130 research outputs found

    Restricted Additive Schwarz Preconditioners with Harmonic Overlap for Symmetric Positive Definite Linear Systems

    Get PDF
    A restricted additive Schwarz (RAS) preconditioning technique was introduced recently for solving general nonsymmetric sparse linear systems. In this paper, we provide one-level and two-level extensions of RAS for symmetric positive definite problems using the so-called harmonic overlaps (RASHO). Both RAS and RASHO outperform their counterparts of the classical additive Schwarz variants (AS). The design of RASHO is based on a much deeper understanding of the behavior of Schwarz-type methods in overlapping subregions and in the construction of the overlap. In RASHO, the overlap is obtained by extending the nonoverlapping subdomains only in the directions that do not cut the boundaries of other subdomains, and all functions are made harmonic in the overlapping regions. As a result, the subdomain problems in RASHO are smaller than those of AS, and the communication cost is also smaller when implemented on distributed memory computers, since the right-hand sides of discrete harmonic systems are always zero and therefore do not need to be communicated. We also show numerically that RASHO-preconditioned CG takes fewer iterations than the corresponding AS-preconditioned CG. A nearly optimal theory is included for the convergence of RASHO-preconditioned CG for solving elliptic problems discretized with a finite element method

    Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps

    Get PDF
    Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We prove a general theoretical result that rigorously establishes the robustness of the new coarse space and give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this property

    Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption

    Get PDF
    In this paper we give new results on domain decomposition preconditioners for GMRES when computing piecewise-linear finite-element approximations of the Helmholtz equation Δu(k2+iε)u=f-\Delta u - (k^2+ {\rm i} \varepsilon)u = f, with absorption parameter εR\varepsilon \in \mathbb{R}. Multigrid approximations of this equation with ε0\varepsilon \not= 0 are commonly used as preconditioners for the pure Helmholtz case (ε=0\varepsilon = 0). However a rigorous theory for such (so-called "shifted Laplace") preconditioners, either for the pure Helmholtz equation, or even the absorptive equation (ε0\varepsilon \not=0), is still missing. We present a new theory for the absorptive equation that provides rates of convergence for (left- or right-) preconditioned GMRES, via estimates of the norm and field of values of the preconditioned matrix. This theory uses a kk- and ε\varepsilon-explicit coercivity result for the underlying sesquilinear form and shows, for example, that if εk2|\varepsilon|\sim k^2, then classical overlapping additive Schwarz will perform optimally for the absorptive problem, provided the subdomain and coarse mesh diameters are carefully chosen. Extensive numerical experiments are given that support the theoretical results. The theory for the absorptive case gives insight into how its domain decomposition approximations perform as preconditioners for the pure Helmholtz case ε=0\varepsilon = 0. At the end of the paper we propose a (scalable) multilevel preconditioner for the pure Helmholtz problem that has an empirical computation time complexity of about O(n4/3)\mathcal{O}(n^{4/3}) for solving finite element systems of size n=O(k3)n=\mathcal{O}(k^3), where we have chosen the mesh diameter hk3/2h \sim k^{-3/2} to avoid the pollution effect. Experiments on problems with hk1h\sim k^{-1}, i.e. a fixed number of grid points per wavelength, are also given

    A class of alternate strip-based domain decomposition methods for elliptic partial differential Equations

    Get PDF
    The domain decomposition strategies proposed in this thesis are efficient preconditioning techniques with good parallelism properties for the discrete systems which arise from the finite element approximation of symmetric elliptic boundary value problems in two and three-dimensional Euclidean spaces. For two-dimensional problems, two new domain decomposition preconditioners are introduced, such that the condition number of the preconditioned system is bounded independently of the size of the subdomains and the finite element mesh size. First, the alternate strip-based (ASB2) preconditioner is based on the partitioning of the domain into a finite number of nonoverlapping strips without interior vertices. This preconditioner is obtained from direct solvers inside the strips and a direct fast Poisson solver on the edges between strips, and contains two stages. At each stage the strips change such that the edges between strips at one stage are perpendicular on the edges between strips at the other stage. Next, the alternate strip-based substructuring (ASBS2) preconditioner is a Schur complement solver for the case of a decomposition with multiple nonoverlapping subdomains and interior vertices. The subdomains are assembled into nonoverlapping strips such that the vertices of the strips are on the boundary of the given domain, the edges between strips align with the edges of the subdomains and their union contains all of the interior vertices of the initial decomposition. This preconditioner is produced from direct fast Poisson solvers on the edges between strips and the edges between subdo- mains inside strips, and also contains two stages such that the edges between strips at one stage are perpendicular on the edges between strips at the other stage. The extension to three-dimensional problems is via solvers on slices of the domain
    corecore