923 research outputs found

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    TCP with Adaptive Pacing for Multihop Wireless Networks

    Get PDF
    In this paper, we introduce a novel congestion control algorithm for TCP over multihop IEEE 802.11 wireless networks implementing rate-based scheduling of transmissions within the TCP congestion window. We show how a TCP sender can adapt its transmission rate close to the optimum using an estimate of the current 4-hop propagation delay and the coefficient of variation of recently measured round-trip times. The novel TCP variant is denoted as TCP with Adaptive Pacing (TCP-AP). Opposed to previous proposals for improving TCP over multihop IEEE 802.11 networks, TCP-AP retains the end-to-end semantics of TCP and does neither rely on modifications on the routing or the link layer nor requires cross-layer information from intermediate nodes along the path. A comprehensive simulation study using ns-2 shows that TCP-AP achieves up to 84% more goodput than TCP NewReno, provides excellent fairness in almost all scenarios, and is highly responsive to changing traffic conditions

    Distributed opportunistic scheduling in multihop wireless ad hoc networks

    Get PDF
    In this paper, we introduce a framework for distributed opportunistic scheduling in multihop wireless ad hoc networks. With the proposed framework, one can take a scheduling algorithm originally designed for infrastructure-based wireless networks and adapt it to multihop ad hoc networks. The framework includes a wireless link state estimation mechanism, a medium access control (MAC) protocols and a MAC load control mechanism. The proposed link state estimation mechanism accounts for the latest results of packet transmissions on each wireless link. To improve robustness and provide service isolation during channel errors, the MAC protocol should not make any packet retransmissions but only report the transmission result to the scheduler. We modify IEEE 802.11 to fulfill these requirements. The MAC load control mechanism improves the system robustness. With link state information and the modified IEEE 802.11 MAC, we use BGFS-EBA, an opportunistic scheduling algorithm for infrastructured wireless networks, as an example to demonstrate how such an algorithm is converted into its distributed version within the proposed framework. The simulation results show that our proposed method can provide robust outcome fairness in the presence of channel errors. ©2008 IEEE.published_or_final_versio

    Enhanced congestion control in TCP for solving hidden terminal problems in ad hoc wireless networks

    Get PDF
    This paper studies TCP performance over multihop wireless ad hoc networks that use the IEEE 802.11 protocol as the access method. The aim is to improve the TCP fairness while keeping the algorithm as simple as possible, since in previous works the algorithm designs were more complicated. We propose a simple approach to improve fairness based on scheduling (pacing) new packets according to the transmission interval formed from scaled round-trip time (RTT) and congestion window. Our simulation shows that, given specific scale parameter x, TCP achieves high fairness and throughput via improved spatial channel reuse, if it operates in a certain range of the transmission interval

    Available bandwidth-aware routing in urban vehicular ad-hoc networks

    Get PDF
    Vehicular communication for intelligent transportation systems will provide safety, comfort for passengers, and more efficient travels. This type of network has the advantage to warn drivers of any event occurred in the road ahead, such as traffic jam, accidents or bad weather. This way, the number of traffic accidents may decrease and many lives could be saved. Moreover, a better selection of non-congested roads will help to reduce pollution. Some other interesting services, such as downloading of multimedia services, would be possible and available through infrastructure along the roadside. Providing multimedia services over VANETs may require a QoS-aware routing protocol that often need to estimate available resources. In this paper, we study the performance, in realistic VANET urban scenarios, of an extension of AODV that includes the available bandwidth estimator ABE [1]. AODV-ABE establishes forwarding paths that satisfy the bandwidth required by the applications. The results, obtained on the NCTUns simulator [2], show that AODVABE could be used in urban-VANETs where vehicles’ speed is moderate.Peer ReviewedPostprint (author’s final draft

    A Joint Model for IEEE 802.15.4 Physical and Medium Access Control Layers

    Full text link
    Many studies have tried to evaluate wireless networks and especially the IEEE 802.15.4 standard. Hence, several papers have aimed to describe the functionalities of the physical (PHY) and medium access control (MAC) layers. They have highlighted some characteristics with experimental results and/or have attempted to reproduce them using theoretical models. In this paper, we use the first way to better understand IEEE 802.15.4 standard. Indeed, we provide a comprehensive model, able more faithfully to mimic the functionalities of this standard at the PHY and MAC layers. We propose a combination of two relevant models for the two layers. The PHY layer behavior is reproduced by a mathematical framework, which is based on radio and channel models, in order to quantify link reliability. On the other hand, the MAC layer is mimed by an enhanced Markov chain. The results show the pertinence of our approach compared to the model based on a Markov chain for IEEE 802.15.4 MAC layer. This contribution allows us fully and more precisely to estimate the network performance with different network sizes, as well as different metrics such as node reliability and delay. Our contribution enables us to catch possible failures at both layers.Comment: Published in the proceeding of the 7th International Wireless Communications and Mobile Computing Conference (IWCMC), Istanbul, Turkey, 201
    corecore