163 research outputs found

    Reconstruction from Periodic Nonlinearities, With Applications to HDR Imaging

    Full text link
    We consider the problem of reconstructing signals and images from periodic nonlinearities. For such problems, we design a measurement scheme that supports efficient reconstruction; moreover, our method can be adapted to extend to compressive sensing-based signal and image acquisition systems. Our techniques can be potentially useful for reducing the measurement complexity of high dynamic range (HDR) imaging systems, with little loss in reconstruction quality. Several numerical experiments on real data demonstrate the effectiveness of our approach

    Restricted Isometries for Partial Random Circulant Matrices

    Get PDF
    In the theory of compressed sensing, restricted isometry analysis has become a standard tool for studying how efficiently a measurement matrix acquires information about sparse and compressible signals. Many recovery algorithms are known to succeed when the restricted isometry constants of the sampling matrix are small. Many potential applications of compressed sensing involve a data-acquisition process that proceeds by convolution with a random pulse followed by (nonrandom) subsampling. At present, the theoretical analysis of this measurement technique is lacking. This paper demonstrates that the ssth order restricted isometry constant is small when the number mm of samples satisfies m≳(slog⁡n)3/2m \gtrsim (s \log n)^{3/2}, where nn is the length of the pulse. This bound improves on previous estimates, which exhibit quadratic scaling

    Mixed Operators in Compressed Sensing

    Get PDF
    Applications of compressed sensing motivate the possibility of using different operators to encode and decode a signal of interest. Since it is clear that the operators cannot be too different, we can view the discrepancy between the two matrices as a perturbation. The stability of L1-minimization and greedy algorithms to recover the signal in the presence of additive noise is by now well-known. Recently however, work has been done to analyze these methods with noise in the measurement matrix, which generates a multiplicative noise term. This new framework of generalized perturbations (i.e., both additive and multiplicative noise) extends the prior work on stable signal recovery from incomplete and inaccurate measurements of Candes, Romberg and Tao using Basis Pursuit (BP), and of Needell and Tropp using Compressive Sampling Matching Pursuit (CoSaMP). We show, under reasonable assumptions, that the stability of the reconstructed signal by both BP and CoSaMP is limited by the noise level in the observation. Our analysis extends easily to arbitrary greedy methods.Comment: CISS 2010 (44th Annual Conference on Information Sciences and Systems

    Compressive Source Separation: Theory and Methods for Hyperspectral Imaging

    Get PDF
    With the development of numbers of high resolution data acquisition systems and the global requirement to lower the energy consumption, the development of efficient sensing techniques becomes critical. Recently, Compressed Sampling (CS) techniques, which exploit the sparsity of signals, have allowed to reconstruct signal and images with less measurements than the traditional Nyquist sensing approach. However, multichannel signals like Hyperspectral images (HSI) have additional structures, like inter-channel correlations, that are not taken into account in the classical CS scheme. In this paper we exploit the linear mixture of sources model, that is the assumption that the multichannel signal is composed of a linear combination of sources, each of them having its own spectral signature, and propose new sampling schemes exploiting this model to considerably decrease the number of measurements needed for the acquisition and source separation. Moreover, we give theoretical lower bounds on the number of measurements required to perform reconstruction of both the multichannel signal and its sources. We also proposed optimization algorithms and extensive experimentation on our target application which is HSI, and show that our approach recovers HSI with far less measurements and computational effort than traditional CS approaches.Comment: 32 page

    Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects.

    Get PDF
    We demonstrate the use of a compressive sampling algorithm for on-chip fluorescent imaging of sparse objects over an ultra-large field-of-view (>8 cm(2)) without the need for any lenses or mechanical scanning. In this lensfree imaging technique, fluorescent samples placed on a chip are excited through a prism interface, where the pump light is filtered out by total internal reflection after exciting the entire sample volume. The emitted fluorescent light from the specimen is collected through an on-chip fiber-optic faceplate and is delivered to a wide field-of-view opto-electronic sensor array for lensless recording of fluorescent spots corresponding to the samples. A compressive sampling based optimization algorithm is then used to rapidly reconstruct the sparse distribution of fluorescent sources to achieve approximately 10 microm spatial resolution over the entire active region of the sensor-array, i.e., over an imaging field-of-view of >8 cm(2). Such a wide-field lensless fluorescent imaging platform could especially be significant for high-throughput imaging cytometry, rare cell analysis, as well as for micro-array research
    • 

    corecore