5,191 research outputs found

    Personalized PageRank with Node-dependent Restart

    Get PDF
    Personalized PageRank is an algorithm to classify the improtance of web pages on a user-dependent basis. We introduce two generalizations of Personalized PageRank with node-dependent restart. The first generalization is based on the proportion of visits to nodes before the restart, whereas the second generalization is based on the probability of visited node just before the restart. In the original case of constant restart probability, the two measures coincide. We discuss interesting particular cases of restart probabilities and restart distributions. We show that the both generalizations of Personalized PageRank have an elegant expression connecting the so-called direct and reverse Personalized PageRanks that yield a symmetry property of these Personalized PageRanks

    Supervised Random Walks: Predicting and Recommending Links in Social Networks

    Full text link
    Predicting the occurrence of links is a fundamental problem in networks. In the link prediction problem we are given a snapshot of a network and would like to infer which interactions among existing members are likely to occur in the near future or which existing interactions are we missing. Although this problem has been extensively studied, the challenge of how to effectively combine the information from the network structure with rich node and edge attribute data remains largely open. We develop an algorithm based on Supervised Random Walks that naturally combines the information from the network structure with node and edge level attributes. We achieve this by using these attributes to guide a random walk on the graph. We formulate a supervised learning task where the goal is to learn a function that assigns strengths to edges in the network such that a random walker is more likely to visit the nodes to which new links will be created in the future. We develop an efficient training algorithm to directly learn the edge strength estimation function. Our experiments on the Facebook social graph and large collaboration networks show that our approach outperforms state-of-the-art unsupervised approaches as well as approaches that are based on feature extraction

    Adaptive image retrieval using a graph model for semantic feature integration

    Get PDF
    The variety of features available to represent multimedia data constitutes a rich pool of information. However, the plethora of data poses a challenge in terms of feature selection and integration for effective retrieval. Moreover, to further improve effectiveness, the retrieval model should ideally incorporate context-dependent feature representations to allow for retrieval on a higher semantic level. In this paper we present a retrieval model and learning framework for the purpose of interactive information retrieval. We describe how semantic relations between multimedia objects based on user interaction can be learnt and then integrated with visual and textual features into a unified framework. The framework models both feature similarities and semantic relations in a single graph. Querying in this model is implemented using the theory of random walks. In addition, we present ideas to implement short-term learning from relevance feedback. Systematic experimental results validate the effectiveness of the proposed approach for image retrieval. However, the model is not restricted to the image domain and could easily be employed for retrieving multimedia data (and even a combination of different domains, eg images, audio and text documents)

    Information Filtering on Coupled Social Networks

    Full text link
    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm based on the coupled social networks, which considers the effects of both social influence and personalized preference. Experimental results on two real datasets, \emph{Epinions} and \emph{Friendfeed}, show that hybrid pattern can not only provide more accurate recommendations, but also can enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding structure and function of coupled social networks

    The Minimum Wiener Connector

    Full text link
    The Wiener index of a graph is the sum of all pairwise shortest-path distances between its vertices. In this paper we study the novel problem of finding a minimum Wiener connector: given a connected graph G=(V,E)G=(V,E) and a set QVQ\subseteq V of query vertices, find a subgraph of GG that connects all query vertices and has minimum Wiener index. We show that The Minimum Wiener Connector admits a polynomial-time (albeit impractical) exact algorithm for the special case where the number of query vertices is bounded. We show that in general the problem is NP-hard, and has no PTAS unless P=NP\mathbf{P} = \mathbf{NP}. Our main contribution is a constant-factor approximation algorithm running in time O~(QE)\widetilde{O}(|Q||E|). A thorough experimentation on a large variety of real-world graphs confirms that our method returns smaller and denser solutions than other methods, and does so by adding to the query set QQ a small number of important vertices (i.e., vertices with high centrality).Comment: Published in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Dat

    Optimal first arrival times in L\'evy flights with resetting

    Full text link
    We consider diffusive motion of a particle performing a random walk with L\'evy distributed jump lengths and subject to resetting mechanism bringing the walker to an initial position at uniformly distributed times. In the limit of infinite number of steps and for long times, the process converges to a super-diffusive motion with replenishment. We derive formula for a mean first arrival time (MFAT) to a predefined target position reached by a meandering particle and analyze efficiency of the proposed searching strategy by investigating criteria for an optimal (a shortest possible) MFAT.Comment: 10 pages, 6 figure
    corecore