31 research outputs found

    Why did Fermat believe he had `a truly marvellous demonstration' of FLT?

    Get PDF
    Conventional wisdom dictates that proofs of mathematical propositions should be treated as necessary, and sufficient, for entailing `significant' mathematical truths only if the proofs are expressed in a---minimally, deemed consistent---formal mathematical theory in terms of: * Axioms/Axiom schemas * Rules of Deduction * Definitions * Lemmas * Theorems * Corollaries. Whilst Andrew Wiles' proof of Fermat's Last Theorem FLT, which appeals essentially to geometrical properties of real and complex numbers, can be treated as meeting this criteria, it nevertheless leaves two questions unanswered: (i) Why is x^n +y^n = z^n solvable only for n \u3c 3 if x, y, z, n are natural numbers? (ii) What technique might Fermat have used that led him to, even if only briefly, believe he had `a truly marvellous demonstration' of FLT? Prevailing post-Wiles wisdom---leaving (i) essentially unaddressed---dismisses Fermat's claim as a conjecture without a plausible proof of FLT. However, we posit that providing evidence-based answers to both queries is necessary not only for treating FLT as significant, but also for understanding why FLT can be treated as a true arithmetical proposition. We thus argue that proving a theorem formally from explicit, and implicit, premises/axioms using rules of deduction---as currently accepted---is a meaningless game, of little scientific value, in the absence of evidence that has already established---unambiguously---why the premises/axioms and rules of deduction can be treated, and categorically communicated, as pre-formal truths in Marcus Pantsar's sense. Consequently, only evidence-based, pre-formal, truth can entail formal provability; and the formal proof of any significant mathematical theorem cannot entail its pre-formal truth as evidence-based. It can only identify the explicit/implicit premises that have been used to evidence the, already established, pre-formal truth of a mathematical proposition. Hence visualising and understanding the evidence-based, pre-formal, truth of a mathematical proposition is the only raison d'etre for subsequently seeking a formal proof of the proposition within a formal mathematical language (whether first-order or second order set theory, arithmetic, geometry, etc.) By this yardstick Andrew Wiles' proof of FLT fails to meet the required, evidence-based, criteria for entailing a true arithmetical proposition. Moreover, we offer two scenarios as to why/how Fermat could have laconically concluded in his recorded marginal noting that FLT is a true arithmetical proposition---even though he either did not (or could not to his own satisfaction) succeed in cogently evidencing, and recording, why FLT can be treated as an evidence-based, pre-formal, arithmetical truth (presumably without appeal to properties of real and complex numbers). It is primarily such a putative, unrecorded, evidence-based reasoning underlying Fermat's laconic assertion which this investigation seeks to reconstruct; and to justify by appeal to a plausible resolution of some philosophical ambiguities concerning the relation between evidence-based, pre-formal, truth and formal provability

    DECENTRALIZED ROBUST NONLINEAR MODEL PREDICTIVE CONTROLLER FOR UNMANNED AERIAL SYSTEMS

    Get PDF
    The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of controls and state variables make the use of the linear control theory inadequate especially in the presence of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of internal and external perturbance. The Flight System developed in this work achieves the above performance by using: 1 A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by moving points; 2 A formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling and control degradation; 3 An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive forces in real-time; and 4 A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement additive perturbations, such as noise and biases. These elements have been integrated and tested in simulation and with previously stored flight test data and shown to be feasible

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems

    All-Electron Ground-State and Time-Dependent Density Functional Theory: Fast Algorithms and Better Approximations

    Full text link
    Density functional theory (DFT), in its ground-state as well as time-dependent variant, have enjoyed incredible success in predicting a range of physical, chemical and materials properties. Although a formally exact theory, in practice DFT entails two key approximations---(a) the pseudopotential approximation, and (b) the exchange-correlation approximation. The pseudopotential approximation models the effect of sharply varying core-electrons along with the singular nuclear potential into a smooth effective potential called the pseudopotential, thereby mitigating the need for a highly refined spatial discretization. The exchange-correlation approximation, on the other hand, models the quantum many-electron interactions into an effective mean-field of the electron density (rho(mathbfr)rho(mathbf{r})), and, remains an unavoidable approximation in DFT. The overarching goal of this dissertation work is ---(a) to develop efficient numerical methods for all-electron DFT and TDDFT calculations which can dispense with the pseudopotentials without incurring huge computational cost, and (b) to provide key insights into the nature of the exchange-correlation potential that can later constitute a route to systematic improvement of the exchange-correlation approximation through machine learning algorithms (i.e., which can learn these functionals using training data from wavefunction-based methods). This, in turn, involves---(a) obtaining training data mapping rho(mathbfr)rho(mathbf{r}) to vtextxc(mathbfr)v_text{xc}(mathbf{r}), and (b) using machine learning on the training data (rho(mathbfr)Leftrightarrowvtextxc(mathbfr)rho(mathbf{r}) Leftrightarrow v_text{xc}(mathbf{r}) maps) to obtain the functional form of vtextxc[rho(mathbfr)]v_text{xc}[rho(mathbf{r})], with conformity to the known exact conditions. The research efforts, in this thesis, constitute significant steps towards both the aforementioned goals. To begin with, we have developed a computationally efficient approach to perform large-scale all-electron DFT calculations by augmenting the classical finite element basis with compactly supported atom-centered numerical basis functions. We term the resultant basis as enriched finite element basis. Our numerical investigations show an extraordinary 5030050-300-fold and 585-8-fold speedup afforded by the enriched finite element basis over classical finite element and Gaussian basis, respectively. In the case of TDDFT, we have developed an efficient emph{a priori} spatio-temporal discretization scheme guided by rigorous error estimates based on the time-dependent Kohn-Sham equations. Our numerical studies show a staggering 100100-fold speedup afforded by higher-order finite elements over linear finite elements. Furthermore, for pseudopotential calculations, our approach achieve a 3603-60-fold speedup over finite difference based approaches. The aforementioned emph{a priori} spatio-temporal discretization strategy forms an important foundation for extending the key ideas of the enriched finite element basis to TDDFT. Lastly, as a first step towards the goal of machine-learned exchange-correlation functionals, we have addressed the challenge of obtaining the training data mapping rho(mathbfr)rho(mathbf{r}) to vtextxc(mathbfr)v_text{xc}(mathbf{r}). This constitute generating accurate ground-state density, rho(mathbfr)rho(mathbf{r}), from wavefunction-based calculations, and then inverting the Kohn-Sham eigenvalue problem to obtain the vtextxc(mathbfr)v_text{xc}(mathbf{r}) that yields the same rho(mathbfr)rho(mathbf{r}). This is otherwise known as the emph{inverse} DFT problem. Heretofore, this remained an open challenge owing lack of accurate and systematically convergent numerical techniques. To this end, we have provided a robust and systematically convergent scheme to solve the inverse DFT problem, employing finite element basis. We obtained the exact vtextxcv_text{xc} corresponding to ground-state densities obtained from configuration interaction calculations, to unprecedented accuracy, for both weak and strongly correlated polyatomic systems ranging up to 40 electrons. This ability to evaluate exact vtextxcv_text{xc}'s from ground-state densities provides a powerful tool in the future testing and development of approximate exchange-correlation functionals.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153371/1/bikash_1.pd

    String Theory on Calabi-Yau Manifolds: Topics in Geometry and Physics

    Get PDF
    We study aspects of the geometry and physics of type II string theory compactification on Calabi-Yau manifolds. The emphasis is on non-perturbative phenomena which arise when the compactification manifold develops singularities, and the implications on quantum geometry of the the Calabi-Yau spaces. We use both the methods of low energy supergravity and the complementary approach via D brane probes. Applications to the study of four-dimensional N = 1 and N = 2 supersymmetric gauge theories are considered as well

    Work Life 2000 Yearbook 2: 2000

    Get PDF
    This volume reported the proceedings of a series of international research workshops in 1999, funded by the Swedish National Institute for Working Life, in preparation for the Swedish Presidency of the European Union in 2001

    ACP : algebra of communicating processes : workshop : proceedings, 2nd, Eindhoven, The Netherlands, 1995

    Get PDF

    ACP : algebra of communicating processes : workshop : proceedings, 2nd, Eindhoven, The Netherlands, 1995

    Get PDF

    Number Theory, Analysis and Geometry: In Memory of Serge Lang

    Get PDF
    Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang’s vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas, namely number theory, analysis and geometry, representing Lang’s own breadth of interests. A special introduction by John Tate includes a brief and engaging account of Serge Lang’s life
    corecore