6,560 research outputs found

    Minimization of Quantum Circuits using Quantum Operator Forms

    Get PDF
    In this paper we present a method for minimizing reversible quantum circuits using the Quantum Operator Form (QOF); a new representation of quantum circuit and of quantum-realized reversible circuits based on the CNOT, CV and CV^\dagger quantum gates. The proposed form is a quantum extension to the well known Reed-Muller but unlike the Reed-Muller form, the QOF allows the usage of different quantum gates. Therefore QOF permits minimization of quantum circuits by using properties of different gates than only the multi-control Toffoli gates. We introduce a set of minimization rules and a pseudo-algorithm that can be used to design circuits with the CNOT, CV and CV^\dagger quantum gates. We show how the QOF can be used to minimize reversible quantum circuits and how the rules allow to obtain exact realizations using the above mentioned quantum gates.Comment: 11 pages, 14 figures, Proceedings of the ULSI Workshop 2012 (@ISMVL 2012

    A Study of Optimal 4-bit Reversible Toffoli Circuits and Their Synthesis

    Full text link
    Optimal synthesis of reversible functions is a non-trivial problem. One of the major limiting factors in computing such circuits is the sheer number of reversible functions. Even restricting synthesis to 4-bit reversible functions results in a huge search space (16! {\approx} 2^{44} functions). The output of such a search alone, counting only the space required to list Toffoli gates for every function, would require over 100 terabytes of storage. In this paper, we present two algorithms: one, that synthesizes an optimal circuit for any 4-bit reversible specification, and another that synthesizes all optimal implementations. We employ several techniques to make the problem tractable. We report results from several experiments, including synthesis of all optimal 4-bit permutations, synthesis of random 4-bit permutations, optimal synthesis of all 4-bit linear reversible circuits, synthesis of existing benchmark functions; we compose a list of the hardest permutations to synthesize, and show distribution of optimal circuits. We further illustrate that our proposed approach may be extended to accommodate physical constraints via reporting LNN-optimal reversible circuits. Our results have important implications in the design and optimization of reversible and quantum circuits, testing circuit synthesis heuristics, and performing experiments in the area of quantum information processing.Comment: arXiv admin note: substantial text overlap with arXiv:1003.191

    HDL-based Synthesis of Reversible Circuits : A Scalable Design Approach

    Get PDF
    Reversible computing is a promising research field due to its applications in several emerging technologies. Accordingly, several approaches for the design of reversible circuits have been introduced. Hardware Description Languages approach scales better than other methodologies, however, its main drawback is substantial amounts of additional circuit lines. This dissertation is an important step towards an elaborated scalable design flow of reversible circuits. In which, HDL-based design of reversible circuit is optimised, with line-awareness considered as the main objective. A line-aware programming style for a dedicated reversible hardware description language SyReC is proposed. Another contribution is a line-aware computation of HDL expressions. Reversible circuits' synthesis from a conventional hardware description language (VHDL) is examined. Finally, syntactical extensions to the dedicated hardware description language SyReC are suggested

    Automated Synthesis of Quantum Subcircuits

    Full text link
    The quantum computer has become contemporary reality, with the first two-qubit machine of mere decades ago transforming into cloud-accessible devices with tens, hundreds, or--in a few cases--even thousands of qubits. While such hardware is noisy and still relatively small, the increasing number of operable qubits raises another challenge: how to develop the now-sizeable quantum circuits executable on these machines. Preparing circuits manually for specifications of any meaningful size is at best tedious and at worst impossible, creating a need for automation. This article describes an automated quantum-software toolkit for synthesis, compilation, and optimization, which transforms classically-specified, irreversible functions to both technology-independent and technology-dependent quantum circuits. We also describe and analyze the toolkit's application to three situations--quantum read-only memories, quantum random number generators, and quantum oracles--and illustrate the toolkit's start-to-finish features from the input of classical functions to the output of quantum circuits ready-to-run on commercial hardware. Furthermore, we illustrate how the toolkit enables research beyond circuit synthesis, including comparison of synthesis and optimization methods and deeper understanding of even well-studied quantum algorithms. As quantum hardware continues to develop, such quantum circuit toolkits will play a critical role in realizing its potential.Comment: 49 pages, 25 figures, 20 table

    DDMF: An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction

    Get PDF
    Recently much attention has been paid to quantum circuit design to prepare for the future "quantum computation era." Like the conventional logic synthesis, it should be important to verify and analyze the functionalities of generated quantum circuits. For that purpose, we propose an efficient verification method for quantum circuits under a practical restriction. Thanks to the restriction, we can introduce an efficient verification scheme based on decision diagrams called Decision Diagrams for Matrix Functions (DDMFs). Then, we show analytically the advantages of our approach based on DDMFs over the previous verification techniques. In order to introduce DDMFs, we also introduce new concepts, quantum functions and matrix functions, which may also be interesting and useful on their own for designing quantum circuits.Comment: 15 pages, 14 figures, to appear IEICE Trans. Fundamentals, Vol. E91-A, No.1

    Toward an architecture for quantum programming

    Full text link
    It is becoming increasingly clear that, if a useful device for quantum computation will ever be built, it will be embodied by a classical computing machine with control over a truly quantum subsystem, this apparatus performing a mixture of classical and quantum computation. This paper investigates a possible approach to the problem of programming such machines: a template high level quantum language is presented which complements a generic general purpose classical language with a set of quantum primitives. The underlying scheme involves a run-time environment which calculates the byte-code for the quantum operations and pipes it to a quantum device controller or to a simulator. This language can compactly express existing quantum algorithms and reduce them to sequences of elementary operations; it also easily lends itself to automatic, hardware independent, circuit simplification. A publicly available preliminary implementation of the proposed ideas has been realized using the C++ language.Comment: 23 pages, 5 figures, A4paper. Final version accepted by EJPD ("swap" replaced by "invert" for Qops). Preliminary implementation available at: http://sra.itc.it/people/serafini/quantum-computing/qlang.htm
    corecore