20 research outputs found

    Restricted Strip Covering and the Sensor Cover Problem

    Full text link
    Given a set of objects with durations (jobs) that cover a base region, can we schedule the jobs to maximize the duration the original region remains covered? We call this problem the sensor cover problem. This problem arises in the context of covering a region with sensors. For example, suppose you wish to monitor activity along a fence by sensors placed at various fixed locations. Each sensor has a range and limited battery life. The problem is to schedule when to turn on the sensors so that the fence is fully monitored for as long as possible. This one dimensional problem involves intervals on the real line. Associating a duration to each yields a set of rectangles in space and time, each specified by a pair of fixed horizontal endpoints and a height. The objective is to assign a position to each rectangle to maximize the height at which the spanning interval is fully covered. We call this one dimensional problem restricted strip covering. If we replace the covering constraint by a packing constraint, the problem is identical to dynamic storage allocation, a scheduling problem that is a restricted case of the strip packing problem. We show that the restricted strip covering problem is NP-hard and present an O(log log n)-approximation algorithm. We present better approximations or exact algorithms for some special cases. For the uniform-duration case of restricted strip covering we give a polynomial-time, exact algorithm but prove that the uniform-duration case for higher-dimensional regions is NP-hard. Finally, we consider regions that are arbitrary sets, and we present an O(log n)-approximation algorithm.Comment: 14 pages, 6 figure

    Polychromatic Coloring for Half-Planes

    Full text link
    We prove that for every integer kk, every finite set of points in the plane can be kk-colored so that every half-plane that contains at least 2k12k-1 points, also contains at least one point from every color class. We also show that the bound 2k12k-1 is best possible. This improves the best previously known lower and upper bounds of 43k\frac{4}{3}k and 4k14k-1 respectively. We also show that every finite set of half-planes can be kk colored so that if a point pp belongs to a subset HpH_p of at least 3k23k-2 of the half-planes then HpH_p contains a half-plane from every color class. This improves the best previously known upper bound of 8k38k-3. Another corollary of our first result is a new proof of the existence of small size \eps-nets for points in the plane with respect to half-planes.Comment: 11 pages, 5 figure

    Colorful Strips

    Full text link
    Given a planar point set and an integer kk, we wish to color the points with kk colors so that any axis-aligned strip containing enough points contains all colors. The goal is to bound the necessary size of such a strip, as a function of kk. We show that if the strip size is at least 2k12k{-}1, such a coloring can always be found. We prove that the size of the strip is also bounded in any fixed number of dimensions. In contrast to the planar case, we show that deciding whether a 3D point set can be 2-colored so that any strip containing at least three points contains both colors is NP-complete. We also consider the problem of coloring a given set of axis-aligned strips, so that any sufficiently covered point in the plane is covered by kk colors. We show that in dd dimensions the required coverage is at most d(k1)+1d(k{-}1)+1. Lower bounds are given for the two problems. This complements recent impossibility results on decomposition of strip coverings with arbitrary orientations. Finally, we study a variant where strips are replaced by wedges

    Set It and Forget It: Approximating the Set Once Strip Cover Problem

    Full text link
    We consider the Set Once Strip Cover problem, in which n wireless sensors are deployed over a one-dimensional region. Each sensor has a fixed battery that drains in inverse proportion to a radius that can be set just once, but activated at any time. The problem is to find an assignment of radii and activation times that maximizes the length of time during which the entire region is covered. We show that this problem is NP-hard. Second, we show that RoundRobin, the algorithm in which the sensors simply take turns covering the entire region, has a tight approximation guarantee of 3/2 in both Set Once Strip Cover and the more general Strip Cover problem, in which each radius may be set finitely-many times. Moreover, we show that the more general class of duty cycle algorithms, in which groups of sensors take turns covering the entire region, can do no better. Finally, we give an optimal O(n^2 log n)-time algorithm for the related Set Radius Strip Cover problem, in which all sensors must be activated immediately.Comment: briefly announced at SPAA 201

    Conflict-Free Coloring Made Stronger

    Full text link
    In FOCS 2002, Even et al. showed that any set of nn discs in the plane can be Conflict-Free colored with a total of at most O(logn)O(\log n) colors. That is, it can be colored with O(logn)O(\log n) colors such that for any (covered) point pp there is some disc whose color is distinct from all other colors of discs containing pp. They also showed that this bound is asymptotically tight. In this paper we prove the following stronger results: \begin{enumerate} \item [(i)] Any set of nn discs in the plane can be colored with a total of at most O(klogn)O(k \log n) colors such that (a) for any point pp that is covered by at least kk discs, there are at least kk distinct discs each of which is colored by a color distinct from all other discs containing pp and (b) for any point pp covered by at most kk discs, all discs covering pp are colored distinctively. We call such a coloring a {\em kk-Strong Conflict-Free} coloring. We extend this result to pseudo-discs and arbitrary regions with linear union-complexity. \item [(ii)] More generally, for families of nn simple closed Jordan regions with union-complexity bounded by O(n1+α)O(n^{1+\alpha}), we prove that there exists a kk-Strong Conflict-Free coloring with at most O(knα)O(k n^\alpha) colors. \item [(iii)] We prove that any set of nn axis-parallel rectangles can be kk-Strong Conflict-Free colored with at most O(klog2n)O(k \log^2 n) colors. \item [(iv)] We provide a general framework for kk-Strong Conflict-Free coloring arbitrary hypergraphs. This framework relates the notion of kk-Strong Conflict-Free coloring and the recently studied notion of kk-colorful coloring. \end{enumerate} All of our proofs are constructive. That is, there exist polynomial time algorithms for computing such colorings

    Octants are cover-decomposable into many coverings

    Get PDF
    We prove that octants are cover-decomposable into multiple coverings, i.e., for any k there is an m(k)m(k) such that any m(k)m(k)-fold covering of any subset of the space with a finite number of translates of a given octant can be decomposed into k coverings. As a corollary, we obtain that any m(k)m(k)-fold covering of any subset of the plane with a finite number of homothetic copies of a given triangle can be decomposed into k coverings. Previously only some weaker bounds were known for related problems [20]

    Unsplittable coverings in the plane

    Get PDF
    A system of sets forms an {\em mm-fold covering} of a set XX if every point of XX belongs to at least mm of its members. A 11-fold covering is called a {\em covering}. The problem of splitting multiple coverings into several coverings was motivated by classical density estimates for {\em sphere packings} as well as by the {\em planar sensor cover problem}. It has been the prevailing conjecture for 35 years (settled in many special cases) that for every plane convex body CC, there exists a constant m=m(C)m=m(C) such that every mm-fold covering of the plane with translates of CC splits into 22 coverings. In the present paper, it is proved that this conjecture is false for the unit disk. The proof can be generalized to construct, for every mm, an unsplittable mm-fold covering of the plane with translates of any open convex body CC which has a smooth boundary with everywhere {\em positive curvature}. Somewhat surprisingly, {\em unbounded} open convex sets CC do not misbehave, they satisfy the conjecture: every 33-fold covering of any region of the plane by translates of such a set CC splits into two coverings. To establish this result, we prove a general coloring theorem for hypergraphs of a special type: {\em shift-chains}. We also show that there is a constant c>0c>0 such that, for any positive integer mm, every mm-fold covering of a region with unit disks splits into two coverings, provided that every point is covered by {\em at most} c2m/2c2^{m/2} sets

    Average Case Network Lifetime on an Interval with Adjustable Sensing Ranges

    Get PDF
    Given n sensors on an interval, each of which is equipped with an adjustable sensing radius and a unit battery charge that drains in inverse linear proportion to its radius, what schedule will maximize the lifetime of a network that covers the entire interval? Trivially, any reasonable algorithm is at least a 2-approximation for this Sensor Strip Cover problem, so we focus on developing an efficient algorithm that maximizes the expected network lifetime under a random uniform model of sensor distribution. We demonstrate one such algorithm that achieves an expected network lifetime within 12 % of the theoretical maximum. Most of the algorithms that we consider come from a particular family of RoundRobin coverage, in which sensors take turns covering predefined areas until their battery runs out
    corecore