quant UD-PCRD
Size Coding Passes Size Coding Passes

131623 1225 130825 1435
91041 1015 65437 1435
51298 805 32605 1435
23846 595 16335 1435
11772 395 8069 1435
5918 234 3948 1435

1848 1435
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Table 8.16: Number of Coding Passes Processed for the Cameraman Image

UD-Quant UD-PCRD
Size Coding Passes Size Coding Passes

34852 595 32406 670
25258 520 16137 670
16604 445 7835 670
10827 370 3938 670
6589 295 1879 670
3463 220 842 670

328 670

Table 8.17: Number of Coding Passes Processed for the Gold Hill Image

UD-Quant UD-PCRD
Size Coding Passes Size Coding Passes

152499 1249 130966 1459
113265 1039 65546 1459
73300 829 32680 1459
39133 619 16293 1459
17762 415 8082 1459
7336 246 3925 1459

1846 1459

Table 8.18: Number of Coding Passes Processed for the Barbara Image

UD-Quant UD-PCRD
Size Coding Passes Size Coding Passes

140183 1276 130896 1486
100167 1066 65366 1486
63212 856 32612 1486
37172 646 16287 1486
21209 448 8033 1486
10758 288 3877 1486

1843 1486
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Table 8.19: Number of Coding Passes Processed for the Boat Image

UD-Quant UD-PCRD
Size Coding Passes Size Coding Passes

151936 1267 131075 1477
112692 1057 65542 1477
72890 847 32478 1477
39042 637 16307 1477
18389 433 8041 1477
8889 272 3947 1477

1764 1477

Table 8.20: Number of Coding Passes Processed for the Water Image

UD-Quant UD-PCRD
Size Coding Passes Size Coding Passes

1571125 10318 1466611 10318
1127004 8002 734270 10318
656267 5686 367447 10318
236080 3370 184149 10318
44344 1490 92125 10318
12644 518 46167 10318
5282 161 22980 10318

Table 8.21: Number of Coding Passes Processed for the Woman Image

UD-Quant UD-PCRD
Size Coding Passes Size Coding Passes

2769554 21266 2625791 25124
1973844 17408 1314648 25124
1230933 13550 658132 25124
702950 9818 329746 25124
386853 6539 165081 25124
185218 3839 82616 25124

41112 25124
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Table 8.22: Number of Coding Passes Processed for the Bike Image

UD-Quant UD-PCRD
Size Coding Passes Size Coding Passes

2772755 24323 2625777 28181
1987833 20465 1314652 28181
1267638 16607 658716 28181
736357 12763 330332 28181
406113 9054 165628 28181
211548 5733 82867 28181

41446 28181

Table 8.23: Number of Coding Passes Processed for the Cafe Image

UD-Quant UD-PCRD
Size Coding Passes Size Coding Passes

2610516 22016 2625855 29732
1875294 18158 1314565 29732
1245804 14314 658542 29732
773164 10575 329834 29732
435931 7025 165202 29732

82568 29732
41229 29732
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CHAPTER 9

Conclusions and Future Work

This thesis presents the theory behind the PCRD-Opt algorithm and shows the 

results of integrating the PCRD-Opt algorithm into the UDJPEG2000 Encoder. Im­

plementation of the proposed PCRD algorithm resulted in a significant improvement 

over compression using uniform derived quantization. When compared to available 

reference encoders, the UDJPEG2000 Encoder outperforms JasPer in general and 

produces results very similar to that of Kakadu for all bit rates.

Some possible future work regarding the UDJPEG2000 Encoder and the PCRD- 

Opt algorithm specifically is:

• Implementation of the PCRD algorithm adds encoding time, which may not 

be acceptable in some real-time applications. In order to decrease the amount 

of time spent in the Tier 1 process, coding passes may be removed prior by 

quantization.

• Using quantization as the sole remover of data, however, negates the purpose 

of JPEG2000’s optimal truncation and post-compression rate-distortion imple­

mentation. It may be possible to combine these with a controller that would 

monitor how many bit planes were removed by the optimal truncation algo­

rithm in the previous image, and then remove close to that many bit planes
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using quantization for the next image. Tier 1 time would be decreased, and 

the optimal truncation algorithm could still provide the same benefit it does 

without quantization.

• Along with a controller, the process of finding the rates and distortions and the 

optimal truncation points is not a trivial task. The recursive method outlined 

in Section 7.4.2 may take a maximum of C2 comparisons, where C  is the total 

number of coding passes for an entire image. The Lagrange method described 

in Section 7.4.1 may be faster if implemented, but depends upon the constraints 

set for A Some work could be done to find an optimal solution for this.

• A good method for improving the speed of optimal truncation is an FPGA 

implementation of the algorithm. Specifically targeted hardware can easily out­

perform a software implementation, as software must be allowed CPU time by 

the operating system, which may swap the process out of the run state many 

times before it finishes. Hardware can run in parallel and can always be doing 

the calculations needed for optimal truncation. Parts of the algorithm that 

lend themselves to an FPGA implementation are discussed in [12] and could be 

included in future development plans for the UDJPEG2000 Encoder.

• Another possible method to speed up encoding time is to implement the wavelet 

transform and quantization using integer computation. Floating point multi­

plies take a significant amount more time than integer multiplies and are much 

more difficult to implement in a hardware solution. By scaling up the floating 

point values and then truncating them to integer values, some precision is able
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to be saved while still performing integer computations. This could provide a 

significant speed increase for a very small sacrifice in quality.
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