114 research outputs found

    A contrast-sensitive reversible visible image watermarking technique

    Get PDF
    A reversible (also called lossless, distortion-free, or invertible) visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to losslessly recover the original image. We transparently reveal the watermark image by overlapping it on a user-specified region of the host image through adaptively adjusting the pixel values beneath the watermark, depending on the human visual system-based scaling factors. In order to achieve reversibility, a reconstruction/ recovery packet, which is utilized to restore the watermarked area, is reversibly inserted into non-visibly-watermarked region. The packet is established according to the difference image between the original image and its approximate version instead of its visibly watermarked version so as to alleviate its overhead. For the generation of the approximation, we develop a simple prediction technique that makes use of the unaltered neighboring pixels as auxiliary information. The recovery packet is uniquely encoded before hiding so that the original watermark pattern can be reconstructed based on the encoded packet. In this way, the image recovery process is carried out without needing the availability of the watermark. In addition, our method adopts data compression for further reduction in the recovery packet size and improvement in embedding capacity. The experimental results demonstrate the superiority of the proposed scheme compared to the existing methods

    Vector-based Efficient Data Hiding in Encrypted Images via Multi-MSB Replacement

    Full text link
    As an essential technique for data privacy protection, reversible data hiding in encrypted images (RDHEI) methods have drawn intensive research interest in recent years. In response to the increasing demand for protecting data privacy, novel methods that perform RDHEI are continually being developed. We propose two effective multi-MSB (most significant bit) replacement-based approaches that yield comparably high data embedding capacity, improve overall processing speed, and enhance reconstructed images' quality. Our first method, Efficient Multi-MSB Replacement-RDHEI (EMR-RDHEI), obtains higher data embedding rates (DERs, also known as payloads) and better visual quality in reconstructed images when compared with many other state-of-the-art methods. Our second method, Lossless Multi-MSB Replacement-RDHEI (LMR-RDHEI), can losslessly recover original images after an information embedding process is performed. To verify the accuracy of our methods, we compared them with other recent RDHEI techniques and performed extensive experiments using the widely accepted BOWS-2 dataset. Our experimental results showed that the DER of our EMR-RDHEI method ranged from 1.2087 bit per pixel (bpp) to 6.2682 bpp with an average of 3.2457 bpp. For the LMR-RDHEI method, the average DER was 2.5325 bpp, with a range between 0.2129 bpp and 6.0168 bpp. Our results demonstrate that these methods outperform many other state-of-the-art RDHEI algorithms. Additionally, the multi-MSB replacement-based approach provides a clean design and efficient vectorized implementation.Comment: 14 pages; journa

    Improved Encrypted-Signals-Based Reversible Data Hiding Using Code Division Multiplexing and Value Expansion

    Get PDF
    Compared to the encrypted-image-based reversible data hiding (EIRDH) method, the encrypted-signals-based reversible data hiding (ESRDH) technique is a novel way to achieve a greater embedding rate and better quality of the decrypted signals. Motivated by ESRDH using signal energy transfer, we propose an improved ESRDH method using code division multiplexing and value expansion. At the beginning, each pixel of the original image is divided into several parts containing a little signal and multiple equal signals. Next, all signals are encrypted by Paillier encryption. And then a large number of secret bits are embedded into the encrypted signals using code division multiplexing and value expansion. Since the sum of elements in any spreading sequence is equal to 0, lossless quality of directly decrypted signals can be achieved using code division multiplexing on the encrypted equal signals. Although the visual quality is reduced, high-capacity data hiding can be accomplished by conducting value expansion on the encrypted little signal. The experimental results show that our method is better than other methods in terms of the embedding rate and average PSNR

    Digital watermarking by utilizing the properties of self-organization map based on least significant bit and most significant bit

    Get PDF
    Information security is one of the most important branches concerned with maintaining the confidentiality and reliability of data and the medium for which it is transmitted. Digital watermarking is one of the common techniques in this field and it is developing greatly and rapidly due to the great importance it represents in the field of reliability and security. Most modern watermarking systems, however, use the self-organization map (SOM), which is safer than other algorithms because an unauthorized user cannot see the result of the SOM's training. Our method presents a semi-fragile watermark under spatial domain using least significant bit (LSB) and by relying on most significant bit (MSB) when the taken values equal to (2 or 4 bits) depending on the characteristics of SOM through developing the so-called best matching unit (BMU) which working to determine the best location for concealment. As a result, it shows us the ability of the proposed method to maintain the quality of the host with the ability to retrieve data, whether it is a binary image or a secret message

    Privacy-preserving reversible watermarking for data exfiltration prevention through lexicographic permutations

    Get PDF
    Privacy-preserving reversible watermarking, as a subfield of secure signal processing, has received a growing research attention in the recent years due to privacy concerns in cloud computing. In this paper, we propose a novel reversible watermarking scheme for data exfiltration prevention. This scheme enables the cloud to embed labels that indicate the degree of confidentiality into the encrypted documents in such a way that the network administrator can monitor the document exfiltration through detecting the labels in the encrypted domain without compromising data privacy. An efficient watermarking algorithm is devised primarily based upon the concept of lexicographic permutations. In addition to this, a content-adaptive signal estimation mechanism is constructed for assisting host media recovery. Experimental results show that the proposed scheme outperforms the state-of-the-art with regards to watermarking capacity, fidelity, and recoverability

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    corecore