201 research outputs found

    Reverse engineering of double compressed images in the presence of contrast enhancement

    Get PDF
    Abstract-A comparison between two forensic techniques for the reverse engineering of a chain composed by a double JPEG compression interleaved by a linear contrast enhancement is presented here. The first approach is based on the well known peak-to-valley behavior of the histogram of double-quantized DCT coefficients, while the second approach is based on the distribution of the first digit of DCT coefficients. These methods have been extended to the study of the considered processing chain, for both the chain detection and the estimation of its parameters. More specifically, the proposed approaches provide an estimation of the quality factor of the previous JPEG compression and the amount of linear contrast enhancement

    multi-patch aggregation models for resampling detection

    Full text link
    Images captured nowadays are of varying dimensions with smartphones and DSLR's allowing users to choose from a list of available image resolutions. It is therefore imperative for forensic algorithms such as resampling detection to scale well for images of varying dimensions. However, in our experiments, we observed that many state-of-the-art forensic algorithms are sensitive to image size and their performance quickly degenerates when operated on images of diverse dimensions despite re-training them using multiple image sizes. To handle this issue, we propose a novel pooling strategy called ITERATIVE POOLING. This pooling strategy can dynamically adjust input tensors in a discrete without much loss of information as in ROI Max-pooling. This pooling strategy can be used with any of the existing deep models and for demonstration purposes, we show its utility on Resnet-18 for the case of resampling detection a fundamental operation for any image sought of image manipulation. Compared to existing strategies and Max-pooling it gives up to 7-8% improvement on public datasets.Comment: 6 pages; 6 tables; 4 figure

    Digital forensic techniques for the reverse engineering of image acquisition chains

    Get PDF
    In recent years a number of new methods have been developed to detect image forgery. Most forensic techniques use footprints left on images to predict the history of the images. The images, however, sometimes could have gone through a series of processing and modification through their lifetime. It is therefore difficult to detect image tampering as the footprints could be distorted or removed over a complex chain of operations. In this research we propose digital forensic techniques that allow us to reverse engineer and determine history of images that have gone through chains of image acquisition and reproduction. This thesis presents two different approaches to address the problem. In the first part we propose a novel theoretical framework for the reverse engineering of signal acquisition chains. Based on a simplified chain model, we describe how signals have gone in the chains at different stages using the theory of sampling signals with finite rate of innovation. Under particular conditions, our technique allows to detect whether a given signal has been reacquired through the chain. It also makes possible to predict corresponding important parameters of the chain using acquisition-reconstruction artefacts left on the signal. The second part of the thesis presents our new algorithm for image recapture detection based on edge blurriness. Two overcomplete dictionaries are trained using the K-SVD approach to learn distinctive blurring patterns from sets of single captured and recaptured images. An SVM classifier is then built using dictionary approximation errors and the mean edge spread width from the training images. The algorithm, which requires no user intervention, was tested on a database that included more than 2500 high quality recaptured images. Our results show that our method achieves a performance rate that exceeds 99% for recaptured images and 94% for single captured images.Open Acces

    Fundamental Limits in Multimedia Forensics and Anti-forensics

    Get PDF
    As the use of multimedia editing tools increases, people become questioning the authenticity of multimedia content. This is specially a big concern for authorities, such as law enforcement, news reporter and government, who constantly use multimedia evidence to make critical decisions. To verify the authenticity of multimedia content, many forensic techniques have been proposed to identify the processing history of multimedia content under question. However, as new technologies emerge and more complicated scenarios are considered, the limitation of multimedia forensics has been gradually realized by forensic researchers. It is the inevitable trend in multimedia forensics to explore the fundamental limits. In this dissertation, we propose several theoretical frameworks to study the fundamental limits in various forensic problems. Specifically, we begin by developing empirical forensic techniques to deal with the limitation of existing techniques due to the emergence of new technology, compressive sensing. Then, we go one step further to explore the fundamental limit of forensic performance. Two types of forensic problems have been examined. In operation forensics, we propose an information theoretical framework and define forensicability as the maximum information features contain about hypotheses of processing histories. Based on this framework, we have found the maximum number of JPEG compressions one can detect. In order forensics, an information theoretical criterion is proposed to determine when we can and cannot detect the order of manipulation operations that have been applied on multimedia content. Additionally, we have examined the fundamental tradeoffs in multimedia antiforensics, where attacking techniques are developed by forgers to conceal manipulation fingerprints and confuse forensic investigations. In this field, we have defined concealability as the effectiveness of anti-forensics concealing manipulation fingerprints. Then, a tradeoff between concealability, rate and distortion is proposed and characterized for compression anti-forensics, which provides us valuable insights of how forgers may behave under their best strategy
    • …
    corecore