134,800 research outputs found

    Balanced Boolean Functions with (Almost) Optimal Algebraic Immunity and Very High Nonlinearity

    Get PDF
    In this paper, we present a class of 2k2k-variable balanced Boolean functions and a class of 2k2k-variable 11-resilient Boolean functions for an integer k2k\ge 2, which both have the maximal algebraic degree and very high nonlinearity. Based on a newly proposed conjecture by Tu and Deng, it is shown that the proposed balanced Boolean functions have optimal algebraic immunity and the 11-resilient Boolean functions have almost optimal algebraic immunity. Among all the known results of balanced Boolean functions and 11-resilient Boolean functions, our new functions possess the highest nonlinearity. Based on the fact that the conjecture has been verified for all k29k\le 29 by computer, at least we have constructed a class of balanced Boolean functions and a class of 11-resilient Boolean functions with the even number of variables 58\le 58, which are cryptographically optimal or almost optimal in terms of balancedness, algebraic degree, nonlinearity, and algebraic immunity

    Bloom Filters in Adversarial Environments

    Get PDF
    Many efficient data structures use randomness, allowing them to improve upon deterministic ones. Usually, their efficiency and correctness are analyzed using probabilistic tools under the assumption that the inputs and queries are independent of the internal randomness of the data structure. In this work, we consider data structures in a more robust model, which we call the adversarial model. Roughly speaking, this model allows an adversary to choose inputs and queries adaptively according to previous responses. Specifically, we consider a data structure known as "Bloom filter" and prove a tight connection between Bloom filters in this model and cryptography. A Bloom filter represents a set SS of elements approximately, by using fewer bits than a precise representation. The price for succinctness is allowing some errors: for any xSx \in S it should always answer `Yes', and for any xSx \notin S it should answer `Yes' only with small probability. In the adversarial model, we consider both efficient adversaries (that run in polynomial time) and computationally unbounded adversaries that are only bounded in the number of queries they can make. For computationally bounded adversaries, we show that non-trivial (memory-wise) Bloom filters exist if and only if one-way functions exist. For unbounded adversaries we show that there exists a Bloom filter for sets of size nn and error ε\varepsilon, that is secure against tt queries and uses only O(nlog1ε+t)O(n \log{\frac{1}{\varepsilon}}+t) bits of memory. In comparison, nlog1εn\log{\frac{1}{\varepsilon}} is the best possible under a non-adaptive adversary

    On Extractors and Exposure-Resilient Functions for Sublogarithmic Entropy

    Full text link
    We study deterministic extractors for oblivious bit-fixing sources (a.k.a. resilient functions) and exposure-resilient functions with small min-entropy: of the function's n input bits, k << n bits are uniformly random and unknown to the adversary. We simplify and improve an explicit construction of extractors for bit-fixing sources with sublogarithmic k due to Kamp and Zuckerman (SICOMP 2006), achieving error exponentially small in k rather than polynomially small in k. Our main result is that when k is sublogarithmic in n, the short output length of this construction (O(log k) output bits) is optimal for extractors computable by a large class of space-bounded streaming algorithms. Next, we show that a random function is an extractor for oblivious bit-fixing sources with high probability if and only if k is superlogarithmic in n, suggesting that our main result may apply more generally. In contrast, we show that a random function is a static (resp. adaptive) exposure-resilient function with high probability even if k is as small as a constant (resp. log log n). No explicit exposure-resilient functions achieving these parameters are known

    Constructions of Almost Optimal Resilient Boolean Functions on Large Even Number of Variables

    Full text link
    In this paper, a technique on constructing nonlinear resilient Boolean functions is described. By using several sets of disjoint spectra functions on a small number of variables, an almost optimal resilient function on a large even number of variables can be constructed. It is shown that given any mm, one can construct infinitely many nn-variable (nn even), mm-resilient functions with nonlinearity >2n12n/2>2^{n-1}-2^{n/2}. A large class of highly nonlinear resilient functions which were not known are obtained. Then one method to optimize the degree of the constructed functions is proposed. Last, an improved version of the main construction is given.Comment: 14 pages, 2 table

    Two-Source Condensers with Low Error and Small Entropy Gap via Entropy-Resilient Functions

    Get PDF
    In their seminal work, Chattopadhyay and Zuckerman (STOC\u2716) constructed a two-source extractor with error epsilon for n-bit sources having min-entropy {polylog}(n/epsilon). Unfortunately, the construction\u27s running-time is {poly}(n/epsilon), which means that with polynomial-time constructions, only polynomially-small errors are possible. Our main result is a {poly}(n,log(1/epsilon))-time computable two-source condenser. For any k >= {polylog}(n/epsilon), our condenser transforms two independent (n,k)-sources to a distribution over m = k-O(log(1/epsilon)) bits that is epsilon-close to having min-entropy m - o(log(1/epsilon)). Hence, achieving entropy gap of o(log(1/epsilon)). The bottleneck for obtaining low error in recent constructions of two-source extractors lies in the use of resilient functions. Informally, this is a function that receives input bits from r players with the property that the function\u27s output has small bias even if a bounded number of corrupted players feed adversarial inputs after seeing the inputs of the other players. The drawback of using resilient functions is that the error cannot be smaller than ln r/r. This, in return, forces the running time of the construction to be polynomial in 1/epsilon. A key component in our construction is a variant of resilient functions which we call entropy-resilient functions. This variant can be seen as playing the above game for several rounds, each round outputting one bit. The goal of the corrupted players is to reduce, with as high probability as they can, the min-entropy accumulated throughout the rounds. We show that while the bias decreases only polynomially with the number of players in a one-round game, their success probability decreases exponentially in the entropy gap they are attempting to incur in a repeated game

    Approximate resilience, monotonicity, and the complexity of agnostic learning

    Full text link
    A function ff is dd-resilient if all its Fourier coefficients of degree at most dd are zero, i.e., ff is uncorrelated with all low-degree parities. We study the notion of approximate\mathit{approximate} resilience\mathit{resilience} of Boolean functions, where we say that ff is α\alpha-approximately dd-resilient if ff is α\alpha-close to a [1,1][-1,1]-valued dd-resilient function in 1\ell_1 distance. We show that approximate resilience essentially characterizes the complexity of agnostic learning of a concept class CC over the uniform distribution. Roughly speaking, if all functions in a class CC are far from being dd-resilient then CC can be learned agnostically in time nO(d)n^{O(d)} and conversely, if CC contains a function close to being dd-resilient then agnostic learning of CC in the statistical query (SQ) framework of Kearns has complexity of at least nΩ(d)n^{\Omega(d)}. This characterization is based on the duality between 1\ell_1 approximation by degree-dd polynomials and approximate dd-resilience that we establish. In particular, it implies that 1\ell_1 approximation by low-degree polynomials, known to be sufficient for agnostic learning over product distributions, is in fact necessary. Focusing on monotone Boolean functions, we exhibit the existence of near-optimal α\alpha-approximately Ω~(αn)\widetilde{\Omega}(\alpha\sqrt{n})-resilient monotone functions for all α>0\alpha>0. Prior to our work, it was conceivable even that every monotone function is Ω(1)\Omega(1)-far from any 11-resilient function. Furthermore, we construct simple, explicit monotone functions based on Tribes{\sf Tribes} and CycleRun{\sf CycleRun} that are close to highly resilient functions. Our constructions are based on a fairly general resilience analysis and amplification. These structural results, together with the characterization, imply nearly optimal lower bounds for agnostic learning of monotone juntas
    corecore