3,819 research outputs found

    Sub-band common spatial pattern (SBCSP) for brain-computer interface

    Get PDF
    Brain-computer interface (BCI) is a system to translate humans thoughts into commands. For electroencephalography (EEG) based BCI, motor imagery is considered as one of the most effective ways. Different imagery activities can be classified based on the changes in mu and/or beta rhythms and their spatial distributions. However, the change in these rhythmic patterns varies from one subject to another. This causes an unavoidable time-consuming fine-tuning process in building a BCI for every subject. To address this issue, we propose a new method called sub-band common spatial pattern (SBCSP) to solve the problem. First, we decompose the EEG signals into sub-bands using a filter bank. Subsequently, we apply a discriminative analysis to extract SBCSP features. The SBCSP features are then fed into linear discriminant analyzers (LDA) to obtain scores which reflect the classification capability of each frequency band. Finally, the scores are fused to make decision. We evaluate two fusion methods: recursive band elimination (RBE) and meta-classifier (MC). We assess our approaches on a standard database from BCI Competition III. We also compare our method with two other approaches that address the same issue. The results show that our method outperforms the other two approaches and achieves similar result as compared to the best one in the literature which was obtained by a time-consuming fine-tuning process

    An Approach of One-vs-Rest Filter Bank Common Spatial Pattern and Spiking Neural Networks for Multiple Motor Imagery Decoding

    Get PDF
    Motor imagery (MI) is a typical BCI paradigm and has been widely applied into many aspects (e.g. brain-driven wheelchair and motor function rehabilitation training). Although significant achievements have been achieved, multiple motor imagery decoding is still unsatisfactory. To deal with this challenging issue, firstly, a segment of electroencephalogram was extracted and preprocessed. Secondly, we applied a filter bank common spatial pattern (FBCSP) with one-vs-rest (OVR) strategy to extract the spatio-temporal-frequency features of multiple MI. Thirdly, the F-score was employed to optimise and select these features. Finally, the optimized features were fed to the spiking neural networks (SNN) for classification. Evaluation was conducted on two public multiple MI datasets (Dataset IIIa of the BCI competition III and Dataset IIa of the BCI competition IV). Experimental results showed that the average accuracy of the proposed framework reached up to 90.09% (kappa: 0.868) and 81.33% (kappa: 0.751) on the two public datasets, respectively. The achieved performance (accuracy and kappa) was comparable to the best one of the compared methods. This study demonstrated that the proposed method can be used as an alternative approach for multiple MI decoding and it provided a potential solution for online multiple MI detection

    Diverse Feature Blend Based on Filter-Bank Common Spatial Pattern and Brain Functional Connectivity for Multiple Motor Imagery Detection

    Get PDF
    Motor imagery (MI) based brain-computer interface (BCI) is a research hotspot and has attracted lots of attention. Within this research topic, multiple MI classification is a challenge due to the difficulties caused by time-varying spatial features across different individuals. To deal with this challenge, we tried to fuse brain functional connectivity (BFC) and one-versus-the-rest filter-bank common spatial pattern (OVR-FBCSP) to improve the robustness of classification. The BFC features were extracted by phase locking value (PLV), representing the brain inter-regional interactions relevant to the MI, whilst the OVR-FBCSP is used to extract the spatial-frequency features related to the MI. These diverse features were then fed into a multi-kernel relevance vector machine (MK-RVM). The dataset with three motor imagery tasks (left hand MI, right hand MI, and feet MI) was used to assess the proposed method. Experimental results not only showed that the cascade structure of diverse feature fusion and MK-RVM achieved satisfactory classification performance (average accuracy: 83.81%, average kappa: 0.76), but also demonstrated that BFC plays a supplementary role in the MI classification. Moreover, the proposed method has a potential to be integrated into multiple MI online detection owing to the advantage of strong time-efficiency of RVM

    Evolutionary Algorithms with Linkage Information for Feature Selection in Brain Computer Interfaces

    Get PDF
    Abstract Brain Computer Interfaces are an essential technology for the advancement of prosthetic limbs, but current signal acquisition methods are hindered by a number of factors, not least, noise. In this context, Feature Selection is required to choose the important signal features and improve classifier accuracy. Evolutionary algorithms have proven to outperform filtering methods (in terms of accuracy) for Feature Selection. This paper applies a single-point heuristic search method, Iterated Local Search (ILS), and compares it to a genetic algorithm (GA) and a memetic algorithm (MA). It then further attempts to utilise Linkage between features to guide search operators in the algorithms stated. The GA was found to outperform ILS. Counter-intuitively, linkage-guided algorithms resulted in higher classification error rates than their unguided alternatives. Explanations for this are explored

    A combined EEG motor and speech imagery paradigm with automated successive halving for customizable command selection

    Get PDF
    The classification performance of endogenous electroencephalogram (EEG) brain-computer interfaces (BCIs) can be improved by hybridizing the paradigm through the use of commands from multiple paradigms. Hybrid paradigms using motor imagery (MI) and speech imagery (SI) have shown promise, but there is a lack of research into: i) their effectiveness when compared to pure MI and SI for multiclass problems, and ii) automated command selection. This study investigates multiclass MI and SI hybrid paradigms and compares the results to those obtained using pure MI and SI. Performance was assessed using F1 score and accuracy. The performances of all possible hybrid paradigm designs were assessed. The analysis indicated that hybridization does not always guarantee improved performance when compared to the pure paradigms, and there is inter-subject variation in the best paradigm. This confirmed the need for automated subject-specific hybrid paradigm designs. An automated hybrid paradigm selection technique using successive halving (SH) for expedited computational times was developed and results were compared to those obtained using a standard grid search. The SH approach resulted in an improvement in F1 score of 21.09% and 36.86% compared to MI and SI and led to a reduction in computational times of 82.80% compared to grid search.peer-reviewe

    Development of an Electroencephalography-Based Brain-Computer Interface Supporting Two-Dimensional Cursor Control

    Get PDF
    This study aims to explore whether human intentions to move or cease to move right and left hands can be decoded from spatiotemporal features in non-invasive electroencephalography (EEG) in order to control a discrete two-dimensional cursor movement for a potential multi-dimensional Brain-Computer interface (BCI). Five naïve subjects performed either sustaining or stopping a motor task with time locking to a predefined time window by using motor execution with physical movement or motor imagery. Spatial filtering, temporal filtering, feature selection and classification methods were explored. The performance of the proposed BCI was evaluated by both offline classification and online two-dimensional cursor control. Event-related desynchronization (ERD) and post-movement event-related synchronization (ERS) were observed on the contralateral hemisphere to the hand moved for both motor execution and motor imagery. Feature analysis showed that EEG beta band activity in the contralateral hemisphere over the motor cortex provided the best detection of either sustained or ceased movement of the right or left hand. The offline classification of four motor tasks (sustain or cease to move right or left hand) provided 10-fold cross-validation accuracy as high as 88% for motor execution and 73% for motor imagery. The subjects participating in experiments with physical movement were able to complete the online game with motor execution at the average accuracy of 85.5±4.65%; Subjects participating in motor imagery study also completed the game successfully. The proposed BCI provides a new practical multi-dimensional method by noninvasive EEG signal associated with human natural behavior, which does not need long-term training
    corecore