4,372 research outputs found

    Reversible Logic Synthesis of Fault Tolerant Carry Skip BCD Adder

    Full text link
    Reversible logic is emerging as an important research area having its application in diverse fields such as low power CMOS design, digital signal processing, cryptography, quantum computing and optical information processing. This paper presents a new 4*4 parity preserving reversible logic gate, IG. The proposed parity preserving reversible gate can be used to synthesize any arbitrary Boolean function. It allows any fault that affects no more than a single signal readily detectable at the circuit's primary outputs. It is shown that a fault tolerant reversible full adder circuit can be realized using only two IGs. The proposed fault tolerant full adder (FTFA) is used to design other arithmetic logic circuits for which it is used as the fundamental building block. It has also been demonstrated that the proposed design offers less hardware complexity and is efficient in terms of gate count, garbage outputs and constant inputs than the existing counterparts.Comment: 9 pages, 7 figures, 5 table

    Fault tolerance in reversible logic

    Get PDF
    In recent years reversible logic has offered a promising alternative to traditional logic circuits. Reversible logic introduces a mechanism which allows theoretically zero energy dissipation by eliminating the possibility of information loss. However, it is also desirable that all computation should ideally be done in a fault tolerant manner. To address this we propose techniques to achieve fault tolerance in reversible logic based on a passive hardware redundancy technique. We propose two new designs for a reversible majority voter circuit that can be used to implement fault masking. Comparisons to existing designs are presented in terms of cost metrics such as gate count, garbage outputs, constant inputs, and quantum cost. Comparative failure probability analysis of the proposed voter circuits is also provided. Simulation results of the voter circuit failure probabilities over different numbers of trials are also presented. Our approach can be used to determine the circuit failure probability by using the gate failure probabilities. The proposed methodology can provide useful information for future reversible gate fabrication and designing future fault tolerant reversible circuits

    A Novel Nanometric Fault Tolerant Reversible Subtractor Circuit

    Get PDF
    Abstract: Reversibility plays an important role when energy efficient computations are considered. Reversible logic circuits have received significant attention in quantum computing, low power CMOS design, optical information processing and nanotechnology in the recent years. This study proposes a new fault tolerant reversible half-subtractor and a new fault tolerant reversible full-subtractor circuit with nanometric scales. Also in this paper we demonstrate how the well-known and important, PERES gate and TR gate can be synthesized from parity preserving reversible gates. All the designs have nanometric scales
    • …
    corecore