105 research outputs found

    Exploring Himawari-8 geostationary observations for the advanced coastal monitoring of the Great Barrier Reef

    Get PDF
    Larissa developed an algorithm to enable water-quality assessment within the Great Barrier Reef (GBR) using weather satellite observations collected every 10 minutes. This unprecedented temporal resolution records the dynamic nature of water quality fluctuations for the entire GBR, with applications for improved monitoring and management

    Applying the Dark Target Aerosol Algorithm with Advanced Himawari Imager Observations During the KORUS-AQ Field Campaign

    Get PDF
    For nearly 2 decades we have been quantitatively observing the Earth's aerosol system from space at one or two times of the day by applying the Dark Target family of algorithms to polar-orbiting satellite sensors, particularly MODIS and VIIRS. With the launch of the Advanced Himawari Imager (AHI) and the Advanced Baseline Imagers (ABIs) into geosynchronous orbits, we have the new ability to expand temporal coverage of the traditional aerosol optical depth (AOD) to resolve the diurnal signature of aerosol loading during daylight hours. The KoreanUnited States Air Quality (KORUS-AQ) campaign taking place in and around the Korean peninsula during MayJune 2016 initiated a special processing of full-disk AHI observations that allowed us to make a preliminary adoption of Dark Target aerosol algorithms to the wavelengths and resolutions of AHI. Here,we describe the adaptation and show retrieval results from AHI for this 2-month period. The AHI-retrieved AOD is collocated in time and space with existing AErosol RObotic NETwork stations across Asia and with collocated Terra and Aqua MODIS retrievals. The new AHI AOD product matches AERONET, and the standard MODIS product does as well, and the agreement between AHI and MODIS retrieved AOD is excellent, as can be expected by maintaining consistency in algorithm architecture and most algorithm assumptions. Furthermore, we show that the new product approximates the AERONET-observed diurnal signature. Examining the diurnal patterns of the new AHI AOD product we find specific areas over land where the diurnal signal is spatially cohesive. For example, in Bangladesh the AOD in-creases by 0.50 from morning to evening, and in northeast China the AOD decreases by 0.25. However, over open ocean the observed diurnal cycle is driven by two artifacts, one associated with solar zenith angles greater than 70t hat may be caused by a radiative transfer model that does not properly represent the spherical Earth and the other artifact associated with the fringes of the 40 degree glint angle mask. This opportunity during KORUS-AQ provides encouragement to move towards an operational Dark Target algorithm for AHI. Future work will need to re-examine masking including snow mask, reevaluate assumed aerosol models for geosynchronous geometry, address the artifacts over the ocean, and investigate size parameter retrieval from the over-ocean algorithm

    Dust detection and intensity estimation using Himawari-8/AHI observation.

    Get PDF
    In this study, simple dust detection and intensity estimation methods using Himawari-8 Advanced Himawari Imager (AHI) data are developed. Based on the differences of thermal radiation characteristics between dust and other typical objects, brightness temperature difference (BTD) among four channels (BT11–BT12, BT8–BT11, and BT3–BT11) are used together for dust detection. When considering the thermal radiation variation of dust particles over different land cover types, a dynamic threshold scheme for dust detection is adopted. An enhanced dust intensity index (EDII) is developed based on the reflectance of visible/near-infrared bands, BT of thermal-infrared bands, and aerosol optical depth (AOD), and is applied to the detected dust area. The AOD is retrieved using multiple temporal AHI observations by assuming little surface change in a short time period (i.e., 1–2 days) and proved with high accuracy using the Aerosol Robotic Network (AERONET) and cross-compared with MODIS AOD products. The dust detection results agree qualitatively with the dust locations that were revealed by AHI true color images. The results were also compared quantitatively with dust identification results from the AERONET AOD and Ångström exponent, achieving a total dust detection accuracy of 84%. A good agreement is obtained between EDII and the visibility data from National Climatic Data Center ground measurements, with a correlation coefficient of 0.81, indicating the effectiveness of EDII in dust monitoring.N/

    A Machine Learning Algorithm for Himawari-8 Total Suspended Solids Retrievals in the Great Barrier Reef

    Get PDF
    Remote sensing of ocean colour has been fundamental to the synoptic-scale monitoring of marine water quality in the Great Barrier Reef (GBR). However, ocean colour sensors onboard low orbit satellites, such as the Sentinel-3 constellation, have insufficient revisit capability to fully resolve diurnal variability in highly dynamic coastal environments. To overcome this limitation, this work presents a physics-based coastal ocean colour algorithm for the Advanced Himawari Imager onboard the Himawari-8 geostationary satellite. Despite being designed for meteorological applications, Himawari-8 offers the opportunity to estimate ocean colour features every 10 min, in four broad visible and near-infrared spectral bands, and at 1 km2 spatial resolution. Coupled ocean–atmosphere radiative transfer simulations of the Himawari-8 bands were carried out for a realistic range of in-water and atmospheric optical properties of the GBR and for a wide range of solar and observation geometries. The simulated data were used to develop an inverse model based on artificial neural network techniques to estimate total suspended solids (TSS) concentrations directly from the Himawari-8 top-of-atmosphere spectral reflectance observations. The algorithm was validated with concurrent in situ data across the coastal GBR and its detection limits were assessed. TSS retrievals presented relative errors up to 75% and absolute errors of 2 mg L−1 within the validation range of 0.14 to 24 mg L−1, with a detection limit of 0.25 mg L−1. We discuss potential applications of Himawari-8 diurnal TSS products for improved monitoring and management of water quality in the GBR

    GEO-LEO Reflective Band Inter-Comparison with BRDF and Atmospheric Scattering Corrections

    Get PDF
    The inter-comparison of the reflective solar bands (RSB) between the instruments onboard a geostationary orbit satellite and a low Earth orbit satellite is very helpful in assessing their calibration consistency. Himawari-8 was launched 7 October 2014 and GOES-R was launched on 19 November 2016. Unlike previous GOES instruments, the Advanced Himawari Imager (AHI) on Himawari-8 and the Advanced Baseline Imager (ABI) on GOES-R have onboard calibrators for the RSB. Independent assessment of calibration is nonetheless important to enhance their product quality. MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) can provide good references for sensor calibration. In this work, the inter-comparison between AHI and VIIRS is performed over a pseudo-invariant target. The use of stable and uniform calibration sites provides comparison with accurate adjustment for band spectral difference, reduction of impact from pixel mismatching, and consistency of BRDF (Bidirectional Reflectance Distribution Function) and atmospheric correction. The site used is the Strzelecki Desert in Australia. Due to the difference in solar and view angles, two corrections must be applied in order to compare the measurements. The first is the atmospheric scattering correction applied to the top of atmosphere reflectance measurements. The second correction is applied to correct the BRDF effect. The atmospheric correction is performed using a vector version of the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) model and the BRDF correction is performed using a semi-empirical model. Our results show that AHI band 1 (0.47 microns) has a good agreement with VIIRS band M3 within 0.15 percent. AHI band 5 (1.61 microns) shows the largest difference (5.09 percent) with VIIRS band M10, while AHI band 5 shows the least difference (1.87 percent) in comparison with VIIRS band I3. The methods developed in this work can also be directly applied to assess GOES-16/ABI (Geostationary Operational Environment Satellite16 / Advanced Baseline Imager) calibration consistency, a topic we will address in the future

    Monitoring the Agung (Indonesia) ash plume of November 2017 by means of infrared Himawari 8 data

    Get PDF
    The Agung volcano (Bali; Indonesia) erupted in later November 2017 after several years of quiescence. Because of ash emissions, hundreds of flights were cancelled, causing an important air traffic disruption in Indonesia. We investigate those ash emissions from space by applying the RSTASH algorithm for the first time to Himawari-8 data and using an ad hoc implementation scheme to reduce the time of the elaboration processes. Himawari-8 is a new generation Japanese geostationary meteorological satellite, whose AHI (Advanced Himawari Imager) sensor offers improved features, in terms of spectral, spatial and temporal resolution, in comparison with the previous imagers of the MTSAT (Multi-Functional Transport Satellite) series. Those features should guarantee further improvements in monitoring rapidly evolving weather/environmental phenomena. Results of this work show that RSTASH was capable of successfully detecting and tracking the Agung ash plume, despite some limitations (e.g., underestimation of ash coverage under certain conditions; generation of residual artefacts). Moreover, estimates of ash cloud-top height indicate that the monitored plume extended up to an altitude of about 9.3 km above sea level during the period 25 November at 21:10 UTC-26 November at 00:50 UTC. The study demonstrates that RSTASH may give a useful contribution for the operational monitoring of ash clouds over East Asia and the Western Pacific region, well exploiting the 10 min temporal resolution and the spectral features of the Himawari-8 data

    Multi-Channel Spectral Band Adjustment Factors for Thermal Infrared Measurements of Geostationary Passive Imagers

    Get PDF
    The newest and upcoming geostationary passive imagers have thermal infrared channels comparable to those of more established instruments, but their spectral response functions still differ significantly. Therefore, retrievals developed for a certain type of radiometer cannot simply be applied to another imager. Here, a set of spectral band adjustment factors is determined for MSG/SEVIRI, Himawari-8/AHI, and MTG1/FCI from a training dataset based on MetOp/IASI hyperspectral observations. These correction functions allow to turn the observation of one sensor into an analogue observation of another sensor. This way, the same satellite retrieval—that has been usually developed for a specific instrument with a specific spectral response function—can be applied to produce long time series that go beyond one single satellite/satellite series or to cover the entire geostationary ring in a consistent way. It is shown that the mean uncorrected brightness temperature differences between corresponding channels of two imagers can be >1 K, in particular for the channels centered around 13.4 μm in the carbon dioxide absorption band and even when comparing different imager realizations of the same series, such as the four SEVIRI sensors aboard MSG1 to MSG4. The spectral band adjustment factors can remove the bias and even reduce the standard deviation in the brightness temperature difference by more than 80%, with the effect being dependent on the spectral channel and the complexity of the correction function. Further tests include the application of the spectral band adjustment factors in combination with (a) a volcanic ash cloud retrieval to Himawari-8/AHI observations of the Raikoke eruption 2019 and a comparison to an ICON-ART model simulation, and (b) an ice cloud retrieval to simulated MTG1/FCI test data with the outcome compared to the retrieval results using real MSG3/SEVIRI measurements for the same scene

    Sun-angle effects on remote-sensing phenology observed and modelled using himawari-8

    Full text link
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Satellite remote sensing of vegetation at regional to global scales is undertaken at considerable variations in solar zenith angle (SZA) across space and time, yet the extent to which these SZA variations matter for the retrieval of phenology remains largely unknown. Here we examined the effect of seasonal and spatial variations in SZA on retrieving vegetation phenology from time series of the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) across a study area in southeastern Australia encompassing forest, woodland, and grassland sites. The vegetation indices (VI) data span two years and are from the Advanced Himawari Imager (AHI), which is onboard the Japanese Himawari-8 geostationary satellite. The semi-empirical RossThick-LiSparse-Reciprocal (RTLSR) bidirectional reflectance distribution function (BRDF) model was inverted for each spectral band on a daily basis using 10-minute reflectances acquired by H-8 AHI at different sun-view geometries for each site. The inverted RTLSR model was then used to forward calculate surface reflectance at three constant SZAs (20°, 40°, 60°) and one seasonally varying SZA (local solar noon), all normalised to nadir view. Time series of NDVI and EVI adjusted to different SZAs at nadir view were then computed, from which phenological metrics such as start and end of growing season were retrieved. Results showed that NDVI sensitivity to SZA was on average nearly five times greater than EVI sensitivity. VI sensitivity to SZA also varied among sites (biome types) and phenological stages, with NDVI sensitivity being higher during the minimum greenness period than during the peak greenness period. Seasonal SZA variations altered the temporal profiles of both NDVI and EVI, with more pronounced differences in magnitude among NDVI time series normalised to different SZAs. When using VI time series that allowed SZA to vary at local solar noon, the uncertainties in estimating start, peak, end, and length of growing season introduced by local solar noon varying SZA VI time series, were 7.5, 3.7, 6.5, and 11.3 days for NDVI, and 10.4, 11.9, 6.5, and 8.4 days for EVI respectively, compared to VI time series normalised to a constant SZA. Furthermore, the stronger SZA dependency of NDVI compared with EVI, resulted in up to two times higher uncertainty in estimating annual integrated VI, a commonly used remote-sensing proxy for vegetation productivity. Since commonly used satellite products are not generally normalised to a constant sun-angle across space and time, future studies to assess the sun-angle effects on satellite applications in agriculture, ecology, environment, and carbon science are urgently needed. Measurements taken by new-generation geostationary (GEO) satellites offer an important opportunity to refine this assessment at finer temporal scales. In addition, studies are needed to evaluate the suitability of different BRDF models for normalising sun-angle across a broad spectrum of vegetation structure, phenological stages and geographic locations. Only through continuous investigations on how sun-angle variations affect spatiotemporal vegetation dynamics and what is the best strategy to deal with it, can we achieve a more quantitative remote sensing of true signals of vegetation change across the entire globe and through time

    Dust detection and intensity estimation using Himawari-8/AHI observation

    Full text link
    In this study, simple dust detection and intensity estimation methods using Himawari-8 Advanced Himawari Imager (AHI) data are developed. Based on the differences of thermal radiation characteristics between dust and other typical objects, brightness temperature difference (BTD) among four channels (BT11-BT12, BT8-BT11, and BT3-BT11) are used together for dust detection. When considering the thermal radiation variation of dust particles over different land cover types, a dynamic threshold scheme for dust detection is adopted. An enhanced dust intensity index (EDII) is developed based on the reflectance of visible/near-infrared bands, BT of thermal-infrared bands, and aerosol optical depth (AOD), and is applied to the detected dust area. The AOD is retrieved using multiple temporal AHI observations by assuming little surface change in a short time period (i.e., 1-2 days) and proved with high accuracy using the Aerosol Robotic Network (AERONET) and cross-compared with MODIS AOD products. The dust detection results agree qualitatively with the dust locations that were revealed by AHI true color images. The results were also compared quantitatively with dust identification results from the AERONET AOD and Ångström exponent, achieving a total dust detection accuracy of 84%. A good agreement is obtained between EDII and the visibility data from National Climatic Data Center ground measurements, with a correlation coefficient of 0.81, indicating the effectiveness of EDII in dust monitoring

    REMOTE SENSING OF AEROSOL AND THE PLANETARY BOUNDARY LAYER, AND EXPLORING THEIR INTERACTIONS

    Get PDF
    Aerosol-planetary boundary layer (PBL) interaction (API) is an important mechanism affecting the thermodynamics and convection in the lower atmosphere. API plays a critical role in the formation of severe pollution events and the development of convective clouds. Despite the progress made in understanding these processes, their magnitude and significance still have large uncertainties, varying significantly with aerosol distribution, aerosol optical property, and meteorological conditions. This study attempts to develop advanced remote sensing algorithms to retrieve information about the PBL and the aerosols contained within it. These remote sensing techniques are further used to elucidate the mechanisms governing API, enhancing our ability to predict air quality and model convective clouds, as well as understand the impact of aerosols on the climate system.In particular, we develop algorithms to improve the retrieval accuracy of aerosols and the PBL from satellite sensors and a ground-based lidar. For aerosol remote sensing, we use the deep neural network (DNN) to construct surface reflectance relationships (SRR) between different wavelengths. We then incorporate the DNN-constrained SRR into a traditional dark-target algorithm to retrieve the aerosol optical depth (AOD) using information from a current-generation geostationary satellite, i.e., Himawari-8, as input. As a result, the performance of AOD retrievals over East Asia is significantly improved. For PBL remote sensing, we explore different techniques for retrieving the PBL height (PBLH) from both a space-borne lidar (i.e., the Cloud-Aerosol Lidar with Orthogonal Polarization) and a ground-based lidar. We further develop a new method that combines lidar-measured aerosol backscatter with a stability-dependent model of PBLH diurnal variation. The new method circumvents or alleviates an inherent limitation of lidar-based PBLH detection when a residual layer of aerosols does not change in phase with the evolving thermodynamics. By separately considering surface-cloud coupling regimes, this method also offers high-quality retrievals of PBLH under cloudy conditions. Utilizing the enhanced retrievals of PBLH and synergistic measurements, we can also address some scientific questions concerning API, including the influencing factors of API and the role of aerosol vertical distributions. The correlation between the PBLH and the concentration of particulate matter with aerodynamic diameters less than 2.5 microns is generally negative. However, the magnitude, significance, and even the sign of their relationship vary greatly, depending on location and meteorological and aerosol conditions. In particular, API is considerably different under three aerosol vertical structure scenarios (i.e., well-mixed, decreasing and increasing with height). The vertical distribution of aerosol radiative forcing differs dramatically among the three types, with strong heating in the lower, middle, and upper PBL, respectively. Such a discrepancy in aerosol radiative forcing leads to different aerosol effects on atmospheric stability and entrainment processes. Absorbing aerosols are much less effective in stabilizing the lower atmosphere when aerosols decrease with height than in an inverted structure scenario
    • …
    corecore