404 research outputs found

    Semi-Blind Spatially-Variant Deconvolution in Optical Microscopy with Local Point Spread Function Estimation By Use Of Convolutional Neural Networks

    Full text link
    We present a semi-blind, spatially-variant deconvolution technique aimed at optical microscopy that combines a local estimation step of the point spread function (PSF) and deconvolution using a spatially variant, regularized Richardson-Lucy algorithm. To find the local PSF map in a computationally tractable way, we train a convolutional neural network to perform regression of an optical parametric model on synthetically blurred image patches. We deconvolved both synthetic and experimentally-acquired data, and achieved an improvement of image SNR of 1.00 dB on average, compared to other deconvolution algorithms.Comment: 2018/02/11: submitted to IEEE ICIP 2018 - 2018/05/04: accepted to IEEE ICIP 201

    Fundamental and Harmonic Ultrasound Image Joint Restoration

    Get PDF
    L'imagerie ultrasonore conserve sa place parmi les principales modalités d'imagerie en raison de ses capacités à révéler l'anatomie et à inspecter le mouvement des organes et le flux sanguin en temps réel, d'un manière non invasive et non ionisante, avec un faible coût, une facilité d'utilisation et une grande vitesse de reconstruction des images. Néanmoins, l'imagerie ultrasonore présente des limites intrinsèques en termes de résolution spatiale. L'amélioration de la résolution spatiale des images ultrasonores est un défi actuel et de nombreux travaux ont longtemps porté sur l'optimisation du dispositif d'acquisition. L'imagerie ultrasonore à haute résolution atteint cet objectif grâce à l'utilisation de sondes spécialisées, mais se confronte aujourd'hui à des limites physiques et technologiques. L'imagerie harmonique est la solution intuitive des spécialistes pour augmenter la résolution lors de l'acquisition. Cependant, elle souffre d'une atténuation en profondeur. Une solution alternative pour améliorer la résolution est de développer des techniques de post-traitement comme la restauration d'images ultrasonores. L'objectif de cette thèse est d'étudier la non-linéarité des échos ultrasonores dans le processus de restauration et de présenter l'intérêt d'incorporer des images US harmoniques dans ce processus. Par conséquent, nous présentons une nouvelle méthode de restauration d'images US qui utilise les composantes fondamentales et harmoniques de l'image observée. La plupart des méthodes existantes sont basées sur un modèle linéaire de formation d'image. Sous l'approximation de Born du premier ordre, l'image RF est supposée être une convolution 2D entre la fonction de réflectivité et la réponse impulsionelle du système. Par conséquent, un problème inverse résultant est formé et résolu en utilisant un algorithme de type ADMM. Plus précisément, nous proposons de récupérer la fonction de reflectivité inconnue en minimisant une fonction composée de deux termes de fidélité des données correspondant aux composantes linéaires (fondamentale) et non linéaires (première harmonique) de l'image observée, et d'un terme de régularisation basé sur la parcimonie afin de stabiliser la solution. Pour tenir compte de l'atténuation en profondeur des images harmoniques, un terme d'atténuation dans le modèle direct de l'image harmonique est proposé sur la base d'une analyse spectrale effectuée sur les signaux RF observés. La méthode proposée a d'abord été appliquée en deux étapes, en estimant d'abord la réponse impulsionelle, suivi par la fonction de réflectivité. Dans un deuxième temps, une solution pour estimer simultanément le réponse impulsionelle et la fonction de réflectivité est proposée, et une autre solution pour prendre en compte la variabilité spatiale du la réponse impulsionelle est présentée. L'intérêt de la méthode proposée est démontré par des résultats synthétiques et in vivo et comparé aux méthodes de restauration conventionnelles

    Statistical methods for analysis and processing of medical ultrasound: applications to segmentation and restoration

    Get PDF
    In this thesis two major topics inherent with medical ultrasound images are addressed: deconvolution and segmentation. In the first case a deconvolution algorithm is described allowing statistically consistent maximum a posteriori estimates of the tissue reflectivity to be restored. These estimates are proven to provide a reliable source of information for achieving an accurate characterization of biological tissues through the ultrasound echo. The second topic involves the definition of a semi automatic algorithm for myocardium segmentation in 2D echocardiographic images. The results show that the proposed method can reduce inter- and intra observer variability in myocardial contours delineation and is feasible and accurate even on clinical data

    Line detection as an inverse problem:application to lung ultrasound imaging

    Get PDF

    Blind deconvolution of medical ultrasound images: parametric inverse filtering approach

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.910179The problem of reconstruction of ultrasound images by means of blind deconvolution has long been recognized as one of the central problems in medical ultrasound imaging. In this paper, this problem is addressed via proposing a blind deconvolution method which is innovative in several ways. In particular, the method is based on parametric inverse filtering, whose parameters are optimized using two-stage processing. At the first stage, some partial information on the point spread function is recovered. Subsequently, this information is used to explicitly constrain the spectral shape of the inverse filter. From this perspective, the proposed methodology can be viewed as a ldquohybridizationrdquo of two standard strategies in blind deconvolution, which are based on either concurrent or successive estimation of the point spread function and the image of interest. Moreover, evidence is provided that the ldquohybridrdquo approach can outperform the standard ones in a number of important practical cases. Additionally, the present study introduces a different approach to parameterizing the inverse filter. Specifically, we propose to model the inverse transfer function as a member of a principal shift-invariant subspace. It is shown that such a parameterization results in considerably more stable reconstructions as compared to standard parameterization methods. Finally, it is shown how the inverse filters designed in this way can be used to deconvolve the images in a nonblind manner so as to further improve their quality. The usefulness and practicability of all the introduced innovations are proven in a series of both in silico and in vivo experiments. Finally, it is shown that the proposed deconvolution algorithms are capable of improving the resolution of ultrasound images by factors of 2.24 or 6.52 (as judged by the autocorrelation criterion) depending on the type of regularization method used
    • …
    corecore