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RESTRICTED ADDITIVE SCHWARZ PRECONDITIONERS WITH 
HARMONIC OVERLAP FOR SYMMETRIC POSITIVE DEFINITE 

LINEAR SYSTEMS* 

XIAO-CHUAN CAIt, MAKSYMILIAN DRYJAM, AND MARCUS SARKIS? 

Abstract. A restricted additive Schwarz (RAS) preconditioning technique was introduced re- 
cently for solving general nonsymmetric sparse linear systems. In this paper, we provide one-level 
and two-level extensions of RAS for symmetric positive definite problems using the so-called har- 
monic overlaps (RASHO). Both RAS and RASHO outperform their counterparts of the classical 
additive Schwarz variants (AS). The design of RASHO is based on a much deeper understanding 
of the behavior of Schwarz-type methods in overlapping subregions and in the construction of the 
overlap. In RASHO, the overlap is obtained by extending the nonoverlapping subdomains only in 
the directions that do not cut the boundaries of other subdomains, and all functions are made har- 
monic in the overlapping regions. As a result, the subdomain problems in RASHO are smaller than 
those of AS, and the communication cost is also smaller when implemented on distributed memory 
computers, since the right-hand sides of discrete harmonic systems are always zero and therefore 
do not need to be communicated. We also show numerically that RASHO-preconditioned CG takes 
fewer iterations than the corresponding AS-preconditioned CG. A nearly optimal theory is included 
for the convergence of RASHO-preconditioned CG for solving elliptic problems discretized with a 
finite element method. 

Key words. restricted additive Schwarz preconditioner, two-level domain decomposition, har- 
monic overlap, elliptic equations, finite elements 
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1. Introduction. A restricted additive Schwarz (RAS) preconditioning tech- 
nique was introduced recently for solving general nonsymmetric sparse linear systems 
[1, 5, 7, 14, 16, 17, 20]. RAS outperforms the classical additive Schwarz (AS) pre- 
conditioner [8, 24] in the sense that it requires fewer iterations, as well as lower 
communication and CPU time costs when implemented on distributed memory com- 
puters [1]. Unfortunately, RAS in its original form is nonsymmetric, and therefore the 
CG method cannot be used [15]. Although a symmetrized version was constructed 
in [7], our numerical experiments show that it often takes more iterations than the 
corresponding AS/CG. In this paper we propose another modification of RAS and 
show in both theory and numerical experiments that this new variant works well for 
symmetric positive definite sparse linear systems and is superior to AS. Recall that 
the basic building blocks of classical Schwarz-type algorithms are realized by solving 
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the linear systems of the form 

(1.1) Aw = R v 

on each extended subdomain, where A6 is the extended subdomain stiffness matrix 
and 

Ri 
is the restriction operator for the extended subdomain. (Formal definitions 

will be given later in the paper.) The key idea of RAS is that (1.1) is replaced by 

(1.2) Aw v inside the unextended subdomain, 
0 in the overlapping part of the subdomain. 

Note that the solution of (1.2) is discrete harmonic in the overlapping part of the 
subdomain and therefore carries minimum energy in some sense. Setting part of the 
right-hand-side vector to zero reduces the energy of the solution and also destroys 
the symmetry of the additive Schwarz operator. In this paper, we further explore the 
idea of "harmonic overlap" and at the same time keep the symmetry of the Schwarz 
preconditioner. We mention that other approaches can also be taken to modifying 
the Schwarz algorithm in the overlapping regions, such as allowing the functions to 
be discontinuous [4]. 

The algorithm to be discussed below is applicable for general symmetric positive 
definite problems. However, in order to provide a complete mathematical analysis, we 
restrict our discussion to a finite element problem [3]. We consider a simple variational 
problem: Find u e H~ (Q) such that 

(1.3) a(u, v) = f(v) V v 
E H (), 

where 

a(u, v) = Vu.Vvdx and f(v) = fv dx for fE L2(Q). 

For simplicity, let Q be a bounded polygonal region in R2 with a diameter of size 

O(1). The extension of the results to R3 can be carried out easily by using the theory 
developed here in this paper and the well-known three-dimensional AS techniques; see 
[9, 10, 12]. Let Th (2) be a shape-regular quasi-uniform triangulation of size O(h) of 
Q, and V C HO (Q) the finite element space consisting of continuous piecewise linear 
functions associated with the triangulation. We are interested in solving the following 
discrete problem associated with (1.3): Find u* E V such that 

(1.4) a(u*, v) = f(v) V v E V. 

Using the standard basis functions, (1.4) can be rewritten as a linear system of equa- 
tions 

(1.5) Au* = f. 

For simplicity, we understand u* and f both as functions and vectors, depending on 
the situation. 

The paper is organized as follows. In section 2, we introduce notation. The new 
algorithm is described in section 3. Section 4 is devoted to the mathematical analysis 
of the new algorithm. We conclude the paper in section 5 by providing some numerical 
results and final remarks. Throughout this paper, C is a positive generic constant 
that is independent of any of the mesh parameters and the number of subdomains. 
All the domains and subdomains are assumed to be open; i.e., boundaries are not 
included in their definitions. 
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2. Notation. Let n be the total number of interior nodes of Th(Q), and W the 
set containing all the interior nodes. We assume that a node-based partitioning has 
been applied and has resulted inr N nonoverlapping subsets W?, i = 1, . . ., N, whose 
union is W. For each W?, we define a subregion R to be the union of all elements of 

T'h(Q) that have all three vertices in W? U 0Q. Note that UQfR is not equal to 0; see 

Figure 2.1(b). We denote by H the representative size (diameter) of the subregion 

We define the overlapping partition of W as follows. Let {W1 } be the one- 
overlap partition of W, where Wi D W?O is obtained by including all the immediate 
neighboring vertices of all vertices in W?; see Figure 2.1(c). Using the idea recursively, 
we can define a 6-overlap partition of W, 

N 

w = U wi. i= 1 

Here the integer 6 indicates the level of overlap with its neighboring subdomains, and 
6h is approximately the length of the extension. The definition of Wf, as well as 
many other subsets, can be found in an illustrative picture, Figure 2.1. 

We next define a subregion of Q induced by a subset of nodes of Th (Q) as follows. 
Let Z be a subset of W. The induced subregion, denoted by Q(Z), is defined as 
the union of (1) the set Z itself, (2) the union of all the open elements (triangles) 
of Th (Q) that have at least one vertex in Z, and (3) the union of the open edges 
of these triangles that have at least one endpoint as a vertex of Z. Note that Q(Z) 
is always an open region. The extended subregion OQ is defined as Q(Wf), and the 
corresponding subspace as 

1 
= V n H (Hj) extended by zero to 

Q\Q• 
. 

It is easy to verify that 

v = v + v+2 + v. 
This decomposition is used in defining the classical one-level AS algorithm [8]. Note 
that for 6 = 0 this decomposition is a direct sum. Let us define PiF : V -- V by the 
following: For any u E V, 

(2.1) a(P6u, v) - a(u, v) Vv E V. 

Then, the classical one-level AS operator has the form 

P6 = P18 + ... + P. 

In the classical AS as defined above, all the nodes of Wil are treated equally even 
through some subsets of the nodes play different roles in determining the convergence 
rate of the AS-preconditioned CG. To further understand the issue, we classify the 
nodes as follows. Let F? = 0Q•\OQ, i.e., the part of the boundary of Q• that does not 
belong to the Dirichlet part of the physical boundary O0. We define the interface- 
overlapping boundary F6 as the union of all F1 ; i.e., F1 - 

uN=IFV. 
We also need to 

define the following subsets of W (see, for example, Figure 2.1, where 6 = 1): 
SWr W " Fi (interface nodes), 
* Wi6 _ Wr n Wi (local interface nodes), 
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FIG. 2.1. The partition of a finite element mesh into nine subdomains with the overlapping 
factor 6 = 1. (a) The finite element mesh and nodal points; (b) a node-based partition of the mesh 

into nine nonoverlapping subsets, and the collection of "*" forms the set W9,; (c) W ; (d) Wr ; 

(e) W ; (f) W ; (g) 
Wcut; 

(h) W ; (i) [i, non (j) )/ (k) W,; (1) the shadowed area is 
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* Wiin Wr 
6 f 

W? (local internal interface nodes), 

Wicut 
Wry\W6nr6 

(local cut interface nodes), 
* 

Wiov (Wi6\Wr6 ) 
nf(U.i 

WfV) (local overlapping nodes), 
W Wnon \(Wf6 U Wv) (local nonoverlapping nodes), 

* Win o Wi4non U 
Wi6n 

(internal nodes). 
We note that the most northwest and the southeast nodes in Figure 2.1(c) were 

added to FP in order to make OQ a rectangle. This is just to simplify the presentation, 
and it is not required in the implementation of the algorithms. 

We frequently use functions that are discrete harmonic at certain nodes. Let 
Xk E W be a mesh point and qXk (x) E V the finite element basis function associated 
with xk; i.e., Oxk(Xk) = 1, and Xk (xj) = 0,j 

- k. We say that u e V is discrete 
harmonic at Xk if 

a(u, Ok) = 0. 

If u is discrete harmonic at a set of nodal points Z, we say that u is discrete harmonic 
in Q (Z). 

Our new algorithm will be built on the subspace Vf defined as a subspace of V,. 
9V consists of all functions that vanish on the cutting nodes WT, and are discrete 
harmonic at the nodes of Wo0t1. Note that the degrees of freedom associated with 
the subspace 6 are 

=w6r VV~s 
W~\V Icut 

and, since the values at the harmonic nodes are not independent, they cannot be 
counted toward the degrees of freedom. The dimension of V$ is 

dim( V) = Wi,n 

Let Q(Wi6) be the induced domain. It is easy to see that Q(W6) is the same as Qf but 
with cuts. We denote Q(W ) by Q1 . We then have Vi = V n H (), and hence the 
functions in )V are discrete harmonic on Q(W ovl). 

We denote Q(WIov/ ) by 0 
,oe. We define V6 C V' as 

=6 . ? 
which is a direct sum. We remark that functions in V6 are, by definition, the sum of 
functions ui E V, i = 1, . .., N. Functions in -6 can, in fact, be characterized easily 
as in the following lemma. 

LEMMA 2.1. If u E V and u is discrete harmonic at all the overlapping nodes, 
i.e., on U1 W6ovl then u E V6. 

Proof. To prove that u E V6, all we need is to find a decomposition 
N 

u= ui, withui~, i=1,...,N. 
i=1 

For the given u, we define ui piece by piece as follows. On the nodes in W~,5 we let 
Ui = u. On the nodes in Wicut we let ui be zero. On the nodes outside W6 we set 
ui to zero. We now need only to define ui on the nodes belonging to W There, 
we extend ui as a discrete harmonic function with boundary data given by ui just 
defined. O 
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3. One-level RASHO method. Using notation introduced in the previous 
section, we now describe a new method, namely a RASHO. 

We first define P :V6 - as a projection operator such that, for any u E E , 

(3.1) a(P 6u, v) = a(u, v) Vv e V. 

The RASHO operator can then be defined as 

(3.2) = + P. 

Note, however, that the solution u* of (1.4) (see also (1.5)), is not, generally speaking, 
in the subspace v6; therefore, the operator P6 cannot be used to solve the linear 

system (1.5) directly. We will need to modify the right-hand side of system (1.5). 
A reformulated (1.5) will be presented in Lemma 3.1 below. We will show that the 
elimination of the variables associated with the overlapping nodes is not needed in 
order to apply P6 to any given vector v E 6. 

We now introduce a matrix form of (3.2). We define the restriction operator, 
or a matrix, R? as follows. Let v = (vl,..., vn)T be a vector corresponding to the 
nodal values of a function u E V; namely, for any node xk E W, vk = u(Xk). For 

convenience, we say "v is defined on W." Its restriction on W , ~iv is defined as 

(3.3) (,v?) (xk) 

f 

{vk ifXkEWi 
(33) (Rv)(xk) 0 otherwise. 

The matrix representation of RI is given by a diagonal matrix, with 1 for nodal points 
in PW6 and 0 for the remaining nodal points. We remark that, by way of definition, 
the operator RM is symmetric; i.e., (R~)T = RM. Using this restriction operator, we 
define the subdomain stiffness matrix as 

A? = R A (R firs>T 
ItIt 

which can also be obtained by the discretization of the original finite element problem 
on W6 with zero Dirichlet data on nodes W \ W6. The matrix A, is block diagonal 
with blocks corresponding to the structure of Rf, and its inverse is understood as an 
inverse of the nonzero block. A matrix representation of P6, denoted also by P/5, is 

equal to 

j56 
(Ag)<1A 

and 

(3.4) 6 = 
((P1)-- 

+ .. + 
(A%)--1) 

A. 

Using the matrix notations, the next lemma shows how to modify system (1.5) 
so that its solution belongs to V6. 

LEMMA 3.1. Let u* and f be the exact solution and the right-hand side of (1.5), 
and 

N 

(3.5) 
w- 

= ~1)-IR 
i=1 
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then we have jj* = u* - w E V6, which is the solution of the modified linear system of 
equations 

Ai* = f- Aw = f. 

Proof. If we can show that 

a(w, Ck) = f(0k) 

for a regular basis function associated with an arbitrary overlapping node Xk E Wi 
for some i, then we will have 

(3.6) a(u* - w, Ck) = f(0k) - f(0k) = 0, 

which says that i* = u* - w is discrete harmonic at the overlapping node Xk. We can 
then use Lemma 2.1 to conclude the proof. Let us now consider 

i=(Ai)-1Rif, 

which, by definition, is the same as 

a(wi, R, j) = (,Rf) Vxj W,. 

Here and in the rest of the proof, 4j is the basis function associated with the node 

xj E W6. Using that R9 is symmetric and 

(4,I Rf) = (fIR9 qj) 
= a(u*, R j), 

we get 

(3.7) a(wi, j) = 
a(u*,• 

0j). 

Let us compute a(wi, k). Since Xk is an overlapping node, it cannot be on the 

boundary of I. This leaves us with the following two cases. 
Case 1. The support of k (x) belongs to the exterior of . Since the supports 

of wi and /k do not overlap, we have 

a(wi, k) = 0. 

Case 2. The support of kk(x) belongs to the interior of If . In this case, we have 

a(wi, qk) = a(u*, R0ok) 

Taking the sum of the above equality for i = 1,..., N, we get 

a(w,b k) =a = a (u*, r?k) = a(u*,ik), 

which proves (3.6). Here the fact that E R1, ? = I has been used. 0 
There are basically two ways to compute w in practice. Suppose that subdomain 

problems are solved using some LU factorization-based method. One can use the 
same factorization of A? to modify the right-hand side of the system and to solve 
subdomain problems in the preconditioning steps as that suggested in Lemma 3.1. 
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Alternatively, one can obtain w by solving several small Dirichlet problems on each 

subdomain with zero Dirichlet boundary conditions in the overlapping regions 
Q.2ov* In both strategies, the computation can be done in parallel, and no communication is 

needed in a distributed memory implementation. In the first approach, U* is discrete 
harmonic in W, U W and in the second approach, U* is discrete harmonic only 
in W~ou1. We note that the discrete harmonicity of '* on Wi,, is not required for 
the algorithms and for the corresponding theory developed in this paper. 

Let f = f - Aw; then i* is the solution of the following linear system of equations: 

(3.8) Ai* = f. 

Since j'* E V, 

g _ 
P6,* 

is well defined and can be computed without knowing U-* by using the following 
relations: 

a(Pfi*, v) = a(*, v) = (f, v) Vv E and i= 1,..., N. 

More precisely, we can obtain g by solving the subdomain problems 

a(gi, v)=(f, V) Vv E 

for i = 1,..., N and taking g = gl + . + gN. With such a right-hand side, we 
introduce a new linear system 

(3.9) 
P6,* 

= 
g, 

which is equivalent to the linear system (3.8); see Theorem 5.1. The system (3.9) is a 
symmetric positive definite system under the usual energy inner product and therefore 
can be solved using the CG method. RASHO has a few advantages over the classical 
AS preconditioner. Let us recall AS briefly. Let 

Vk ifX E 
eW, (3.10) (R v) (xk) = 

0 otherwise. 

Then the AS operator takes the following matrix form: 

(3.11) P6 = ((A)-1 + ... + (A6N)-) A, 

where A =- R A(R )T . Because of the inclusion of the cut interface nodes, the size 
of the matrix A? is IWi , which is slightly larger than the size of the matrix Af, 
which is IW . In a distributed memory implementation, the operation Rfv involves 

moving data from one processor to another, but the operation RMv does not involve 

any communication. More precisely, in RASHO, if u e V, then it is easy to see that 

(3.12) RAu = RiAu It 
?.,in~u 

where 
Rin 

is defined as 

Vk if Xk E W~, 
(3.13) (R 

',inV)(Xk) 
0 otherwise.in 0 otherwise. 
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Therefore, for functions in V6 we can rewrite P6, as in (3.4), in the following 
form: 

(3.14) P = ((A) ,in +... (A )-1 in) A. 

Although the operator (3.14) does not look like a symmetric operator, it is indeed 

symmetric when applied to functions in the subspace V6. The form (3.12) takes 

advantage of the fact that the operator 
R. 

is communication-free in the sense that 
it needs only the residual associated with nodes in 

Wi,, 

C 
9•. We make some further comments on how the residual Au can be calculated in a 

distributed memory environment for a given vector u E V6. In a typical implemen- 
tation, the matrix A is constructed and stored in the form {A~}; each processor has 
one or several of the subdomain matrix AF . Similarly, u is stored in the form {ui}, 
where ui E 

V•/. 
We note, however, that to compute the residual at nodes 

WTri 
some 

communications are required. The processor associated with subdomain Qf needs 
to obtain the local solution from the neighboring subdomains at nodes connected to 

Wri6n. 
It is important to note that the amount of communication does not depend on 

the size of the overlap, since only one layer of nodes is required. This shows that in 
terms of communication, the RASHO is superior to AS and RAS. 

4. Some two-level versions. As with other domain decomposition methods, 
the convergence rate of the single-level method depends on the number of subdomains. 
To make the algorithm more scalable with respect to the number of subdomains, we 
next introduce two two-level versions of RASHO in this section. This includes an 
additive version and a hybrid version using the same coarse space. 

Standard coarse spaces cannot be used since they are usually not discrete har- 
monic in the overlapping regions. To construct a coarse subspace Vo of V, we introduce 
the coarse basis functions 0'(x), i = 1, ..., N, based on a partition of unity [21] on the 
interface nodes Wr~. For each subdomain, we define the nodal values of 0i(x) E Vi 
as follows: 

1 if Xk E Wri, 
(4.1) 

?i(zk) 
= discrete harmonic if xk E W, U W, o 

0 if xk E W\W. 

Let us denote 
Q(Wrnon) by fno Then 

?i(xk) = 1 at Xk E WVS for the case 

Qf.,non 
f 0 = 0 since all the boundary nodal values of 

-i,non 
belong to WT, and 

therefore have nodal values equal to one. For the case $i,on 
o(9 

0, we have chosen 
to define 

(Ofi,non) 
as the discrete harmonic extension with boundary nodal values 

equal to one on 
Wiin 

and equal to zero at 'i,non n 0Q; note, however, that we do not 
require that 

06 
be discrete harmonic on S 

,no.~ 
If we had chosen qi equal to one at 

all nodes of 
,o 

also for the 
, 0on n 0 

-Q 
5 case, 0i would have a jump from one 

to zero on the neighboring elements of 0Q. This jump would give lower bounds that 
depend on the factor h/H, and such bounds would be poor if the overlap were very 
small. Another possibility for avoiding the discrete harmonicity of 0i on 

Ri,non 
in the 

i,non n 80 
7 

0O case would be the use of the boundary layer technique developed in 
[21]. We note, however, that the bounds of Theorem 5.1 would remain the same as 
well as the analysis, with some minor modifications. 
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The coarse space 
V0 

is simply the space spanned by all linear combinations of the 
coarse basis functions qi, i = 1,..., N. We define P6 : - - 

? 
as the operator such 

that, for any u E Y, 

a(PO u, v) = a(u, v) Vv E V 
A two-level additive version of RASHO can now be introduced with the operator 

N 

(4.2) PC' 
6 

i=O 

The convergence properties of this two-level algorithm will be studied in the next 
section. To describe the computational aspects of the coarse problem, we rewrite the 
above definitions in matrix notation. Recall that n is the total number of nodes in W, 
N is the total number of subdomains, and i' is the coarse basis function. We write 
the fine-to-coarse restriction operator as an N x n matrix 

(RO)Nxn = 
(?i(ZX))i=1,N;k=1,n 

The matrix form of the coarse projection operator ob' is 

(4.3) P" = RToA1RoA, 
where Ao = RioARo is an N x N matrix. 

We remark that Ao is more sparse than coarse space matrices that appear in other 
methods such as Neumann-Neumann or FETI-type algorithms [12, 13, 18, 23], since 

only connections with the neighboring subdomains appear in the stencils associated 
with a coarse basis function. Another feature of this coarse space problem is that the 
computation of the right-hand side, i.e., RoAu for some u, can be done inside each 
Q~ ; this is a clear advantage over regular coarse spaces. 

The two-level additive algorithm (4.2) is easy to code, but the performance isn't 
as good as expected. Some examples are given in the numerical experiments section 
of this paper. We next introduce another two-level algorithm-a hybrid Schwarz 
operator (see [19]) with the error propagation operator given by 

( N 

) 

This is a symmetric operator with which we can work essentially without any extra 

cost, since, when forming powers of the operator (4.4) on building the Krylov space 
on the PCG, we can use the fact that I - P is a projection, and therefore (I- 06)2 = 

I - Po. Subtracting the operator (4.4) from the identity operator I, we obtain the 

operator 

(Ni1 

The spectral properties of yb will be studied in the next section. Some numerical 
results obtained using the additive and the hybrid two-level methods will be presented 
in the numerical experiments section of the paper, and they will both be compared 
with the single-level method. 
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5. Theoretical analysis. The algorithm presented in the previous section is 
applicable for general sparse, symmetric positive definite linear systems. The notions 
of subdomains, harmonic overlaps, the classification of the nodal points, etc. can all 
be defined in terms of the graph of the sparse matrix. In this section we provide 
a nearly optimal estimate for a Poisson equation discretized with a piecewise linear 
finite element method. We estimate the condition number of the RASHO operators 

P6 and P? in terms of the fine mesh size h, the subdomain size H, and the overlapping 
factor 6. We shall follow the abstract AS theory [24] in what follows. 

LEMMA 5.1. Suppose that the following assumptions hold: 
(i) There exists a constant Co such that for any u E V6 there exists a 

decomposition 
N 

S 
i=i, i=0 

where u i E , and 

N 

i0 H1() 
i=0 

(ii) There exist constants eij, i, j = 1,... , N, such that 

a(ui, uj) 
_ 

Eij a(ui, Ui)l/2a(uj, uj)1/2 Vui E hi , Vuj E Vh. 

Then PI is invertible, symmetric; i.e., a(Pu, v) = a(u, P6v), 

(5.1) Co2a(u, u) < a(P1u, u) O (p(E) + 1)a(u, u) Vu E 56 

Here p(&) is the spectral radius of E, which is an (N) x (N) matrix made of {ej }. 
It is trivial to see that p(S) < C. Thus our focus in the rest of the section is 

on bounding Co. For the case of the single-level RASHO, the lemma above can be 
modified by replacing u = 

•No ui, P , and (p(S) + 1) with u = u~n, P6, and 
p(&), respectively. 

To analyze the hybrid algorithm, we use a result due to Mandel [19, Lemma 3.2], 
which in our context is given by the following. 

LEMMA 5.2. The extreme eigenvalues of Pyb, p, and P6 satisfy 

Amin(ph>yb) Amin(P) and Amax(pyb) max(P 
5.1. The partition of unity and a comparison function. The construction 

of a partition of unity is one of the key steps in an AS analysis. Consider 0i(x) defined 
in (4.1). It is easy to see that {Ii(x), i = 1,..., N} restricted to Wr6 forms a partition 
of unity. 

In addition to 0 (x), we also need to construct a comparison function Oi(x) for 
each subdomain OQ. Comparison functions, or barrier functions, are very useful for 
many Schwarz algorithms, such as these on nonmatching grids [6]. We will show that, 
even though Oi(x) E •, and is not in V- as we wished, it can still be used to bound 
functions in V?. Both 6i(x) and 0i(x) depend on the overlapping factor 6. Because 

i (x) is discrete harmonic at W?%o U W6crn and identical to Oi at the remaining 
nodes, we have 

a(a <(0j, O) 
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Type (2) 

. Type (3) 

S( Type (4) 

Type (1) 

Mi ?w,"v 1 

FIG. 5.1. The partition of Q5 into the union of four types of subregions. This is a "floating" 
subdomain with 6 = 2. The collection of "*" forms the set W?. 

To construct the function Oi (x), we first consider the case in which Qo is a floating 
square subdomain. "Floating" refers to the fact that the subdomain doesn't touch 
the boundary 0Q. The extension to cases in which OQ touches the boundary is simple, 
and we will comment on it later. To further simplify our arguments, we assume that 

Q? and its neighboring extended subdomains 0 are squares of the same size, i.e., 
sides of length equal to H + 2(6 + 1)h. This assumption is equivalent to claiming 
that QR has size H and that 6 levels of overlap are applied; see Figure 5.1. We also 
assume that the overlap is not too large; for the analysis given below, 6h no larger 
than H/4 is enough. Our techniques can be modified to consider larger overlaps and 
more complex subdomains, although too large of an overlap has little practical value. 

Roughly speaking, Oi(x) is equal to 0i(x) on W\Wi o1. 
On the overlapping region 

W6,4ot, 
we need to define Oi(x) carefully so that we can control its energy in the H1 

seminorm. For this purpose, we decompose OQ into subregions of four types (see 
Figure 5.1), 

~,•non 

(Type (1)), 1W (Type (2)), 
QiH 

(Type (3)), and O (Type (4)), 
and define Oi(x) on each piece of the subregion separately. 

Type (1). The first subregion is 
Qf,non, which is a square with sides of size H-26h. 

Type (2). The second subregion QO is the area in which Qf overlaps simultane- 

ously with three neighbors cQ. Q? therefore represents the union of the four corner 

pieces of Q2 , i.e., four squares with sides of size (26 + 1)h. 
Types (3) and (4). The area in which Qf overlaps only one neighbor is four 
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rectangles of size H - 26h x (26 + 1)h. We further partition each of the four rectangles 
into three smaller rectangles; i.e., two of them are of 

•0 
type and one of them of ?6H 

type. For instance, without lost of generality, let us consider the intersection of Qf 
with its right-hand neighbor SQ, excluding the corner parts. In this case, the subregion 
to be partitioned is a rectangle of size (26 + 1)h in the x direction and H - 26h in 
the y direction. The partition of this rectangles gives two smaller rectangles of Qf 
type with dimensions 2(6 + 1)h x 6h, and each one has an edge in common with a 
square of Qf" type. We define them as transition subregions because they are placed 
between a corner-type subregion •f 

and a face-type subregion QfH. The f6H face- 
type subregions are the smaller rectangles that are placed between the two smaller 

rectangles of 0f type. QfH face-type regions are of size (25 + 1)h by H - 46h. 
For any node x belonging to a Type (1) region f,non, 

we define Oi (x) to be equal 
to one, i.e., equal to i'(x). Therefore 

IHl( ii i() 20(X)Hl(Q6 
= 0. 

i,non) -fl~n fl 

We next define i (x), node by node, in 
Q6,o, 

which is the union of corner-, 
transition-, and face-type regions defined above. 

For a Type (2) region Qf6, let Q be such a square with vertices V1 = (a, b), V2 = 
(a + (25 + 1)h, b), V3 = (a, b + (26 + 1)h), and V4 = (a + (26 + 1)h, b + (26 + 1)h). 
We assume that V1, V2, and V4 belong to 0fQ. In other words, Q is located on 
the southeast corner of f. Let us also introduce another square region Q, with 
vertices V3 = (a, b + (25 + 1)h), V1 = (a, b + 6h), V2 = (a + (6 + 1)h, b + Sh), and 

V4 = (a + (6 + 1)h, b + (25 + 1)h). Note that Q is contained in Q, with V3 as the 
common vertex. To define Oi(x) on Q, we set 0 (V3) = 1, I (Vi) = 0, 0~(V2) = 0, 
Oi(V4) = 0. At the remaining nodes x on the edges V1V2 and V2V4 we set Oi(x) = 0, 
and on the edges V3V1 and V3V4 we set Oi(x) = 1. For nodes on Q\Q we set 0i(x) = 0. 
It remains only to define O (x) for nodes x in the interior of Q. To define 0i(x) there, 
we use a well-known cutoff function technique, such as the one introduced in Lemma 
4.4 of [10], but for two-dimensional square regions. An illustrative picture of Oi(x) in 
a typical region Qf6 is shown in Figure 5.2. For the completeness of this paper, we 
include the construction below. Let C be the center of the square Q. The construction 
of Oi(x) is defined by the following steps: 

(1) Define 0%(V3) = 1, 8i(V2) = 0, O(V1) = 0, and 0(V4) = 0. 

(2) For a point P that belongs to the segments V3V4 or V3V1, define Oi(P) = 1. 
For a point P that belongs to the segments V4V2 or V1V2, define Oi(P) = 0. 

(3) For a point Y that belongs to the line segment connecting C to V3, define 

0i(Y) by linear interpolation between values Oi(C) = 1/2 and Oi(V3) = 1. For 
a point Y that belongs to the line segment connecting C to V2, define 0i(Y) 
by linear interpolation between values 0i(C) = 1/2 and Oi(V2) = 0. 

(4) For a point S that belongs to a line segment connecting a point Y to a vertex 

V1 
or V4, define I0(S) = Oj(Y). 

(5) Note that the 0i is defined everywhere on Q UBQ. 0i is continuous everywhere 
except at the points V1 and V4. We redefine O• as the continuous piecewise 
linear finite element function given by the standard pointwise interopplation. 

The most important observation of the construction of Oi(x) inside Q is that 

IV0i(x) I < C/r near V1 or V4. Here r is the distance of x from V1 or V4. Therefore, 
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FIG. 5.2. An illustrative picture of Oi(x) in a typical region i0. 

we obtain (see [10] and [23]) 

Oi(x)2(Q)H 

= 
1o(x)21() 

C 
(1+ log 

(6 + )h 
))=C(1 

+ 
log(6 

+ 1)). 

Since inside of O4 there are four of those squares, we obtain 

i, (X2)Il(<) 
c 0c(1 + log(6 + 1)). 

Type (3) regions consist of transition-type rectangles. Let us consider one of them 
and denote it by T, which we assume has vertices at V3 = (a, b + (26 + 1)h), V4 = 

(a+(2+l1)h, b+(26+l1)h), V5 = (a, b+(36+l1)h), and V6 = (a+(26+1)h, b+(36+1)h). 
Note that T stands on top of the square Q introduced above and has the common edge 
V3V4. We define 90(x) over the edge V3V4 to be equal to 0i(x). Over the edge V3V5, 
we set Oi(x) = 1. Over the edge V4V6, we set 9O(x) = 0. And over the edge V5V6 we let 

Oi(x) decrease linearly from the value 1 to 0. What remains is to define 0%(x) inside T. 
Let us define the nodes V, = (a+Sh, b+(26+ 1)h) and Vr = (a + (+ 1)h, b+ (26+ 1)h), 
which is the same as the node V4 used in the description of Type (2) regions. The 
nodes V1 and Vr are exactly the places on the edge V3V4 where i (x) jumps from 1 to 
0. On the triangle V3 VV5 we set Oi(x) = 1. On the triangle VrV4 V6 we set 9O(x) = 0. 
On the region VV,rV6V5, we let Oi(x) decrease linearly in the x direction from the 
value 1 to 0. We note that next to the nodes ViV,, Oi(x) has a singular behavior 
similar to IVOi (x) I C/r, where r is the distance from x to the line V1 V,. Similarly, 
we have 

-i(x) 
12(H<I 0(1 + log(6 + 1)). 
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Since there are eight rectangles of Type (3) inside Of , we obtain 

|< (x)|2H(O <) C (1 + log(6 + 1)). 

Type (4) regions are rectangles of face type. Let R be one of them, and assume 
that the vertices are given by V5 = (a, b+(36+ 1)h), V6 = (a+ (26+ 1)h, b+(36+ 1)h), 
V7 = (a,b+H- (6- 1)h), and Vs = (a + (26 + 1)h, b + H - (6 - 1)h). Note that R is 
on the top of the rectangle T defined above, and its height is H - 46h. The vertices 

V16 and Vs are the vertices that belong to &aQf. We define Oi (x) = 1 if x is on the 
edge V1/51/V7, and Oi(x) = 0 if x is on the edge V6Vs, and Oi(x) is linear in the horizontal 
direction for the remaining points. We then obtain 

H - 46h 

,i(X)|2H (R) - (25+ 1)h' 

Since there are four of those rectangles inside Q2H, we obtain 

H - 46h H 
Ji(s)|H1(O H) ?(26 + 1)h (26 + 1)h' 

For the cases in which Q0 touches the boundary 0Q, the analysis needs to be 
modified slightly. The first modification is because the shape of the overlapping region 
changes slightly, i.e., the longer side is shorter; it is easy to see that we get similar 
bounds as before. The other modification is because 0i on W,,on is not identically 
equal to one and therefore the corresponding energy is not necessarily zero; for this 
case we can design Oi similarly and obtain 

| )Hl(Q, )< C 1 + log 

Putting all the pieces of Oi(x) together, we see that Oi(x) E 14, and it is equal to 

'i(x) on Wr6. Adding all the estimates on subregions of the four types, we arrive at 
the following lemma. 

LEMMA 5.3. For i = 1,... , N, Oi(x) E ,1i, qi(x) E 6 4, and the following hold: 
(1) 1bi12 ? I<i,12 H1(2)) - H1(?) 
(2) 

1Oi2(2 <C\n) 1+1og(6+1)+ (26 
+1)h HlO\Q? %,non) (6+-)) 

(3) If ,non n 0 = 0, then il2H(n ) = 0. 
(4) If nf, 

non 
& 0, then 

10,12H <C1l+10gH 
H (W 

.. . .) 
- 

Here C > 0 is independent of the parameters h, H, and 6. 

5.2. A bounded partition lemma. To obtain the parameter Co of assumption 
(i) of the abstract AS theory (see Lemma 5.1), we construct a decomposition of V5 
and prove its boundedness below. 
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LEMMA 5.4. There exists a constant C > 0, independent of h, H, and 6, such 
that for any u e V6 there exist vi E V' such that 

N 

(5.2) u = vi 
i=O 

and 

(vi2Hi()))( (25 + 1)h ) u 2H( 
(5.3) i=o 

+C(1 + log(6 + 1)) 1 + log ul| HI(U ) 

In addition, there exist ui E V? such that 

N 

(5.4) u = ui 
i= 1 

and 

Nlu •2i () 
< C (1 + log(6 + 1)) 1 + lg ) UH( 

(5.5) i=1 

1 ( Hz \t (26 
+ ?)h )lh 

Proof. We first construct the decomposition (5.4). For any given u E V6 we define 

ui E • i as 

SU(Xk) 
if 

Xk 
E W~in 

ui(xk) = discrete harmonic if 
xk E W6iOt 

0 if xk E W\Wi. 

It is easy to see that (5.4) holds. We next construct the decomposition (5.2). For 

i = 1,..., N, let us define vi E V by 

vi = ui - UiCi E , 

where 

S 1 udx 

is the average of u on the extended region OQ,. Here IQ is the area of the region OQ,. 
We also define 

N 

i= 1 

It is easy to see that (5.2) holds. 
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The next step is to bound 
E•N Ivi1 21(). 

To bound each term vil( 2 ), = 

1,..., N, we use Oi(x), i = 1,..., N, introduced before. Consider 
vi 

e V defined as 
follows: 

i (x) = Ih(Oi(X)(u(x) - ui)). 

Note that bi(x) is equal to vi(x) on Wr6 and on 40f. On 
vo 

i is discrete 
harmonic. Therefore, we have 

Ivi 
1Hl(o 

<) i H1Q ov) 
i, 

-- l 
i,ovd) 

In addition, vi(x) is identical to bi on 
,non 

whenever 
f, 

does not touch 092. For 
such cases, we next devote the proof to the estimate of Ibi12H1(o) in terms of lul2H(o). 

,not touch 12 is done The estimate of Ivi2I (O for the case in which 
non 

doe nottouch is done 
afterwards in (5.10). .. on) 

Let K be an element of Wf, and let us define wi = u - ui; then 

(5.6) Iil2H1(K) = IIh(OiWi)2Hl (K) ? 2|1wi i(K) + 2lIh((#i - Oi)wi)l2H~ (K)* H-K) - H-K)Hl(K)" 

Here, Oi is the average of 0i on K, and Ih is the standard pointwise interpolation. To 
estimate the first part of (5.6) we use the fact that 10 I< 1 to obtain 

IiWil2H1(K) = 0-e(U - 
"i)I•HI(K) 

I - iJH1I(K) = 
2UI1•(K). 

The last equality comes from the fact that ij is a constant. For the second part of 
(5.6), according to an inverse inequality, we have 

(5.7) IIh((oi - Oi)wi)l 1 (K) < C IIh((i - i)wi) 2(K)1 H()- T2 2(K)" 

To obtain the bound for the right-hand side of (5.7), we consider the element K in 
four different situations corresponding to the four types of subregions into which the 
the subregion Q is split, i.e., 

Wi,non 
? H, , and 2Q . 

The proof for the cases K c QH and K C Of are nearly the same, so we only 
consider one of them here. For K C Q2H, since 

I- 1Oi (K)< C (26 + l)h 
we obtain 

1 h11 Ih - iW,)I22(K) - (( 1 IW,12 
h2 h 

L(-)Ei L2(K) ((26 + 1)h)2 il2(K)' 

Applying a technique developed in Dryja and Widlund [11], we obtain 

(5.8) ((26 +11)h)2 L2(H) (26 + 1)h lil7H() + H((26 + 1)h) L2( ) 

Using the fact that Iwi 2I( I 2uH( 
6 and a Friedrichs inequality, we have 

Hl(W) H (W) 

(5.9) ILw 
2 i ? cH21u2 L•(a ) -- (n6•)? 
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Combining the estimates (5.8) and (5.9), we obtain 

1 H 

((26 + 1)h)2IWiL2( 2H) (26 + 1)hUH 

For the case when K C Qf6, we use similar arguments as in Dryja, Smith, and 
Widlund [10] to obtain 

(5.10) Ih((Oi - Oi)wi)l12 (K) clwil2(K), 
KEf•6 K E06 

where ch < r < C((6 + 1)h) is the distance to those "cut pieces." We have used here 
that 9~(x) has the singular behavior C/r on Qf0. We then have 

(5.11) 2iIIL2(K) < C 
C()h 

r-2rllwi ( )ddr 
Ke ch a 

and 

(5.12) L w oo(Q2) 1 + og H( II(nf) 

For the inequality (5.12), we have used a well-known result (see Bramble [2]) 

IIu - 
fil2L•o(Q6) 

) IjU - iiLoo(QA ) 
? C 1 log u- +iI 2H( f) 

and that -ii is the average of u on Q?, i.e., a Friedrichs inequality, 

fu - fi112H( <) CIU12HI(O) 

Putting (5.11) and (5.12) together, we obtain 

-1 

2 

(1 + H( )) + 
0U2H-(n )" 

(5.13) 5 : 
IIW•jiI2 

(K) < C (1 + log(6 + 1)) 1 + log(U 
KEQfAb 

For the case K C R ;oFn, if Q is a floating subdomain, which is to say that 
2,rnon does not touch &09, then Oi - Oi is zero. If 

6,non 
touches the boundary &Q, then the 

estimate becomes 

Ivil, < C (JU12 ,+ I~ii 111 10i12 H1iH'R Hl(WHl( ti2 '( non 2 
i(O,non 

2 i H ZO,non)) 
(5.14) 

< C 1 + 
log l 2Hl( 

-•i -h)" 

Here we have used Lemma 5.3 and that for the cases i E c9 we can use a Poincare 

inequality to obtain 

(5.15) 5 li12 < c E41lIIUI1 ? 2 C (,U1(, ? CIUIH,(). 
iE60 iEOf2 iEi9 
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Here we have introduced the notation i E oQ to denote the subdomains Q that touch 
the boundary 809 with a face. 

Putting everything together, we have shown that 

N 

~,IVi IH 1( 0 ) 
i= 1 

<c (2H H) u12HI(Q) + 
C(1l+ 

log(6 + 1)) 
1 + log IU1() 

SC (((2 + 1)h )) 
HH1 

(5.16) 
We remark that the bound (5.3) follows from (5.16). To see this, we use that vo = 

u - Ej vi, the triangular inequalities, and (5.16) to obtain (5.3). 
We now consider the bound for the one-level RASHO method, i.e., to bound 

•=1 
ui. Note that 

N N N 

Sui = + uii. 
i=1 i=1 i=1 

For the second sum above, we first use Lemma 5.3 to obtain 

i H ii l() N 
i=1 

< C 1 + log i2 + C 1 + log(6 +1) + (2 + )h 

l 

I 
i2" 

iEaQ i=1 

We then use the Cauchy-Schwarz and Friedrichs inequalities to obtain 

N N 2 N 

i=+1 i=1 II i= L2 

1 1 
< cHU2 2 <C2 2 H2 L A - 

H2 IHl(n)- 

For the cases i E M0, we use (5.15). The inequality (5.5) then follows. 0 

5.3. The main theorem. We state the main theorem of this paper here. The 
proof follows directly from all the abstract Schwarz theory given by Lemmas 5.1, 5.2, 
and 5.4. 

THEOREM 5.1. The RASHO operators P, C, and P6b a 
inner product a(., .), nonsingular, and bounded from below and above: 

Co 2a(u, u) < a(Pu, u) C, a(u, u) Vu E ?61 

C6-2a(u, u) ? a(P6u, u) ? Cla(u, u) Vu E , 

and 

K ('5h',y b) < K (PC' ) - 

Here 

C = ( (26 + 1)h + (1 + log(& + 1)) 
1 +?log 
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and 

C 
( + log(6 + 1)) 

(1 H I 
+ log 1+ 1) + 

(2H 1)h Cg-C (l+log(5+l)) l+log 
H2 

(+l- 
11g(5+1)+ 

(25 +1)h . 

The constants C, C1, 1 > 0 are independent of h, H, and 6. 
We remark that the corresponding convergence rate estimate for the regular one- 

level AS methods [11], in terms of the constant Co, is 

= +( 
1 

H 

H(26 + 1)h) 
and that for the two-level additive Schwarz method is 

C = C (1+ 

The lower bound C^ of the one-level RASHO algorithm is theoretically slightly worse 
than the lower bound of regular AS algorithm in the case of large overlap, but roughly 
the same for small overlap. For small overlap, the lower bounds of both algorithms 
behave like O(H/h). When the overlap gets larger, the RASHO scheme starts to feel 
the factor log(H/h), and the performance gets worse than the additive version for 

large overlap. On the other hand, the upper bound C1 of RASHO is smaller than 
the upper bounds of AS. We can see this since V-6 C V6 Vk implies that the positive 
numbers eij defined in Lemma 5.1 are smaller for RASHO than the corresponding 
eij for AS. Consequently, the spectral radius ? of RASHO is smaller. Because C1 
of RASHO is smaller, the numerical performance of RASHO presented in the next 
section is better than that of AS for the practical cases. Similar considerations also 

apply to the two-level RASHO methods. 

6. Numerical experiments. In this section, we present some numerical results 
for solving the Poisson equation on the unit square with zero Dirichlet boundary condi- 
tions. We compare the performance of RASHO- and AS-preconditioned CG methods 
in terms of the number of iterations and the condition numbers. We pay particular 
attention to the dependence of the performance on the number of subdomains and 
the size of overlap. 

We first discuss a few implementation issues related to the new preconditioner. 
In order to apply the RASHO/CG method, it is necessary to force the solution to 

belong to V6. To do this, a pre-CG-computation is needed, and it is done through 
the formula (3.5). We note that u = u* - w E V6 (see Lemma 3.1), and therefore we 
can apply the regular preconditioned CG to the RASHO-preconditioned system (3.9). 
The AS/CG is the classical AS preconditioned CG as described in [8]. We note that 
in the case 6 = 0, i.e., ovlp = h, RASHO and AS are the same. 

The stopping condition for the CG method is to reduce the initial residual by a 
factor of 10-6. The exact solution of the equation is u(x, y) = e5(x+y) sin(wx) sin(7ry). 
All subdomain problems are solved exactly. The iteration counts (iter), condition 
numbers (cond), maximum (max) and minimum (min) eigenvalues of the precondi- 
tioned matrix are summarized in Tables 6.1-6.5. 

From Tables 6.1, 6.2, and 6.3, it is clear that for overlap not too large and for 
mesh not too small, which is the case of practical interest, the one-level RASHO/CG 
outperforms the classical one-level AS/CG in terms of the iteration counts and con- 
dition numbers. In this case of small overlap, the condition number of RASHO is 
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TABLE 6.1 
One-level RASHO- and AS-preconditioned CG for solving the Poisson equation on a 128 x 128 

mesh decomposed into 2 x 2 = 4 subdomains with overlap = ovlp. The AS/CG results are shown in 
( ). The "+1" is for the preprocessing step needed for RASHO. 

ovlp iter cond max min 
h 42 (42) 129.(129.) 1.98 (1.98) 0.0154 (0.0154) 

3h 24+1 (28) 48.4 (86.3) 1.94 (4.00) 0.0402 (0.0464) 
5h 20+1 (23) 33.3 (51.8) 1.91 (4.00) 0.0574 (0.0773) 
7h 18+1 (20) 27.2 (37.0) 1.89 (4.00) 0.0694 (0.1081) 

TABLE 6.2 
One-level RASHO- and AS-preconditioned CG for solving the Poisson equation on a 32 * 

DOM x 32 * DOM mesh decomposed into DOM x DOM subdomains with overlap = 3h, i.e., 
6= 1. 

DOM x DOM iter cond max min 
2 x 2 19+1 (20) 26.8 (43.7) 1.89 (4.00) 0.0708 (0.0916) 
4 x 4 39+1 (42) 86.9 (145.) 1.95 (4.00) 0.0225 (0.0276) 
8 x 8 75+1 (78) 328. (550.) 1.97 (4.00) 0.0060 (0.0073) 

16 x 16 147+1 (156) 1295 (2168.) 1.98 (4.00) 0.0015 (0.0018) 

TABLE 6.3 
One-level RASHO-and AS-preconditioned CG for solving the Poisson equation on an n x n 

mesh decomposed into 4 x 4 subdomains with overlap = 3h, i.e., 6 = 1. 

DOM x DOM iter cond max min 
64 x 64 30+1 (29) 50.1 (72.2) 1.91 (4.00) 0.0382 (0.0554) 

128 x 128 39+1 (40) 86.9 (145.) 1.95 (4.00) 0.0225 (0.0276) 
256 x 256 53+1 (56) 159.9 (290.7) 1.98 (4.00) 0.0124 (0.0138) 
512 x 512 74+1 (77) 305.6 (582.1) 1.99 (4.00) 0.0065 (0.00069) 

TABLE 6.4 
Two-level hybrid and additive RASHO for solving the Poisson equation on a 32 * DOM x 32 * 

DOM mesh decomposed into DOM x DOM subdomains with overlap = 3h, i.e., 6 = 1; the two-level 
additive RASHO results are shown in ( ). 

DOM x DOM iter cond max min 
2 x 2 27+1 (30+1) 24.2 (45.9) 1.82 (2.90) 0.0751 (0.0634) 
4 x 4 32+1 (46+1) 27.2 (53.3) 1.80 (2.93) 0.0662 (0.0551) 
8 x 8 33+1 (52+1) 28.4 (55.3) 1.80 (2.94) 0.0634 (0.0533) 

16 x 16 33+1 (52+1) 28.8 (55.8) 1.80 (2.94) 0.0625 (0.0528) 

TABLE 6.5 
Two-level hybrid and additive RASHO CG for solving the Poisson equation on a 512 x 512 mesh 

decomposed into 16 x 16 = 256 subdomains with overlap = ovlp. The two-level additive RASHO 
results are shown in ( ). 

ovlp iter cond max min 
h 86 +1 (109+1) 307 (275.7) 1.96 (3.74) 0.0064 (0.0136) 

3h 44 +1 (68+1) 48.0 (95.7) 1.87 (2.98) 0.0391 (0.0312) 
5h 36 +1 (58+1) 32.8 (70.1) 1.83 (2.95) 0.0558 (0.0421) 
7h 31 +1 (53+1) 27.3 (59.8) 1.80 (2.93) 0.0662 (0.0491) 

almost twofold smaller than AS. This is an important result since it is easy to modify 
a (parallel) one-level AS/CG code to obtain a one-level RASHO/CG implementation. 
Although we do not have any parallel results to report here, we confidently predict 
that RASHO/CG would be even better than AS/CG on a parallel computer with dis- 
tributed memory, since many less communications are required. Also the local solvers 
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in RASHO are slightly cheaper, since the local solvers have slightly smaller numbers 
of unknowns than for the regular AS. From Table 6.4 we see that both the two-level 
hybrid and additive versions of RASHO attain scalability in terms of number of iter- 
ations when the number of subdomains becomes large; the hybrid version reaches the 
asymptotic behavior sooner than the additive version. The hybrid version is superior 
to the additive version since the number of iterations is much smaller. Finally, from 
Table 6.5 we see that larger overlap reduces dramatically the number of iterations. 
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