6 research outputs found

    Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys

    Get PDF
    Given their importance in shaping social networks and determining how information or diseases propagate in a population, human interactions are the subject of many data collection efforts. To this aim, different methods are commonly used, from diaries and surveys to wearable sensors. These methods show advantages and limitations but are rarely compared in a given setting. As surveys targeting friendship relations might suffer less from memory biases than contact diaries, it is also interesting to explore how daily contact patterns compare with friendship relations and with online social links. Here we make progresses in these directions by leveraging data from a French high school: face-to-face contacts measured by two concurrent methods, sensors and diaries; self-reported friendship surveys; Facebook links. We compare the data sets and find that most short contacts are not reported in diaries while long contacts have larger reporting probability, with a general tendency to overestimate durations. Measured contacts corresponding to reported friendship can have durations of any length but all long contacts correspond to reported friendships. Online links not associated to reported friendships correspond to short face-to-face contacts, highlighting the different nature of reported friendships and online links. Diaries and surveys suffer from a low sampling rate, showing the higher acceptability of sensor-based platform. Despite the biases, we found that the overall structure of the contact network, i.e., the mixing patterns between classes, is correctly captured by both self-reported contacts and friendships networks. Overall, diaries and surveys tend to yield a correct picture of the structural organization of the contact network, albeit with much less links, and give access to a sort of backbone of the contact network corresponding to the strongest links in terms of cumulative durations

    Compensating for population sampling in simulations of epidemic spread on temporal contact networks

    Full text link
    Data describing human interactions often suffer from incomplete sampling of the underlying population. As a consequence, the study of contagion processes using data-driven models can lead to a severe underestimation of the epidemic risk. Here we present a systematic method to alleviate this issue and obtain a better estimation of the risk in the context of epidemic models informed by high-resolution time-resolved contact data. We consider several such data sets collected in various contexts and perform controlled resampling experiments. We show how the statistical information contained in the resampled data can be used to build a series of surrogate versions of the unknown contacts. We simulate epidemic processes on the resulting reconstructed data sets and show that it is possible to obtain good estimates of the outcome of simulations performed using the complete data set. We discuss limitations and potential improvements of our method

    The structured backbone of temporal social ties

    Full text link
    In many data sets, crucial information on the structure and temporality of a system coexists with noise and non-essential elements. In networked systems, for instance, some edges might be non-essential or exist only by chance. Filtering them out and extracting a set of relevant connections, the "network backbone", is a non-trivial task, and methods put forward until now do not address time-resolved networks, whose availability has strongly increased in recent years. We develop here such a method, by defining an adequate temporal network null model, which calculates the random chance of nodes to be connected at any time after controlling for their activity. This allows us to identify, at any level of statistical significance, pairs of nodes that have more interactions than expected given their activities: These form a backbone of significant ties. We apply our method to empirical temporal networks of socio-economic interest and find that (i) at given level of statistical significance, our method identifies more significant ties than methods considering temporally aggregated networks, and (ii) when a community structure is present, most significant ties are intra-community edges, suggesting that the weights of inter-community edges can be explained by the null model of random interactions. Most importantly, our filtering method can assign a significance to more complex structures such as triads of simultaneous interactions, while methods based on static representations are by construction unable to do so. Strikingly, we uncover that significant triads are not equivalent to triangles composed by three significant edges. Our results hint at new ways to represent temporal networks for use in data-driven models and in anonymity-preserving ways.Comment: Main text: 18 pages, 6 figures. SI: 22 pages, 17 figure

    Modern temporal network theory: A colloquium

    Full text link
    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.Comment: Final accepted versio
    corecore