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Abstract—A comparison between two forensic techniques for
the reverse engineering of a chain composed by a double JPEG
compression interleaved by a linear contrast enhancement is
presented here. The first approach is based on the well known
peak-to-valley behavior of the histogram of double-quantized
DCT coefficients, while the second approach is based on the
distribution of the first digit of DCT coefficients. These methods
have been extended to the study of the considered processing
chain, for both the chain detection and the estimation of its
parameters. More specifically, the proposed approaches provide
an estimation of the quality factor of the previous JPEG
compression and the amount of linear contrast enhancement.

I. INTRODUCTION

Image forensics is a multidisciplinary science aiming at
acquiring information on the history of digital images, in-
cluding the acquisition chain, the coding process, and the
editing operators, and it works on the assumption that any
digital processing, although visually imperceptible, alters the
underlying statistics of an image. These statistics can be
interpreted as digital fingerprints characterizing the image life-
cycle. The analysis of such traces can be exploited for the
verification of the trustworthiness of digital images.

A variety of tools have been proposed for the analysis of
fingerprints left by specific processing, like resampling [1], [2],
contrast enhancement [3], or compression [4], [5], [6], just to
name a few. A common characteristic of most of the proposed
works is to consider a single processing step at a time; on the
contrary, in realistic scenarios a chain of such operations is
employed to obtain the final processed image. Thus, to go
one step further, the identification of operators in the presence
of multiple processing steps has to be studied. As an example
in this sense, several methods have been proposed to study
the double JPEG compression that can be seen as a chain
composed by two codings [4], [5], [6]. But if we consider
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heterogeneous chain, i.e. composed by different operators,
only a small effort has been made so far, for example in [7],
where authors analyze double JPEG compressed images when
image resizing is applied between the two compressions, and
provide a joint estimation of resize factor and quality of the
first compression.

In this work, we consider a chain composed by double JPEG
compression interleaved by a linear contrast enhancement. A
wide literature has been written about double compression
or contrast enhancement artifacts, but these fingerprints were
treated separately. Usually, contrast enhancement detectors are
based on the analysis of histograms of pixels as in [3], [8],
[9], whose performance dramatically decreases when a lossy
compression is subsequently applied. We assume the following
processing chain: the luminance Y of a JPEG color image
with quality QF1 is linearly stretched and then re-saved in
another JPEG color image with quality QF2. We propose two
approaches, borrowed by double JPEG compression detection
and extended for the identification of the considered chain;
furthermore, assuming QF2 to be known, the methods provide
the joint estimation of the chain operator parameters, i.e. first
quality QF1 and amount of contrast enhancement.

II. PROPOSED APPROACHES

In [4], [6], [10], [11], the effects of double compression on
DCT coefficients are well explained and exploited to detect
double or single JPEG compression, to localize forged regions,
or for steganalysis. Briefly, double compression involves a
double quantization of DCT coefficients. Each quantization
introduced a periodic peak-to-valley pattern across DCT coef-
ficients histograms, due to the rounding to integers.

If we denote ckl a generic unquantized coefficient, and qkl1
and qkl2 (where k, l = 1, . . . 8) the quantization matrix of the
first and the second compression, respectively, the quantized
coefficient ckl1 is

ckl1 = Qqkl1 (ckl) =

[
ckl

qkl1

]
(1)
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and the corresponding dequantized dkl1 is

dkl1 = Q−1
qkl1

(Qqkl1 (ckl)) =

[
ckl

qkl1

]
qkl1 . (2)

Now we introduce the linear contrast enhancement as a
linear mapping of pixel values, namely:

Yout = αYin + β. (3)

When a Discrete Cosine Transform (DCT) is applied to
a linear contrast enhanced grayscale image (as could be the
luminance Y of a color image) each DCT coefficient is linearly
mapped into another value by the same parameters α and
β, due to the linearity of the transform, apart from an error
term due to the rounding to 8-bit in pixel domain. In order to
simplify the model, we can assume that the processing depends
on α only, and thus we have β = 0, and we can neglect
the effects of clipping to the range [0, 255]. By applying the
enhancement considering the relation (3) with β = 0, and
introducing an additive noise term ε taking into account the
rounding to 8-bit in pixel domain, we have that the DCT
coefficient after the processing will become:

d
′kl
1 = α

[
ckl

qkl1

]
qkl1 + ε, (4)

and after the second quantization we will obtain the double
quantized coefficient:

ckl2 =

[(
α

[
ckl

qkl1

]
qkl1 + ε

)
1

qkl2

]
. (5)

A. DCT Coefficients Histograms

The periodic pattern of the histogram of doubly compressed
DCT coefficients can be modeled as in [10] by computing the
number n(ckl2 ) of bins of the original histogram contributing
to bin ckl2 in the doubly compressed histogram, that in this
case is given by

n(ckl2 ) =qkl1

{⌊ 1

αqkl1

(
qkl2

(
ckl2 +

1

2

)
− ε
)⌋

−
⌈ 1

αqkl1

(
qkl2

(
ckl2 −

1

2

)
− ε
)⌉

+ 1

} (6)

It is possible to demonstrate that n(ckl2 ) is periodic with a
period which can be computed as follows. Let us consider the
following function

fa(x) = bx+ ac − dx− ae (7)

where a is a real number. It can be easily demonstrated that
the period of fa(x) is 1, for all real a. It is also easy to show
that fa(x− b) has still period equal to 1, whereas the scaled
version

fa

(
x

γ

)
=
⌊x
γ
+ a
⌋
−
⌈x
γ
− a
⌉

(8)

has period equal to γ. By using the previous properties, we
can write n(ckl2 ) using fa as

n(ckl2 ) = qkl1

{
fa

(
qkl2
αqkl1

ckl2 −
ε

αqkl1

)}
(9)

where a =
qkl2

2αqkl1
and the period is, as for the function (8),

τ
′kl = γ =

αqkl1
qkl2

(10)

The result can be seen as a generalization of that found in
[10], with the difference related to the presence of α and ε. In
particular, we can observe that the periodicity of the function
n(ckl2 ) depends on the value α, while it is not modified by ε.
The period could not be an integer but a rational number.

We can now describe a method to detect the presence
of such a chain leveraging on the previous analysis. To do
this, we need to know the distribution of DCT coefficients
histograms of an image in the presence and in the absence of
double compression. Let us suppose that we are observing a
double compressed image; as in [4], [12], a method to obtain a
histogram of DCT coefficients without periodical pattern from
a doubly compressed image is to compute the DCT coefficients
by misaligning the grid of 8 × 8 blocks employed in JPEG
standard. In such a way, we can observe two histograms for
DCT coefficients at frequency kl: the first one, which we
name h(ckl2 ), is obtained directly from the image, whereas the
second one, which we name hs(ckl2 ), is obtained as explained
before and it represents the hypothesis of absence of a double
compression (smoothed histogram). From these histograms,
we estimate the probability density functions (pdf) of a given
DCT coefficient, p(ckl2 ) and ps(c

kl
2 ), respectively, as in [12].

Ideally, p(ckl2 ) = ps(c
kl
2 ) in a single compressed image,

whereas p(ckl2 ) 6= ps(c
kl
2 ) in double compressed images,

because of the presence of a periodic pattern in p(ckl2 ) that
does not appear in ps(ckl2 ).

We propose to use two different measures of similarity
between two probability distributions: the Kullback-Liebler
divergence (DKL) [13] and the Kolmogorov-Smirnov distance
(DKS) [5]. These measure are defined for each DCT coeffi-
cient histogram of Y . In order to obtain a scalar value, we
assume to sum the Kullback-Leibler distances of each DCT
histogram, as for the Kolmogorov-Smirnov divergences.

If the image is considered processed by the supposed chain,
it is of interest the estimation of the first compression quality
QF1 and of α. In [14], a Maximum Likelihood Estimation
(MLE) approach has been proposed to detect JPEG com-
pression in raster bitmap format images and to estimate the
quantizer used. Although MLE approach may seem the trivial
way to estimate the triplet (QF1, QF2, α), the computational
cost of this approach grows considerably by increasing the
number of parameters to be estimated.

Therefore, as in [15], [16] and others, we employ a Discrete
Fourier Transform based analysis of DCT histograms. Before
this, we pre-process p(ckl2 ) in order to reduce the effects of
low-pass frequencies due to the shape of the histograms: the
spectrum is then calculated on pn(c

kl
2 ) = p(ckl2 ) − ps(ckl2 ) .

After that, the period τ̂
′kl is estimated by finding the peak with

maximum amplitude through a smooth interpolation [7], in
order to achieve a better estimate of the frequency F = 1/τ̂kl.

An exhaustive search is performed over all possible α and
QF1, by discretizing them, to minimize the distance between
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the theoretical period τ
′kl, computed according to Equation

(10), and the estimated period τ̂
′kl. This distance is the median

value of residues defined as

ρkl =

(
τ̂

′kl − τ ′kl

τ ′kl

)2

(11)

for a subset nc of DCT coefficients ckl2 . The choice of working
on a subset of coefficients is due to fact that histograms with
a small support don’t show detectable peaks in their spectra,
as shown in [15]. The median value is employed to bound
the effects of ambiguities: it can be easily verified that it is
well possible that different (α,QF1) tuples result in equivalent
periodic artifacts in the histogram of a given coefficient. As
we have a set nc of DCT coefficients, these ambiguities can
be present on a number of coefficients na ≤ nc. In all those
cases in which na ≤ bnc/2c, the distance doesn’t take into
account errors due to the ambiguities.

In our analysis we have to take into account that when
the period τ

′kl is greater than 2, we observe in the spectrum
the fundamental harmonic with frequency F = 1/τ

′kl. Con-
versely, when 1 < τ

′kl < 2, we don’t observe F , but the
aliased frequency F = 1 − 1/τ

′kl. Finally, when τ
′kl < 1,

we can not observe any fundamental period, because the
histogram can be viewed as a sampled signal, where the
sample period is 1. However, high order harmonics can still
be observed if they are greater than 1, but the peaks associated
with them could have undetectable amplitude. Because we do
not know if the theoretical period is less or greater than 2, we
test both τ

′kl = 1/F and τ
′kl = 1/(1 − F ) for each DCT

coefficient separately, and the period giving lower residue is
taken into account in (11).

B. Mode Based First Digit Features

In [17], it is observed that the distribution of the first digit of
quantized DCT coefficients can be used to distinguish singly
and doubly JPEG compressed images. Briefly, when an image
is singly compressed, it is observed that the magnitudes of
DCT coefficients approximately follow an exponential distri-
bution. Hence, the distribution of the first digit of quantized
DCT coefficients is well modeled by the generalized Benford’s
law [17]. Instead, in case of double compression, the distri-
bution of the first digit is usually perturbed and it violates the
generalized Benford’s law.

In [18], the authors introduce a new feature based on the
distribution of the first digit of DCT coefficients for each
separate DCT frequency, or mode. The features are obtained
by measuring the frequencies of the 9 possible nonzero values
of the first digit for each of the first 20 DCT modes. The
resulting 9 × 20 = 180 frequencies form a vector of features
named Mode Based First Digit Features (MBFDF).

The approach based on Benford’s law can be extended also
to images modified by contrast enhancement. Even if contrast
enhancement is expected to modify the distribution of the first
digit, the resulting distribution will still violate the generalized
Benford’s law, so that MBFDF can still be used to distinguish

singly and doubly compressed images. Moreover, different
parameters of the contrast enhancement operator will produce
different patterns on the distribution of the first digit of DCT
coefficients. Hence, MBFDF can also be used to discriminate
different parameters of the processing chain.

Similarly to [18], in order to distinguish enhanced and
recompressed images from singly compressed images, we pro-
pose to apply a two-class classification to MBFDF according
to Fisher’s linear discriminant analysis (LDA). The parameters
of the processing chain, i.e., QF1 and α, can be estimated by
using a “one-against-one” multi-classification strategy, where
each possible combination of values for QF1, α is considered
as a different class. Given NC possible classes, we construct
NC(NC−1)/2 two-class LDA classifiers, where the classifiers
consider every possible combination of two classes. Each
classifier “votes” for its winning class, and the class obtaining
more votes corresponds to the estimated values QF1, α.

The above approach works well in presence of a finite set
of possible parameters, like in the case of QF1. However,
for continuous valued parameters, like α, it requires a quan-
tization of the parameter space, with a proper choice of the
quantization step, since a fine search of parameter values may
be impractical due to the fact that the number of required
classifiers grows quadratically with the number of parameter
values.

III. EXPERIMENTAL RESULTS

Here, we show the results about the detection of the consid-
ered processing a chain, i.e., we verify the presence/absence
of double compression interleaved by contrast enhancement,
and about the estimation of the parameters which characterize
it. The proposed algorithms have been tested on a dataset
composed by 300 TIFF images coming from 3 different cam-
eras (Nikon D90, Canon 5D, Panasonic DMC-G2), cropped to
1024×1024 pixels, and representing landscapes, buildings and
people, avoiding uniform content and with different degrees
of texture. We fix α ∈ {1.05, 1.15, 1.35, 1.55, 1.75}. For
each α, we generate two datasets: the first dataset contains
TIFF images which are first enhanced and then compressed
(i.e. single compression scenario) with a quality factor QF2,
whereas the second dataset contains TIFF images compressed
with a quality factor QF1, whose luminance is enhanced, and
then re-compressed with a quality factor QF2 (i.e. double
compression scenario). We compress images by applying the
Matlab function imwrite at different quality factors chosen
in [50, 55, . . . , 100], for each α. This policy is then repeated
for images with size 256× 256 and 64× 64.

A. Detection

To compare histogram based features (as DKL and DKS

ones) and MBFDF in detecting the presence of a double
compression, we evaluate the performance of detectors by
measuring the true positive rate and the false positive rate.
The overall performance is evaluated by plotting their receiver
operating characteristic (ROC) curves, obtained by threshold-
ing the distributions of each feature in both hypotheses using
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Fig. 1. AUCs of KS and KL metrics, evaluated for different number of
coefficients, by starting from the DC coefficient and obtained by averaging
over all possible α, QF1 and QF2.

a varying threshold value, and recording the corresponding
value of true positive and false positive rate. Finally, the area
under the ROC curve (AUC) is used as a scalar parameter:
an AUC close to one indicates good detection performance,
whereas an AUC close to 0.5 indicates that the detector has
no better performance than choosing at random.

First of all, we evaluated the best performance between
DKL and DKS , by varying the number of coefficients nc.
As shown in Figure 1, the best detection capability, in terms
of AUC, is recorded by employing DKS with the first nc = 9
DCT coefficients; we then decided to fix this configuration for
the successive detection analysis.

To compare histograms based versus MBFDF approach,
AUC values have been evaluated for different couples
(QF1, QF2), by mediating over all possible values of α. The
results are reported in Table I and Table II. For lack of
space, only the subset {50, 60, 70, 80, 90, 100} of all couples
(QF1, QF2) is shown. When QF1 ≤ QF2, both approaches
have a very high capability of detecting double compression,
but when QF1 > QF2, MBFDF method clearly outperforms
histogram based ones.

QF1/QF2 50 60 70 80 90 100
50 0.95 1.00 1.00 1.00 1.00 1.00
60 0.91 0.95 1.00 1.00 1.00 1.00
70 0.91 0.94 0.96 1.00 1.00 1.00
80 0.98 0.98 0.98 0.96 1.00 1.00
90 0.83 0.89 0.96 0.98 0.93 0.99

100 0.5 0.5 0.51 0.55 0.69 0.65

TABLE I
DETECTION PERFORMANCE: AUC VALUES OF KS METRICS FOR A SUBSET

OF PAIRS (QF1, QF2) WITH QF1, QF2 = {50, 60, 70, 80, 90, 100}, BY
FIXING nc = 9 AND AVERAGING OVER ALL POSSIBLE VALUES OF α.

B. Estimation

We then evaluate the ability of the two approaches to
estimate the parameter α and the first compression quality
factor. In order to allow a fair comparison between the

QF1/QF2 50 60 70 80 90 100
50 0.95 1.00 1.00 1.00 1.00 1.00
60 0.99 0.97 1.00 1.00 1.00 1.00
70 1.00 0.99 0.97 1.00 1.00 1.00
80 1.00 0.99 1.00 0.95 1.00 1.00
90 0.90 0.98 0.98 1.00 0.92 1.00

100 0.58 0.60 0.63 0.66 0.82 0.82

TABLE II
DETECTION PERFORMANCE: AUC VALUES OF MBFDF FOR A SUBSET OF

PAIRS (QF1, QF2) WITH QF1, QF2 = {50, 60, 70, 80, 90, 100}, BY
MEDIATING OVER ALL POSSIBLE VALUES OF α.

proposed approaches, we have decided to discretize α = [1, 2]
with stepsize 0.05 and QF1, QF2 ∈ {50, 60, 70, 80, 90, 100}.
Whereas the histogram based approach makes an exhaustive
search over all couples (QF1, α), as explained in II-A, in the
MBFDF based approach we trained a LDA classifier over all
possible couples (QF1, α), so that NC = 21 × 6 = 126, and
the results are obtained by testing a subset of α, as in III, i.e.
α ∈ {1.05, 1.15, 1.35, 1.55, 1.75}. From preliminary tests on
histograms based approach, we fixed nc = 5.

To evaluate estimation accuracy of QF1, by fixing QF2

and α, we define a confusion matrix for QF1 as a matrix
where each column of the matrix represents the instances in
a predicted class, while each row represents the instances
in an actual class. By normalizing by the total number of
instances, we obtain the percentage of decisions of each couple
of classes. On the main diagonal, we have the percentage
of correct decisions, for each value of QF1. By averaging
the percentage of correct decision over all values of QF1

(i.e. values on the main diagonal), we obtain an average
performance value of the classification of QF1, for each couple
(QF2, α). We name this quantity accuracy of the estimate of
QF1.

To evaluate the estimation of α, we adopt the root mean
square error (RMSE): let α̂ij with i = 1, . . . , N a set of
estimated values of αj , where j = 1, . . . , Nα (i.e. Nα = 1
when estimating a single value of α, otherwise Nα = 5, equal
to the number of tested α), we define the RMSE as:

RMSE =

√√√√ 1

Nα ·N

Nα∑
j=1

N∑
i=1

(α̂ij − αj)2 (12)

The first comparison is about the accuracy of the classifica-
tion of QF1, by varying α and for different QF2. The results
shown in Figure 2, averaged over all QF1 values, demonstrate
that MBFDF based approach exhibits better performance than
the histogram based one.

The second comparison is about the RMSE of the estimate
of α, for each couple (QF1, QF2). The results presented in
Figure 3, averaged over all α values, show again that MBFDF
based approach has better performance than the histogram
based one: the latter method shows performance almost com-
parable to the first one only when the second compression
is greater than 90%, but it decreases for lower values of
QF2, whereas the performance of MBFDF remains good. To
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Fig. 2. Accuracy of classification of QF1, for different QF2 and α values.
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Fig. 3. Estimation of α: RMSE for different QF1 and QF2.
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Fig. 4. Estimation of α values: RMSE for different fixed couples (QF1, QF2).
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DCT Histograms MBFDF
Dimension 1024 256 64 1024 256 64

mean AUC 0.90 0.83 0.72 0.95 0.91 0.85
Accuracy of QF1 0.52 0.51 0.45 0.86 0.77 0.66

RMSE of α 0.23 0.24 0.26 0.07 0.07 0.06

TABLE III
PERFORMANCES OF THE PROPOSED APPROACHES FOR DIFFERENT IMAGE

SIZES (1024× 1024, 256× 256 AND 64× 64).

better understand this latter result, we evaluated the RMSE for
different values of α, by fixing some couples of compression
quality (QF1, QF2). It is possible to observe in Figure 4 that
the histogram based approach gives results almost comparable
to those obtained by MBFDF approach when QF2 ≥ QF1,
but its performance degrades quickly for QF2 ≤ QF1; this
behavior is well explained if we take into account the analysis
done in II-A, where we discussed the undetectability of the
periodic pattern through spectrum analysis whenever τ

′kl < 1,
which corresponds to QF2 ≤ QF1. As a last result, we show
in Table III a comparison between the proposed approaches by
varying the size of the image. Mean AUC values are obtained
by averaging AUC values evaluated for each (QF1, QF2)
in order to compare trained (i.e. MBFDF) and untrained
(i.e. histogram based method) detectors, whereas accuracy
of QF1 and RMSE of α are calculated by mediating over
all possible values of QF1, QF2 and α. As expected, the
performance smoothly degrade by reducing the image size in
both approaches, due to the lower number of available features
for the detection and estimation procedures.

IV. CONCLUSIONS

In this paper we have demonstrated how it is possible to
detect the presence of a common image processing operation
like contrast enhencement in the middle of a processing chain
composed by two JPEG compressions. Two approaches previ-
ously developed to detect the presence of double compression
have been properly modified to allow not only the detection,
but also the estimation of the quality factor of the first JPEG
compression and the parameter of the linear contrast enhance-
ment. Each of the two methods has its own pros and cons: the
approach based on the histogram of DCT coefficients has a
low computational complexity, but exhibits good performance
only when QF2 ≥ QF1 and the second compression is mild;
the method based on the distribution of the first digit of DCT
coefficients has very good performance for every combination
of quality factors, but its “one-against-one” multi-classification
strategy may become impractical if a fine search of the
processing parameter values is needed. These characteristics
could suggest to use the histogram based approach when the
image under analysis has a high compression quality, and
resort to the other method when this property does not hold.
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