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RESTRICTED ADDITIVE SCHWARZ PRECONDITIONERS WITH
HARMONIC OVERLAP FOR SYMMETRIC POSITIVE DEFINITE
LINEAR SYSTEMS*

XIAO-CHUAN CAIf, MAKSYMILIAN DRYJA!, AND MARCUS SARKISS

Abstract. A restricted additive Schwarz (RAS) preconditioning technique was introduced re-
cently for solving general nonsymmetric sparse linear systems. In this paper, we provide one-level
and two-level extensions of RAS for symmetric positive definite problems using the so-called har-
monic overlaps (RASHO). Both RAS and RASHO outperform their counterparts of the classical
additive Schwarz variants (AS). The design of RASHO is based on a much deeper understanding
of the behavior of Schwarz-type methods in overlapping subregions and in the construction of the
overlap. In RASHO, the overlap is obtained by extending the nonoverlapping subdomains only in
the directions that do not cut the boundaries of other subdomains, and all functions are made har-
monic in the overlapping regions. As a result, the subdomain problems in RASHO are smaller than
those of AS, and the communication cost is also smaller when implemented on distributed memory
computers, since the right-hand sides of discrete harmonic systems are always zero and therefore
do not need to be communicated. We also show numerically that RASHO-preconditioned CG takes
fewer iterations than the corresponding AS-preconditioned CG. A nearly optimal theory is included
for the convergence of RASHO-preconditioned CG for solving elliptic problems discretized with a
finite element method.

Key words. restricted additive Schwarz preconditioner, two-level domain decomposition, har-
monic overlap, elliptic equations, finite elements
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1. Introduction. A restricted additive Schwarz (RAS) preconditioning tech-
nique was introduced recently for solving general nonsymmetric sparse linear systems
(1, 5, 7, 14, 16, 17, 20]. RAS outperforms the classical additive Schwarz (AS) pre-
conditioner (8, 24] in the sense that it requires fewer iterations, as well as lower
communication and CPU time costs when implemented on distributed memory com-
puters [1]. Unfortunately, RAS in its original form is nonsymmetric, and therefore the
CG method cannot be used [15]. Although a symmetrized version was constructed
in (7], our numerical experiments show that it often takes more iterations than the
corresponding AS/CG. In this paper we propose another modification of RAS and
show in both theory and numerical experiments that this new variant works well for
symmetric positive definite sparse linear systems and is superior to AS. Recall that
the basic building blocks of classical Schwarz-type algorithms are realized by solving
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the linear systems of the form
(1.1) Alw = Rlv

on each extended subdomain, where A? is the extended subdomain stiffness matrix
and R? is the restriction operator for the extended subdomain. (Formal definitions
will be given later in the paper.) The key idea of RAS is that (1.1) is replaced by

(1.2) Abw = { v inside the unextended subdomain,

0 in the overlapping part of the subdomain.

Note that the solution of (1.2) is discrete harmonic in the overlapping part of the
subdomain and therefore carries minimum energy in some sense. Setting part of the
right-hand-side vector to zero reduces the energy of the solution and also destroys
the symmetry of the additive Schwarz operator. In this paper, we further explore the
idea of “harmonic overlap” and at the same time keep the symmetry of the Schwarz
preconditioner. We mention that other approaches can also be taken to modifying
the Schwarz algorithm in the overlapping regions, such as allowing the functions to
be discontinuous [4].

The algorithm to be discussed below is applicable for general symmetric positive
definite problems. However, in order to provide a complete mathematical analysis, we
restrict our discussion to a finite element problem [3]. We consider a simple variational
problem: Find u € H}(Q) such that

(1.3) a(u,v) = flv)  YoveHQ),

where
a(u,v)=/ Vu-Vudr and f(v)z/fvdac for f e L*(Q).
Q Q

For simplicity, let 2 be a bounded polygonal region in ®? with a diameter of size
O(1). The extension of the results to %2 can be carried out easily by using the theory
developed here in this paper and the well-known three-dimensional AS techniques; see
[9, 10, 12]. Let 7%(Q) be a shape-regular quasi-uniform triangulation of size O(h) of
Q, and V C H}(Q) the finite element space consisting of continuous piecewise linear
functions associated with the triangulation. We are interested in solving the following
discrete problem associated with (1.3): Find u* € V such that

(1.4) a(u*,v) = f(v) YveV.

Using the standard basis functions, (1.4) can be rewritten as a linear system of equa-
tions

(1.5) Au* = f.

For simplicity, we understand v* and f both as functions and vectors, depending on
the situation.

The paper is organized as follows. In section 2, we introduce notation. The new
algorithm is described in section 3. Section 4 is devoted to the mathematical analysis
of the new algorithm. We conclude the paper in section 5 by providing some numerical
results and final remarks. Throughout this paper, C is a positive generic constant
that is independent of any of the mesh parameters and the number of subdomains.
All the domains and subdomains are assumed to be open; i.e., boundaries are not
included in their definitions.
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2. Notation. Let n be the total number of interior nodes of 7"(f2), and W the
set containing all the interior nodes. We assume that a node-based partitioning has
been applied and has resulted in N nonoverlapping subsets Wio,i =1,...,N, whose
union is W. For each W, we define a subregion QF to be the union of all elements of
T"(Q) that have all three vertices in W2 U 8Q. Note that UQZ is not equal to ; see
Figure 2.1(b). We denote by H the representative size (diameter) of the subregion
Qx,

We define the overlapping partition of W as follows. Let {W}!} be the one-
overlap partition of W, where W}! D W? is obtained by including all the immediate
neighboring vertices of all vertices in W?; see Figure 2.1(c). Using the idea recursively,
we can define a §-overlap partition of W,

Here the integer 6 indicates the level of overlap with its neighboring subdomains, and
bh is approximately the length of the extension. The definition of Wf, as well as
many other subsets, can be found in an illustrative picture, Figure 2.1.

We next define a subregion of Q induced by a subset of nodes of 7%(f2) as follows.
Let Z be a subset of W. The induced subregion, denoted by Q(Z), is defined as
the union of (1) the set Z itself, (2) the union of all the open elements (triangles)
of T"(2) that have at least one vertex in Z, and (3) the union of the open edges
of these triangles that have at least one endpoint as a vertex of Z. Note that 2(Z)
is always an open region. The extended subregion Q¢ is defined as Q(W}), and the
corresponding subspace as

V8=V N H} Q) extended by zero to Q\Q.
It is easy to verify that
V=V +Vi+ -+ VR

This decomposition is used in defining the classical one-level AS algorithm [8]. Note
that for § = 0 this decomposition is a direct sum. Let us define P : V — V¢ by the
following: For any u € V,

(2.1) a(Pfu,v) = a(u,v) Vv e V2.
Then, the classical one-level AS operator has the form
PP =P} +...+ P§.

In the classical AS as defined above, all the nodes of Wf are treated equally even
through some subsets of the nodes play different roles in determining the convergence
rate of the AS-preconditioned CG. To further understand the issue, we classify the
nodes as follows. Let T'Y = 9Q¢\09, i.e., the part of the boundary of Q¢ that does not
belong to the Dirichlet part of the physical boundary 92. We define the interface-
overlapping boundary I'® as the union of all T'?; i.e., [* = UN T¢. We also need to

define the following subsets of W (see, for example, Figure 2.1, where 6§ = 1):
o« WI' =WNT? (interface nodes),
. Wiré =wr’ AW (local interface nodes),
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. Wf:n =w'nN W0 (local internal interface nodes),
o WF cut =WI\WE Wiin  (local cut interface nodes),
o Wi, = (Wf\WiF5 )N(U;.s W) (local overlapping nodes),

Wi o = W\ (Wr’ U W) (local nonoverlapping nodes),
o Wi, =W. ., UWE,  (internal nodes).

We note that the most northwest and the southeast nodes in Figure 2.1(c) were
added to I'¢ in order to make Q2 arectangle. This is just to simplify the presentation,
and it is not required in the implementation of the algorithms.

We frequently use functions that are discrete harmonic at certain nodes. Let
zx € W be a mesh point and ¢, () € V the finite element basis function associated
with zx; ie., ¢z (k) = 1, and ¢4, (x;) = 0,5 # k. We say that u € V is discrete
harmonic at z if

a(u, ¢z,) =0.
If u is discrete harmonic at a set of nodal points Z, we say that u is discrete harmonic
in Q(2).
Our new algorithm will be built on the subspace 17;5 defined as a subspace of V.
175 consists of all functions that vanish on the cutting nodes W{zut and are discrete
harmonic at the nodes of W5 ovi- Note that the degrees of freedom associated with

the subspace Vf are

We = WH\WE,

2,cut)’

and, since the values at the harmonic nodes are not 1ndgpendent they cannot be
counted toward the degrees of freedom. The dimension of V¢ is

dim(Vf) = [Wi,inl'

Let Q(Wf ) be the induced domain. It is easy to see that Q(Wf) is the same as Q¢ but

with cuts. We denote Q(W?) by 8. We then have V¢ =V N H2(), and hence the

functions in 17,5 are discrete harmonic on Q(Wifovl). We denote Q(W‘Sovl) by Ql oul*
We define V4 C V? as

Vi=Vie oV,

which is a direct sum. We remark that functions in A are, by definition, the sum of
functions u; € V ,i=1,...,N. Functions in V° can, in fact, be characterized easily
as in the followmg lemma

LEMMA 2.1. Ifu € V and u is discrete harmonic at all the overlapping nodes,
i.e., on UN W) then u € V.

Proof. To prove that u € VA , all we need is to find a decomposition

,oul’

N
u=>Y u, withu; €V}, i=1,...,N.
=1

For the given u, we define u; piece by piece as follows. On the nodes in me we let
u; = u. On the nodes in W) cut We let u; be zero. On the nodes outside W5 we set
u; to zero. We now need only to define u; on the nodes belonging to W ovl- Lhere,
we extend u; as a discrete harmonic function with boundary data given by u; just

defined. 0
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3. One-level RASHO method. Using notation introduced in the previous
section, we now describe a new method, namely a RASHO.
We first define P‘S Vs V5 as a projection operator such that, for any u € 1%

(3.1) a(Plu,v) =a(u,v)  Vve Vi
The RASHO operator can then be defined as
(3.2) P =P 4...4+ P§.

Note, however, that the solution u* of (1.4) (see also (1.5)), is not, generally speaking,
in the subspace V8: therefore, the operator P% cannot be used to solve the linear
system (1.5) directly. We will need to modify the right-hand side of system (1.5).
A reformulated (1.5) will be presented in Lemma 3.1 below. We will show that the
elimination of the variables associated with the overlapping nodes is not needed in
order to apply PS to any given vector v € Ps.

We now introduce a matrix form of (3.2). We define the restriction operator,
or a matrix, ﬁf as follows. Let v = (v1,...,v,)T be a vector corresponding to the
nodal values of a function u € V; namely, for any node zx € W, vy = u(zg). For
convenience, we say “v is defined on W.” Its restriction on Wi‘s, Ef v is defined as

if x WS
3.3) (Rfv)(ax) = { v i€ W

0 otherwise.

The matrix representation of ﬁf is given by a diagonal matrix, with 1 for nodal points
in W’f and 0 for the remaining nodal points. We remark that, by way of definition,
the operator R® is symmetric; i.e., (RS)T = R?. Using this restriction operator, we
define the subdomain stiffness matrix as

Al =R! A (R)T,

which can also be obtained by the discretization of the original finite element problem
on W‘s with zero Dirichlet data on nodes W \ W‘S The matrix A‘s is block diagonal

with blocks corresponding to the structure of Rz and its inverse is understood as an

inverse of the nonzero block. A matrix representation of 13;9, denoted also by ﬁi‘s, is
equal to

P=(A) A
and
(3.4) PO = ((AD 4.+ (A%)7Y) A

Using the matrix notations, the next lemma shows how to modify system (1.5)

so that its solution belongs to Vs,
LEMMA 3.1. Let u* and f be the exact solution and the right-hand side of (1.5),
and

N
(3.5) w=Y (AR
=1
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then we have &* = u* —w € V°, which is the solution of the modified linear system of
equations

ATt = f— Aw = f.
Proof. If we can show that
a(w, ¢x) = f(4x)

for a regular basis function associated with an arbitrary overlapping node zx € Wfovl,
for some %, then we will have

(3.6) a(u* —w,d;) = f(ox) — f(éx) =0,

which says that 4* = u* — w is discrete harmonic at the overlapping node zx. We can
then use Lemma, 2.1 to conclude the proof. Let us now consider

w; = (Zf)“‘lﬁgf,

which, by definition, is the same as

a(wi, ¢;) = (¢;, ROf)  Vz; € W},
Here ind in the rest <1f the proof, ¢; is the basis function associated with the node
z; € W). Using that R is symmetric and

(65, R = (. Ri95) = a(u’, B)9y),
we get
3.7) a(ws, ¢;) = a(u*, RY¢;).

Let us compute a(w;, ¢x). Since zx is an overlapping node, it cannot be on the
boundary of 2¢. This leaves us with the following two cases.

Case 1. The support of ¢ (z) belongs to the exterior of ﬁf Since the supports
of w; and ¢, do not overlap, we have

a(wia ¢k) =0.
Case 2. The support of ¢ (z) belongs to the interior of Q4. In this case, we have

a(wi, ¢x) = a(u*, ROy).

Taking the sum of the above equality for i = 1,..., N, we get

N N _
a(wa¢k) =a (Zwi,d)k) =a (u*aZR?¢k> = a’('u'*’¢k),

i=1 =1

which proves (3.6). Here the fact that Zf;l RO =1 has been used. O

There are basically two ways to compute w in practice. Suppose that subdomain
problems are solved using some LU factorization-based method. One can use the
same factorization of A to modify the right-hand side of the system and to solve
subdomain problems in the preconditioning steps as that suggested in Lemma 3.1.
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Alternatively, one can obtain w by solving several small Dirichlet problems on each
subdomain with zero Dirichlet boundary conditions in the overlapping regions Qf,ovl.
In both strategies, the computation can be done in parallel, and no communication is
needed in a distributed memory implementation. In the first approach, @* is discrete
harmonic in Wgovl u Wi‘fnon, and in the second approach, u* is discrete harmonic only
in W/, ;. We note that the discrete harmonicity of @* on W}, ,, is not required for

the algorithms and for the corresponding theory developed in this paper.
Let f = f— Aw; then u* is the solution of the following linear system of equations:

(3.8) Au* = f.
Since &* € V°,

g= P>
is well defined and can be computed without knowing @* by using the following
relations:

a(ﬁfﬁ*,v)=a(ﬂ*,v)=(f,v) V’ueljf andi=1,...,N.
More precisely, we can obtain g by solving the subdomain problems
a(giv) = (fv)  Woel?

for ¢ = 1,...,N and taking g = ¢g; + --- + gn. With such a right-hand side, we
introduce a new linear system

(3-9) P6ﬂ* = g,

which is equivalent to the linear system (3.8); see Theorem 5.1. The system (3.9) is a
symmetric positive definite system under the usual energy inner product and therefore
can be solved using the CG method. RASHO has a few advantages over the classical
AS preconditioner. Let us recall AS briefly. Let

v ifxg € Wis,
(3.10) (Rv) (zx) = { )
0 otherwise.

Then the AS operator takes the following matrix form:
(3.11) PP =((AD) 7"+ + (A0)7) 4,

where A¢ = ROA(R?)T. Because of the inclusion of the cut interface nodes, the size
of the matrix A¢ is |W?|, which is slightly larger than the size of the matrix Zg,
which is [W?|. In a distributed memory implementation, the operation RSv involves
moving data from one processor to another, but the operation ﬁf’u does not involve
any communication. More precisely, in RASHO, if u € Vs , then it is easy to see that

(3.12) RCAu= RS, Au,

(X%

where RS

+in 15 defined as

~ vy ifxg € W‘f i
(3.13) (RS 1v) (k) = 7
0 otherwise.
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Therefore, for functions in V4 we can rewrite P®, as in (3.4), in the following
form:

(3.14) PO = (AR 4+ + (AY) Ry i) A

Although the operator (3.14) does not look like a symmetric operator, it is indeed
symmetric when applied to functions in the subspace V°. The form (3.12) takes
advantage of the fact that the operator Rz n 1S communication-free in the sense that
it needs only the residual associated with nodes in me c .

We make some further comments on how the residual Au can be calculated in a
distributed memory environment for a given vector u € V6. Ina typical implemen-
tation, the matrix A is constructed and stored in the form {As} each processor has
one or several of the subdomain matrix Af . Similarly, u is stored in the form {u;},
where u; € 1~Jf . We note, however, that to compute the residual at nodes me some
communications are required. The processor associated with subdomain Qf needs
to obtain the local solution from the neighboring subdomains at nodes connected to
me It is important to note that the amount of communication does not depend on
the size of the overlap, since only one layer of nodes is required. This shows that in
terms of communication, the RASHO is superior to AS and RAS.

4. Some two-level versions. As with other domain decomposition methods,
the convergence rate of the single-level method depends on the number of subdomains.
To make the algorithm more scalable with respect to the number of subdomains, we
next introduce two two-level versions of RASHO in this section. This includes an
additive version and a hybrid version using the same coarse space.

Standard coarse spaces cannot be used since they are usually not discrete har-
monic in the overlapping regions. To construct a coarse subspace V, of V, we introduce
the coarse basis functions ¢*(z),i = 1,..., N, based on a partition of unity [21] on the
interface nodes WT’. For each subdomain, we define the nodal values of ¢(z) € V;
as follows:

1 if zy € VVZPm,
(4.1) ¢'(xr) = { discrete harmonic  if zx € Wy UWE, o,
0 if z, € W\WZ.

Let us denote Q(W?, ) by ¢, ... Then ¢'(zx) = 1 at a4 € WY,on for the case
Q¢ N2 = 0 since all the boundary nodal values of Q¢ belong to W, and

7,mon 7,non 7,1M
therefore have nodal values equal to one. For the case Qz non MO # 0, we have chosen

to define ¢’(Qz non) 88 the discrete harmonic extension with boundary nodal values

equal to one on me and equal to zero at Qz non N O8Y; note, however, that we do not
require that V5 be discrete harmonic on Qf non- 1f we had chosen ¢' equal to one at
all nodes of Q¢ . also for the Q¢ N OQ # () case, ¢* would have a jump from one
to zero on the nelghborlng elements of Q. This jump would give lower bounds that
depend on the factor h/H, and such bounds would be poor if the overlap were very
small. Another possibility for avoiding the discrete harmonicity of ¢* on Qf non 1D the
Qf non N OS2 # (0 case would be the use of the boundary layer technique developed in
[21] We note, however, that the bounds of Theorem 5.1 would remain the same as

well as the analysis, with some minor modifications.
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The coarse space 173 is simply the space spanned by all linear combinations of the
coarse basis functions ¢%,i = 1,...,N. We define P{ : V — V¢ as the operator such
that, for any u € V,

a(Pu,v) =a(u,v)  Vve V.

A two-level additive version of RASHO can now be introduced with the operator

N
(4.2) PE=Y P
=0

The convergence properties of this two-level algorithm will be studied in the next
section. To describe the computational aspects of the coarse problem, we rewrite the
above definitions in matrix notation. Recall that n is the total number of nodes in W,
N is the total number of subdomains, and ¢' is the coarse basis function. We write
the fine-to-coarse restriction operator as an N X n matrix

(Ro)Nxn = (¢i(xk))i=l,N;k=1,n'
The matrix form of the coarse projection operator 1355 is
(4.3) P = R§ A3 RoA,

where Ag = RyARY is an N x N matrix.

We remark that Zo is more sparse than coarse space matrices that appear in other
methods such as Neumann-Neumann or FETI-type algorithms [12, 13, 18, 23], since
only connections with the neighboring subdomains appear in the stencils associated
with a coarse basis function. Another feature of this coarse space problem is that the
computation of the right-hand side, i.e., RgAu for some u, can be done inside each
Qf ; this is a clear advantage over regular coarse spaces.

The two-level additive algorithm (4.2) is easy to code, but the performance isn’t
as good as expected. Some examples are given in the numerical experiments section
of this paper. We next introduce another two-level algorithm—a hybrid Schwarz
operator (see [19]) with the error propagation operator given by

m (1-7) (1- 2 7) (- 7).

This is a symmetric operator with which we can work essentially without any extra
cost, since, when forming powers of the operator (4.4) on building the Krylov space
on the PCG, we can use the fact that I — P{ is a projection, and therefore (I — 133 32 =
I- 133 . Subtracting the operator (4.4) from the identity operator I, we obtain the
operator

s) B, =B+ (1- ) (ﬁj ﬁf) (1- ).
i=1

The spectral properties of Is,fyb will be studied in the next section. Some numerical
results obtained using the additive and the hybrid two-level methods will be presented
in the numerical experiments section of the paper, and they will both be compared
with the single-level method.
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5. Theoretical analysis. The algorithm presented in the previous section is
applicable for general sparse, symmetric positive definite linear systems. The notions
of subdomains, harmonic overlaps, the classification of the nodal points, etc. can all
be defined in terms of the graph of the sparse matrix. In this section we provide
a nearly optimal estimate for a Poisson equation discretized with a piecewise linear
finite element method. We estimate the condition number of the RASHO operators
P?% and Pg. in terms of the fine mesh size h, the subdomain size H, and the overlapping
factor 6. We shall follow the abstract AS theory [24] in what follows.

LEMMA 5.1. Suppose that the following assumptions hold:

(i) There ezists a constant Cy such that for any u € V8 there ezists a
decomposition

N
’U,=§ Ug,

=0

where u; € ]~}f , and

N
> uilfn ) < Cllulin -

=0
(ii) There exist constants €;5,%,j = 1,...,N, such that
a(u;, u;) < €5 a(ui,ui)l/2 (uj,u; )1/2 Yu; € 175, Yu; € ]716
Then P, is invertible, symmetric; i.e., a(P&u,v) = a(u, P5v),
(5.1) Ci%a(u,u) < a(Péu,u) < (p(€) + Da(u,u)  Vue V.

Here p(£) is the spectral radius of £, which is an (N) x (N) matriz made of {e;;}.

It is trivial to see that p(£) < C. Thus our focus in the rest of the section is
on bounding Cy. For the case of the smgle—level RASHO, the lemma above can be
modified by replacing u = Zz o Ui, P&, and (p(€) + 1) with u = ZN u;, P°, and
o(€), respectively.

To analyze the hybrid algorithm, we use a result due to Mandel [19, Lemma 3.2],
which in our context is given by the following.

LEMMA 5.2. The extreme eigenvalues of Ph b PC, and P® satisfy

)\min(Phyb) 2 )\'mz’n(Pc) and /\maz(Phyb) < /\maz(P )-

5.1. The partition of unity and a comparison function. The construction
of a partition of unity is one of the key steps in an AS analysis. Consider ¢*(x) defined
in (4.1). It is easy to see that {¢(z),i = 1,..., N} restricted to WT* forms a partition
of unity.

In addition to ¢*(z), we also need to construct a comparison function 6;(zx) for
each subdomain ¢. Comparison functions, or barrier functions, are very useful for
many Schwarz algorithms, such as these on nonmatching grids [6]. We will show that,
even though Q,(x) € V¢, and is not in ]~}f as we wished, it can still be used to bound
functions in VY. Both 6;(z) and ¢*(z) depend on the overlapping factor . Because
#'(z) is discrete harmonic at We, U WS, and identical to §; at the remaining
nodes, we have

a(¢ia ¢l) ._<_ a(oiv 01)
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FiG. 5.1. The partition of Qf into the union of four types of subregions. This is a “floating”
subdomain with 6 = 2. The collection of “e” forms the set Wio.

To construct the function ;(z), we first consider the case in which 2 is a floating
square subdomain. “Floating” refers to the fact that the subdomain doesn’t touch
the boundary Q. The extension to cases in which ¢ touches the boundary is simple,
and we will comment on it later. To further simplify our arguments, we assume that
Q¢ and its neighboring extended subdomains Qg are squares of the same size, i.e.,
sides of length equal to H + 2(6 + 1)h. This assumption is equivalent to claiming
that QF has size H and that 6 levels of overlap are applied; see Figure 5.1. We also
assume that the overlap is not too large; for the analysis given below, 6k no larger
than H/4 is enough. Our techniques can be modified to consider larger overlaps and
more complex subdomains, although too large of an overlap has little practical value.

Roughly speaking, 6;() is equal to ¢*(x) on W\Wfovl. On the overlapping region
Wi‘fovl, we need to define ;(x) carefully so that we can control its energy in the H?!
seminorm. For this purpose, we decompose € into subregions of four types (see

Figure 5.1), 27, (Type (1)), @ (Type (2)), ¥ (Type (3)), and Q° (Type (4)),

and define 6;(z) on each piece of the subregion separately.
Type (1). The first subregion is Q¢ ., which is a square with sides of size H—26h.

4,MOM

Type (2). The second subregion Q¢ is the area in which Q¢ overlaps simultane-
ously with three neighbors Qg. Q9% therefore represents the union of the four corner
pieces of 9, i.e., four squares with sides of size (26 + 1)h.

Types (3) and (4). The area in which Q¢ overlaps only one neighbor is four
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rectangles of size H —26h x (26 + 1)h. We further partition each of the four rectangles
into three smaller rectangles; i.e., two of them are of Q¢ type and one of them of QoH
type. For instance, without lost of generality, let us consider the intersection of Q?
with its right-hand neighbor Qg, excluding the corner parts. In this case, the subregion
to be partitioned is a rectangle of size (26 + 1)k in the z direction and H — 26k in
the y direction. The partition of this rectangles gives two smaller rectangles of Q9%
type with dimensions 2(6 + 1)h x 6h, and each one has an edge in common with a
square of Qf‘s type. We define them as transition subregions because they are placed
between a corner-type subregion Q9% and a face-type subregion Q0H. The Q¢ face-
type subregions are the smaller rectangles that are placed between the two smaller
rectangles of Q9% type. Q% face-type regions are of size (26 + 1)h by H — 45h.

For any node z belonging to a Type (1) region Qf we define 6;(z) to be equal
to one, i.e., equal to ¢*(x). Therefore

i,mon’

|¢l(93)|H1(96 Do = |6; (CL')|1L11(91s von) 0.

We next define 6;(z), node by node, in Q¢

transition-, and face-type regions defined above.

For a Type (2) region Q%) let Q be such a square with vertices V; = (a,b), Vo =

(a+ (26 + 1)h,b), V3 = (a,b+ (26 + 1)h), and V4 = (a + (26 + 1)h,b + (26 + 1)h).
We assume that V7, Vs, and Vj belong to aﬂf . In other words, @ is located on
the southeast corner of Q2. Let us also introduce another square region Q, with
vertices V3 = (a,b + (26 + 1)h), Vi = (a,b+ 6h), Vo = (a + (6 + 1)h,b + 6h), and
Vi = (a+ (64 1)h,b+ (26 + 1)h). Note that Q is contained in @Q, with V3 as the
common vertex. To define §;(z) on @, we set 6;(V3) = 1, 6; (V1) =0, 6;(Va) = 0,
0; (V4) = 0. At the remalmng nodes z on the edges V1V2 and V2V4 we set 0;(z) =0,
and on the edges V3V; and V3V we set 8;(x) = 1. For nodes on Q\Q we set 0;(z) = 0.
It remains only to define §;(z) for nodes z in the interior of Q. To define 6;(x) there,
we use a well-known cutoff function technique, such as the one introduced in Lemma,
4.4 of [10], but for two-dimensional square regions. An illustrative picture of 6;(z) in
a typical region Q¢° is shown in Figure 5.2. For the completeness of this paper, we
include the construction below. Let C be the center of the square Q The construction
of 0;(x) is defined by the following steps:

(1) Define 6;(V3) = 1, 6;(V2) = 0, 6; (V1) =0, and 6; (V4)

(2) For a point P that belongs to the segments V3V4 or V3V1, define 6;(P) = 1.
For a point P that belongs to the segments ViVs or V1V2, define 6;(P) = 0.

(3) For a point Y that belongs to the line segment connecting C to V3, define
6;(Y) by linear interpolation between values 6;(C) = 1/2 and 6;(V3) = 1. For
a point Y that belongs to the line segment connecting C to Vz, define 0:(Y)
by linear interpolation between values 6;(C) = 1/2 and 6;(V3) = 0.

(4) For a point S that belongs to a line segment connecting a point Y to a vertex
Vi or V4, define 8;(S) = 6;(Y).

(5) Note that the 6; is defined everywhere on @U(’)@. 0; is continuous everywhere
except at the points ‘71 and 174. We redefine 6; as the continuous piecewise
linear finite element function given by the standard pointwise interpplation

The most lmportant observation of the construction of 6; (z) inside @ is that

|V6;(x)| < C/r near V; or V. Here r is the distance of z from V; or Vj. Therefore,

i ovl» Which is the union of corner-,
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1o

F1G. 5.2. An illustrative picture of 0;(z) in a typical region 035.

we obtain (see [10] and [23])

|9i(w)|§p(Q) = |0i(w)|§{1(5) <C (1 + log (—(étl—l)h)) =C(1+log(6 +1)).

Since inside of Q¢ there are four of those squares, we obtain
|9i($)|ip(9g6) <C(1+1log(6+1)).

Type (3) regions consist of transition-type rectangles. Let us consider one of them
and denote it by T, which we assume has vertices at V3 = (a,b + (26 + 1)h), V4 =
(a+(26+1)h,b+(26+1)h), Vs = (a,b+(36+1)h), and Vg = (a+(26+1)h, b+(36+1)h).
Note that T stands on top of the square @ introduced above and has the common edge
V3Vy. We define 6;(z) over the edge V3V to be equal to ¢*(z). Over the edge V3V5,
we set 6;(z) = 1. Over the edge V3 Vg, we set 0;(z) = 0. And over the edge V5V we let
0;(x) decrease linearly from the value 1 to 0. What remains is to define 0;(z) inside T.
Let us define the nodes V; = (a+6h,b+(26+1)h) and V, = (a+(6+1)h,b+(26+1)h),
which is the same as the node V; used in the description of Type (2) regions. The
nodes V; and V, are exactly the places on the edge V3V, where ¢*(z) jumps from 1 to
0. On the triangle V3V;Vs we set 6;(z) = 1. On the triangle V.V, Vg we set 6;(z) = 0.
On the region V;V,.VgVs, we let 6;(x) decrease linearly in the z direction from the
value 1 to 0. We note that next to the nodes V;V,., 6;(z) has a singular behavior
similar to |V6;(z)| < C/r, where r is the distance from z to the line V; V;.. Similarly,
we have

16:() 311y < C (1 +1log(6+1)) .
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Since there are eight rectangles of Type (3) inside Qfg, we obtain
10:(2) 372 o5y < C (1 +log(6 + 1)) -

Type (4) regions are rectangles of face type. Let R be one of them, and assume
that the vertices are given by Vs = (a,b+(36+1)h), Vs = (a+(26+1)h,b+(36+1)h),
Vo = (a,b+ H— (6§ —1)h), and Vg = (a+ (26 + 1)h,b+ H — (6 — 1)h). Note that R is
on the top of the rectangle T defined above, and its height is H — 46h. The vertices
Ve and Vg are the vertices that belong to 8Q2. We define 6;(z) = 1 if  is on the
edge V5Vz, and 0;(z) = 0 if z is on the edge VsV3, and 6;(z) is linear in the horizontal
direction for the remaining points. We then obtain

H — 46h
. 2 <

Since there are four of those rectangles inside Q¢¥, we obtain

H - 48h H
; 1 < < .
6:@) g < Ol yn < s+ m

For the cases in which 0 touches the boundary 95, the analysis needs to be
modified slightly. The first modification is because the shape of the overlapping region
changes slightly, i.e., the longer side is shorter; it is easy to see that we get similar
bounds as before. The other modification is because ¢* on ¢, is not identically
equal to one and therefore the corresponding energy is not necessarily zero; for this

case we can design 6; similarly and obtain

H
Iei(a?)l?{l(ggmm) <C <1 + log (_’_l.)) .

Putting all the pieces of 8;(x) together, we see that 6;(z) € V¢, and it is equal to
¢i(z) on WT ° Adding all the estimates on subregions of the four types, we arrive at
the following lemma. 5

LEMMA 5.3. Fori=1,...,N, 6;(z) € V¢, ¢'(x) € V4, and the following hold:

(1) |¢1. i{l(gg) < |0¢|2;_11(Qg).

()

H
2
oo, <O (1410806 + D + ).

() If 9,,, N0 =0, then =0.

(4) If Q8. NON#D, then

i,mon
H
|0i|i11(ngmon) <C (1 + log (E)) .

Here C > 0 is independent of the parameters h, H, and 6.

12
|01|H1(Qg,non)

5.2. A bounded partition lemma. To obtain the parameter Cy of assumption
(i) of the abstract AS theory (see Lemma 5.1), we construct a decomposition of V?
and prove its boundedness below.
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LEMMA 5.4. There ezists a constant C > 0, independent of h, H, and 8, such
that for any u € V° there exist v; € VO such that

N
(5.2) u=> v
=0

and

(5.3) glvilgl(m : C((@f—l)h» lul}s o)
+ C(1 +1log(6 + 1)) (1 +log (%)) ful -

In addition, there exist u; € 17{5 such that

N
(5.4) u= u

and

N
H

E |“"1%11(9) <C(1+log(6+1))(1+1log| — |u|§{1(9)

(5.5) i=1 h

1 H )

Proof. We first construct the decomposition (5.4). For any given u € V4 we define
u; € Vf as

u(xy) if 2 € W,-fm,
ui(zg) = { discrete harmonic i z € W2,
0 if 7 € W\WP.

It is easy to see that (5.4) holds. We next construct the decomposition (5.2). For
i=1,...,N, let us define v; € Vf by

v; = u; — Ui’ Ei}f,
where
_ 1

U; = —5 udz
t8] Jas

is the average of u on the extended region Q¢. Here |Q¢| is the area of the region Q2.
We also define

N
Vg = Z ;0"
=1

It is easy to see that (5.2) holds.
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The next step is to bound Zf’:l |”i|iﬂ(9)' To bound each term |vi|%{1(9),i =
1,...,N, we use 6;(z),i = 1,..., N, introduced before. Consider #; € V¢ defined as
follows:

0i(x) = In(0:(z)(u(z) — ©)).
Note that ¥;(z) is equal to v;(z) on WFS and on 9Q¢. On Qf’ovl, v; is discrete
harmonic. Therefore, we have

itk g, < Wil
In addition, v;(z) is identical to @; on Q¢ . whenever Q¢ . does not touch Q. For

such cases, we next devote the proof to the estimate of |3;|%;, @%) in terms of [ul?, @%)-

The estimate of |v,~|§11(m , for the case in which Q2 ., does not touch 9 is done

afterwards in (5.10). """
Let K be an element of Qf, and let us define w; = u — @;; then

(5:6) |8l % () = 1n(Biws) 31 iy < 2105wil3n gy + 21Tn((8: — 6:)ws) o (e

Here, 0; is the average of §; on K, and I, is the standard pointwise interpolation. To
estimate the first part of (5.6) we use the fact that |6;| < 1 to obtain

16iwilF ey = 103 (u — @) 2 re) < T — Bl gy = Tl -

The last equality comes from the fact that @; is a constant. For the second part of
(5.6), according to an inverse inequality, we have

1 _
(5.7 [Th((0; — Gi)wi)ﬁp(m < Cﬁllfh((ei - ei)wi)”%ﬂ(K).

To obtain the bound for the right-hand side of (5.7), we consider the element K in
four different situations corresponding to the four types of subregions into which the
the subregion ¢ is split, i.e., Q¢ Q0H Q9% and Q2°.

i,mon’ s
The proof for the cases K C Q¥ and K C Qf° are nearly the same, so we only
consider one of them here. For K C Q¢ since

0112 < Tor oL
16; — B[l (1) < C ((25+ 1)h) ’

we obtain

1, - \ 1 ,
72 110 ((0: = Bi)wi)l|z2(x) < CW”W”L%K)-

Applying a technique developed in Dryja and Widlund [11], we obtain

1 9 H 9 1 9
B) /= ||w; < —_|w; —_—|w;
59) cr e eliaern < (G ptosinen * mrasr R ey

Using the fact that |wi|§11(9§) = |u|§11(m) and a Friedrichs inequality, we have



1226 X.-C. CAI, M. DRYJA, AND M. SARKIS

Combining the estimates (5.8) and (5.9), we obtain
Y <C—>=—__
@+ ope il < C gl @

For the case when K C Q¢, we use similar arguments as in Dryja, Smith, and
Widlund [10] to obtain

1 = 1
(5.10) Y a6 = 0)wi)lfa < D2 Cogllwilliagy,
Keqt® Kentt

where ch < r < C((6 + 1)h) is the distance to those “cut pieces.” We have used here
that 6;(z) has the singular behavior C/r on Q¢%. We then have

1 \ C(6+1)h , \
(5.11) Z r—2||wi||Lg(K) < C/ /r' r||wi||Lw(Qgg)dadr
KEQfs ch «
and
H
(5.12) e gy < © (1+ 108 (5 ) ) o2ty

For the inequality (5.12), we have used a well-known result (see Bramble [2])

_ _ H _
= 58y < 1= Tl < € (1108 (7 ) ) b=
and that @; is the average of u on Qf, i.e., a Friedrichs inequality,
Il = @il o) < Clulnas)-

Putting (5.11) and (5.12) together, we obtain

1 H
(513) Z 7‘—2”wl”%2(K) S C ((1 + log(5 + 1)) <1 + IOg (ﬁ))) |U|§11(Qf)

Kens®

For the case K C Qf’non, if Q) is a floating subdomain, which is to say that Qf’mm
does not touch AL, then 6; — 6; is zero. If Qf’mm touches the boundary 052, then the

estimate becomes

IA

¢ (Wl * 8716 et )

H
C <1 + log (E)) |u|§“(gf).

Here we have used Lemma 5.3 and that for the cases i € 9Q we can use a Poincaré
inequality to obtain

'vilip(gg

,non)

(5.14)

IA

_ 1
615 > Jmlf<cCy, ';I'2'||U||2Lz(ag) <Ccy’ lulf gy < Clulia)-
icon icon icon
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Here we have introduced the notation i € 99 to denote the subdomains 29 that touch
the boundary 99 with a face.
Putting everything together, we have shown that

N
2 _luilin
1=1

(5.16) =¢ (((ﬁﬁ)) |ul3 () + C(1+ log(6 + 1)) (1 +log (%)) e

We remark that the bound (5.3) follows from (5.16). To see this, we use that vy =
u — Y, v;, the triangular inequalities, and (5.16) to obtain (5.3).

We now consider the bound for the one-level RASHO method, i.e., to bound
SN, u;. Note that

Z ZwZW

i=1
For the second sum above, we first use Lemma 5.3 to obtain

N

> 163 )

=1
<C (1 +log (%)) >l + c<1 +1log(6+1) + @1 1)h> flj |)?.

1€0Q

We then use the Cauchy—Schwarz and Friedrichs inequalities to obtain
Z il = <|95I / udm) < CZ )

< Cﬁ““”%z(n) < Cﬁh‘ﬁ{l(a)-
For the cases ¢ € 02, we use (5.15). The inequality (5.5) then follows. o

5.3. The main theorem. We state the main theorem of this paper here. The
proof follows directly from all the abstract Schwarz theory given by Lemmas 5.1, 5.2,
and 5.4.

THEOREM 5.1. The RASHO operators P%, P¢,, and ﬁ,fyb are symmetric in the
inner product a(-,-), nonsingular, and bounded from below and above:

Cy?a(u,v) < a(Pdu,u) < Cra(u,u) Vu e VP,
Cy2%a(u,u) < a(Pu,u) < Cra(u,u) Yu e VS,
and

K(Piyy) < K(PE).

Here

C2=C ((26%)—’; + (14 log(6 + 1)) (1 +log (%)))
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and

2=c ((1 +log(6+1)) (1 +log (%)) }}2 (1 +log(8+1) + (2_5-}}[T)'ﬁ)> .

The constants C,C1,C1 > 0 are independent of h, H, and 6.
We remark that the corresponding convergence rate estimate for the regular one-
level AS methods [11], in terms of the constant Cy, is

fe 1
o ‘C<1+ H(26—|—1)h)’

and that for the two-level additive Schwarz method is

C§=C(l+gl>

The lower bound C'Oz of the one-level RASHO algorithm is theoretically slightly worse
than the lower bound of regular AS algorithm in the case of large overlap, but roughly
the same for small overlap. For small overlap, the lower bounds of both algorithms
behave like O(H/h). When the overlap gets larger, the RASHO scheme starts to feel
the factor log(H/h), and the performance gets worse than the additive version for
large overlap. On the other hand, the upper bound C; of RASHO is smaller than
the upper bounds of AS. We can see this since Vk C V‘S Vk implies that the positive
numbers ¢;; defined in Lemma 5.1 are smaller for RASHO than the corresponding
€ij for AS. Consequently, the spectral radius £ of RASHO is smaller. Because C;
of RASHO is smaller, the numerical performance of RASHO presented in the next
section is better than that of AS for the practical cases. Similar considerations also
apply to the two-level RASHO methods.

6. Numerical experiments. In this section, we present some numerical results
for solving the Poisson equation on the unit square with zero Dirichlet boundary condi-
tions. We compare the performance of RASHO- and AS-preconditioned CG methods
in terms of the number of iterations and the condition numbers. We pay particular
attention to the dependence of the performance on the number of subdomains and
the size of overlap.

We first discuss a few implementation issues related to the new preconditioner.
In order to apply the RASHO/CG method, it is necessary to force the solution to
belong to V4. To do this, a pre-CG- computatlon is needed, and it is done through
the formula (3.5). We note that u = u* —w € V8 (see Lemma 3.1), and therefore we
can apply the regular preconditioned CG to the RASHO-preconditioned system (3.9).
The AS/CG is the classical AS preconditioned CG as described in [8]. We note that
in the case 6§ =0, i.e., ovlp = h, RASHO and AS are the same.

The stoppmg condltlon for the CG method is to reduce the initial residual by a
factor of 10~6. The exact solution of the equation is u(z,y) = €>©@+¥) sin(rz) sin(y).
All subdomain problems are solved exactly. The iteration counts (iter), condition
numbers (cond), maximum (max) and minimum (min) eigenvalues of the precondi-
tioned matrix are summarized in Tables 6.1-6.5.

From Tables 6.1, 6.2, and 6.3, it is clear that for overlap not too large and for
mesh not too small, which is the case of practical interest, the one-level RASHO/CG
outperforms the classical one-level AS/CG in terms of the iteration counts and con-
dition numbers. In this case of small overlap, the condition number of RASHO is
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TABLE 6.1
One-level RASHO- and AS-preconditioned CG for solving the Poisson equation on a 128 x 128
mesh decomposed into 2 x 2 = 4 subdomains with overlap = ovlp. The AS/CG results are shown in
(). The “+17” is for the preprocessing step needed for RASHO.

ovlp | iter cond max min

h 42 (42) 129.(129.) 1.98 (1.98) | 0.0154 (0.0154)
3h | 24+1 (28) | 48.4 (86.3) | 1.94 (4.00) | 0.0402 (0.0464)
5h | 2041 (23) | 33.3 (51.8) | 1.91 (4.00) | 0.0574 (0.0773)
7h 1841 (20) | 27.2 (37.0) | 1.89 (4.00) | 0.0694 (0.1081)

TABLE 6.2
One-level RASHO- and AS-preconditioned CG for solving the Poisson equation on a 32 *
DOM x 32 x DOM mesh decomposed into DOM x DOM subdomains with overlap = 3h, i.e.,
§=1.

DOM x DOM | iter cond max min
2x2 19+1 (20) 26.8 (43.7) 1.89 (4.00) | 0.0708 (0.0916)
4x4 39+1 (42) 86.9 (145.) 1.95 (4.00) | 0.0225 (0.0276)
8x8 75+1 (78) 328. (550.) 1.97 (4.00) | 0.0060 (0.0073)
16 x 16 14741 (156) | 1295 (2168.) | 1.98 (4.00) | 0.0015 (0.0018)
TABLE 6.3

One-level RASHO-and AS-preconditioned CG for solving the Poisson equation on an n X n
mesh decomposed into 4 X 4 subdomains with overlap = 3h, i.e., § = 1.

DOM x DOM | iter cond max min
64 x 64 30+1 (29) | 50.1 (72.2) 1.91 (4.00) | 0.0382 (0.0554)
128 x 128 39+1 (40) | 86.9 (145.) 1.95 (4.00) | 0.0225 (0.0276)
256 x 256 5341 (56) | 159.9 (290.7) | 1.98 (4.00) | 0.0124 (0.0138)
512 x 512 74+1 (77) | 305.6 (582.1) | 1.99 (4.00) | 0.0065 (0.00069)

TABLE 6.4
Two-level hybrid and additive RASHO for solving the Poisson equation on a 32 DOM x 32 %
DOM mesh decomposed into DOM x DOM subdomains with overlap = 3h, i.e., § = 1; the two-level
additive RASHO results are shown in ().

DOM x DOM | iter cond max min
2% 2 2741 (304+1) | 24.2 (45.9) | 1.82 (2.90) | 0.0751 (0.0634)
4x4 3241 (46+1) | 27.2 (53.3) | 1.80 (2.93) | 0.0662 (0.0551)
8 x 8 3341 (52+1) | 28.4 (55.3) | 1.80 (2.04) | 0.0634 (0.0533)
16 x 16 33+1 (52+1) | 28.8 (55.8) | 1.80 (2.94) [ 0.0625 (0.0528)
TABLE 6.5

Two-level hybrid and additive RASHO CG for solving the Poisson equation on a 512x 512 mesh
decomposed into 16 x 16 = 256 subdomains with overlap = ovlp. The two-level additive RASHO
results are shown in ().

ovlp | iter cond max min

h 86 +1 (109+1) | 307 (275.7) | 1.96 (3.74) | 0.0064 (0.0136)
3h | 44 +1 (6841) | 48.0 (95.7) | 1.87 (2.98) | 0.0391 (0.0312)
5h | 36 +1 (5841) | 32.8 (70.1) | 1.83 (2.95) | 0.0558 (0.0421)
Th | 31 41 (53+1) | 27.3 (59.8) | 1.80 (2.93) | 0.0662 (0.0491)

almost twofold smaller than AS. This is an important result since it is easy to modify
a (parallel) one-level AS/CG code to obtain a one-level RASHO/CG implementation.
Although we do not have any parallel results to report here, we confidently predict
that RASHO/CG would be even better than AS/CG on a parallel computer with dis-
tributed memory, since many less communications are required. Also the local solvers
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in RASHO are slightly cheaper, since the local solvers have slightly smaller numbers
of unknowns than for the regular AS. From Table 6.4 we see that both the two-level
hybrid and additive versions of RASHO attain scalability in terms of number of iter-
ations when the number of subdomains becomes large; the hybrid version reaches the
asymptotic behavior sooner than the additive version. The hybrid version is superior
to the additive version since the number of iterations is much smaller. Finally, from
Table 6.5 we see that larger overlap reduces dramatically the number of iterations.
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