21 research outputs found

    Using Phase Response Curves to Optimize Deep Brain Stimulation

    Get PDF
    University of Minnesota Ph.D. dissertation. April 2016. Major: Neuroscience. Advisor: Theoden Netoff. 1 computer file (PDF); vii, 190 pages.Deep brain stimulation (DBS) is a neuromodulation therapy effective at treating motor symptoms of patients with Parkinson’s disease (PD). Currently, an open-loop approach is used to set stimulus parameters, where stimulation settings are programmed by a clinician using a time intensive trial-and-error process. There is a need for a systematic approach to tuning stimulation parameters based on a patient’s physiology. An effective biomarker in the recorded neural signal is needed for this approach. It is hypothesized that DBS may work by disrupting enhanced oscillatory activity seen in PD. In this thesis I propose and provide evidence for using a simple measure, called a phase response curve, to systematically tune stimulation parameters and develop novel approaches to stimulation to suppress pathological oscillations. In this work I show that PRCs can be used to optimize stimulus frequency, waveform, and stimulus phase to disrupt a pathological oscillation in a computational model of Parkinson’s disease and/or to disrupt entrainment of single neurons in vitro. This approach has the potential to improve efficacy and reduce post-operative programming time

    Towards model-based control of Parkinson's disease

    Get PDF
    Modern model-based control theory has led to transformative improvements in our ability to track the nonlinear dynamics of systems that we observe, and to engineer control systems of unprecedented efficacy. In parallel with these developments, our ability to build computational models to embody our expanding knowledge of the biophysics of neurons and their networks is maturing at a rapid rate. In the treatment of human dynamical disease, our employment of deep brain stimulators for the treatment of Parkinson’s disease is gaining increasing acceptance. Thus, the confluence of these three developments—control theory, computational neuroscience and deep brain stimulation—offers a unique opportunity to create novel approaches to the treatment of this disease. This paper explores the relevant state of the art of science, medicine and engineering, and proposes a strategy for model-based control of Parkinson’s disease. We present a set of preliminary calculations employing basal ganglia computational models, structured within an unscented Kalman filter for tracking observations and prescribing control. Based upon these findings, we will offer suggestions for future research and development

    Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms

    Get PDF
    Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS devices

    A Step towards Medical Ethics Modeling

    Full text link

    The role of cortical oscillations in a spiking neural network model of the basal ganglia.

    Get PDF
    Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block) information flow in the three major BG pathways. In particular, alpha (8-12Hz) and beta (13-30Hz) oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus-globus pallidus loop. In contrast, gamma (30-90Hz) frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders

    An entropy-based investigation of underpinnings and impact of oscillations in a model of PD

    Get PDF
    The involvement of the basal ganglia in motor control has been highlighted in studies of Parkinson’s disease (PD) and other movement disorders. The loss of dopaminergic neurons in the substantia nigra pars compacta and subsequent decrease of the dopamine level in the basal ganglia is recognized as the hallmark of PD. The classical view of the architecture of the dopamine depleted basal ganglia-thalamo-cortical circuit identifies changes in firing rates as the probable cause for the motor impairments in PD. Yet, more recent findings have shown that disturbances in other intrinsic dynamical properties of these networks may also contribute to motor deficits. Electrophysiological recordings in the basal ganglia of deep brain stimulation (DBS) patients (when OFF stimulation) have found pathological oscillations at beta frequency (13-30 Hz). This abnormal oscillatory activity has also been found in basal ganglia nuclei of animal models of PD. Additionally, the beta frequency oscillations were found to decrease when the patients are on dopamine replacement therapies and as they initiate movement. Beta frequency oscillations have been identified in the firing of single neurons and in the coupling of discharges between neurons. Within the framework of information theory, we proposed a time series model to analyse and relate the effects of changes in the dynamics of individual factors – such as alterations in firing rates, oscillations and synchrony (or auto and cross-correlations) caused by dopamine depletion – on the coding capacity (i.e., entropy) of a network. We estimated the entropy of a neural network based on the probabilities of current spiking conditioned on the observation of firing rate and spiking history of the current neuron and of neighbouring neurons. Moreover, we could estimate entropies for each of these factors separately, in healthy and dopamine depleted conditions, and assess their relative contribution to the decrease of coding capacity in disease. Furthermore, the causal characteristics of the model made it possible to compare the synaptic connectivity of neuronal populations in health with that in disease, by measuring the amount of directed information transferred between populations. We employed the model to study the external globus pallidus (GPe) network in control and 6-hydroxydopamine (6-OHDA) lesioned rats – a model for PD. We found a significant decrease in the coding capacity in lesioned animals, compared to controls, and that this decrease was predominantly on account of a reduction in the GPe firing rates. Although to a lesser extent, the amplification of the oscillatory activity (mainly in the beta frequency range) observed in the lesioned animals had also a significant impact on the reduction of their coding capacity. The higher synchrony found in the 6-OHDA rats had the least effect. We also found that the levels of coding capacity in the GPe were restored to levels close to control when the lesioned animals were treated with the dopamine agonist apomorphine. In addition, we detected a stronger coupling between the subthalamic nucleus (STN) and the GPe in the dopamine depleted rats, pointing to an abnormally exaggerated transfer of information within this network. We have shown that the GPe and the STN-GPe networks in the dopamine depleted rat exhibit information processing irregularities. We believe these deficits in processing and relaying information may also be present in other structures of the basal ganglia-thalamo-cortical circuit and that they may underlie the motor impairment in PD

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF
    corecore