740 research outputs found

    Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    Get PDF
    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures and methods are incongruent. Some processing products are still done on paper, some electronic, and many being converted in between. Business systems then are not fully compatible, and paper as well as electronic conversions are time-consuming and costly. NASA and its Shuttle contractors setup rules and systems to handle what has produced over 130 RLV launches, but they have had many challenges. Attempts have been made to apply aviation industry specifications to make the Shuttle more efficient with its ground processing. One efficiency project example was to make a Shuttle Maintenance Manual (SMM) based on the commercial ATA (Air Transport Association of America) Spec 100 for technical publications. This industry standard, along with others, has been a foundation for efficient global MRO of commercial airlines for years. A modified version was also made for some military aircraft. The SMM project found many similarities in Spec 100 which apply to the Shuttle, and room for expansion for space systems/structures not in aircraft. The SMM project team met with the ATA and representatives from NASA's X-33 and X-34 programs to discuss collaboration on a national space standard based on Spec 100. A pilot project was enabled for a subset of Shuttle systems. Full implementation was not yet achieved, X-33 and X-34 were cancelled, and the Shuttles were then designated for retirement. Nonetheless, we can learn from this project how to expand this concept to all space vehicle products. Since then, ATA has joined with ASD (AeroSpace and Defence Industries Association of Europe) and AIA (Aerospace Industries Association) to form a much-enhanced and expanded international specification: Sl000D, International Specification for Technical Publications. It includes air, land, and sea vehicles, missiles, support equipment, ordnance, and communications. It is used by a growing number of countries for commercial and government products. Its modular design is supported by a Common Source Dabase (CSDB), and COTS (commercial off-the-shelf) software is available for production of IETP's (Interactive Electronic Technical Publications). A few space industry products in Europe have begun to apply Sl000D already. Also, there are other related standards/specifications which have global implications. We have an opportunity to adapt Sl000D and possibly other standards for use with space vehicles and ground systems. Sl000D has plenty of flexibility to apply to any product needed. To successfully grow the viability of the space industry, all members, commercial and government, will need to engage cooperatively in developing and applying standards to move toward interoperability. If we leverage and combine the best existing space standards and specifications, develop new ones to address known gaps, and adapt the best applicable features from other industries, we can establish an infrastructure to not only accelerate current development, but also build longevity for a more cohesive international space community

    Advanced Manned Launch System (AMLS) study

    Get PDF
    To assure national leadership in space operations and exploration in the future, NASA must be able to provide cost effective and operationally efficient space transportation. Several NASA studies and the joint NASA/DoD Space Transportation Architecture Studies (STAS) have shown the need for a multi-vehicle space transportation system with designs driven by enhanced operations and low costs. NASA is currently studying an advanced manned launch system (AMLS) approach to transport crew and cargo to the Space Station Freedom. Several single and multiple stage systems from air-breathing to all-rocket concepts are being examined in a series of studies potential replacements for the Space Shuttle launch system in the 2000-2010 time frame. Rockwell International Corporation, under contract to the NASA Langley Research Center, has analyzed a two-stage all-rocket concept to determine whether this class of vehicles is appropriate for the AMLS function. The results of the pre-phase A study are discussed

    The SEC-system : reuse support for scheduling system development

    Get PDF
    Recently, in a joint cooperation of Stichting VNA, SAL Apotheken, the Faculty of Management and Organization, and the University Centre for Pharmacy, University of Groningen in the Netherlands, a Ph.D-study started regarding Apot(he)ek, Organization and Management (APOM). The APOM-project deals with the structuring and steering of pharmacy organization. The manageability of the internal pharmacy organization, and the manageability of the direct environment of pharmacy organization is the subject matter. The theoretical background of the APOM-project is described. A literature study was made to find mixes of objectives. Three mixes of objectives in pharmacy organization are postulated; the product mix, the process mix, and the customer mix. The typology will be used as a basic starting point for the empirical study in the next phase of the APOM-project.

    Viability of a Reusable In-Space Transportation System

    Get PDF
    The National Aeronautics and Space Administration (NASA) is currently developing options for an Evolvable Mars Campaign (EMC) that expands human presence from Low Earth Orbit (LEO) into the solar system and to the surface of Mars. The Hybrid in-space transportation architecture is one option being investigated within the EMC. The architecture enables return of the entire in-space propulsion stage and habitat to cis-lunar space after a round trip to Mars. This concept of operations opens the door for a fully reusable Mars transportation system from cis-lunar space to a Mars parking orbit and back. This paper explores the reuse of in-space transportation systems, with a focus on the propulsion systems. It begins by examining why reusability should be pursued and defines reusability in space-flight context. A range of functions and enablers associated with preparing a system for reuse are identified and a vision for reusability is proposed that can be advanced and implemented as new capabilities are developed. Following this, past reusable spacecraft and servicing capabilities, as well as those currently in development are discussed. Using the Hybrid transportation architecture as an example, an assessment of the degree of reusability that can be incorporated into the architecture with current capabilities is provided and areas for development are identified that will enable greater levels of reuse in the future. Implications and implementation challenges specific to the architecture are also presented

    The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Get PDF
    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described

    Spacecraft software training needs assessment research

    Get PDF
    The problems were identified, along with their causes and potential solutions, that the management analysts were encountering in performing their jobs. It was concluded that sophisticated training applications would provide the most effective solution to a substantial portion of the analysts' problems. The remainder could be alleviated through the introduction of tools that could help make retrieval of the needed information from the vast and complex information resources feasible

    Study of launch site processing and facilities for future launch vehicles

    Get PDF
    The purpose of this research is to provide innovative and creative approaches to assess the impact to the Kennedy Space Center and other launch sites for a range of candidate manned and unmanned space transportation systems. The general scope of the research includes the engineering activities, analyses, and evaluations defined in the four tasks below: (1) development of innovative approaches and computer aided tools; (2) operations analyses of launch vehicle concepts and designs; (3) assessment of ground operations impacts; and (4) development of methodologies to identify promising technologies

    Training augmentation device for the Air Force satellite Control Network

    Get PDF
    From the 1960's and into the early 1980's satellite operations and control were conducted by Air Force Systems Command (AFSC), now Air Force Materiel Command (AFMC), out of the Satellite Control Facility at Onizuka AFB, CA. AFSC was responsible for acquiring satellite command and control systems and conducting routine satellite operations. The daily operations, consisting of satellite health and status contacts and station keeping activities, were performed for AFSC by a Mission Control Team (MCT) staffed by civilian contractors who were responsible for providing their own technically 'qualified' personnel as satellite operators. An MCT consists of five positions: mission planner, ground controller, planner analyst, orbit analyst, and ranger controller. Most of the training consisted of On-the-Job-Training (OJT) with junior personnel apprenticed to senior personnel until they could demonstrate job proficiency. With most of the satellite operators having 15 to 25 years of experience, there was minimal risk to the mission. In the mid 1980's Air Force Space Command (AFSPACOM) assumed operational responsibility for a newly established control node at Falcon AFB (FAFB) in CO. The satellites and ground system program offices (SPO's) are organized under AFSC's Space and Missiles Systems Center (SMC) to function as a systems engineering and acquisition agency for AFSPACECOM. The collection of the satellite control nodes, ground tracking stations, computer processing equipment, and connecting communications links is referred to as the Air Force Satellite Control Network (AFSCN)

    Issues in NASA program and project management

    Get PDF
    This volume is the sixth in an ongoing series on aerospace project management at NASA. Articles in this volume cover evolution of NASA cost estimating; SAM 2; National Space Science Program: strategies to maximize science return; and human needs, motivation, and results of the NASA culture surveys. A section on resources for NASA managers rounds out the publication
    corecore