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Résumé

L’imagerie ultrasonore conserve sa place parmi les principales modalités d’imagerie en raison de ses

capacités à révéler l’anatomie et à inspecter le mouvement des organes et le flux sanguin en temps

réel, d’un manière non invasive et non ionisante, avec un faible coût, une facilité d’utilisation et une

grande vitesse de reconstruction des images. Néanmoins, l’imagerie ultrasonore présente des limites

intrinsèques en termes de résolution spatiale.

L’amélioration de la résolution spatiale des images ultrasonores est un défi actuel et de nombreux

travaux ont longtemps porté sur l’optimisation du dispositif d’acquisition. L’imagerie ultrasonore

à haute résolution atteint cet objectif grâce à l’utilisation de sondes spécialisées, mais se confronte

aujourd’hui à des limites physiques et technologiques.

L’imagerie harmonique est la solution intuitive des spécialistes pour augmenter la résolution lors de

l’acquisition. Cependant, elle souffre d’une atténuation en profondeur. Une solution alternative pour

améliorer la résolution est de développer des techniques de post-traitement comme la restauration

d’images ultrasonores.

L’objectif de cette thèse est d’étudier la non-linéarité des échos ultrasonores dans le processus de

restauration et de présenter l’intérêt d’incorporer des images US harmoniques dans ce processus.

Par conséquent, nous présentons une nouvelle méthode de restauration d’images US qui utilise les

composantes fondamentales et harmoniques de l’image observée. La plupart des méthodes existantes

sont basées sur un modèle linéaire de formation d’image. Sous l’approximation de Born du premier

ordre, l’image RF est supposée être une convolution 2D entre la fonction de réflectivité et la réponse

impulsionelle du système. Par conséquent, un problème inverse résultant est formé et résolu en
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utilisant un algorithme de type ADMM. Plus précisément, nous proposons de récupérer la fonction

de reflectivité inconnue en minimisant une fonction composée de deux termes de fidélité des données

correspondant aux composantes linéaires (fondamentale) et non linéaires (première harmonique)

de l’image observée, et d’un terme de régularisation basé sur la parcimonie afin de stabiliser la

solution. Pour tenir compte de l’atténuation en profondeur des images harmoniques, un terme

d’atténuation dans le modèle direct de l’image harmonique est proposé sur la base d’une analyse

spectrale effectuée sur les signaux RF observés. La méthode proposée a d’abord été appliquée en

deux étapes, en estimant d’abord la réponse impulsionelle, suivi par la fonction de réflectivité. Dans

un deuxième temps, une solution pour estimer simultanément le réponse impulsionelle et la fonction

de réflectivité est proposée, et une autre solution pour prendre en compte la variabilité spatiale du la

réponse impulsionelle est présentée. L’intérêt de la méthode proposée est démontré par des résultats

synthétiques et in vivo et comparé aux méthodes de restauration conventionnelles.
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Abstract

Ultrasound imaging maintains its position among the leading imaging modalities because of its abil-

ities to reveal anatomy and inspect organ movement and blood flow in real time, with noninvasive,

non-ionizing risk, low cost, ease of use, and high speed of image reconstruction. Nevertheless, ultra-

sound imaging has some intrinsic limitations in terms of its spatial resolution.

Improving the spatial resolution of ultrasound images is a current challenge and many works have

long been concerned with the optimization of the acquisition device. High-resolution ultrasound

imaging achieves this goal through the use of specialized probes, but is now encountering physical

and technological limitations.

Harmonic imaging is the intuitive solution for specialists to increase the resolution during acquisition.

However, it suffers from attenuation at depth. An alternative solution to improve resolution is to

develop post-processing techniques as restoration of ultrasound images.

The objective of this PhD thesis is to investigate the non-linearity of ultrasound echoes in the restora-

tion process and present the interest of incorporating harmonic US images into the process. Therefore,

we present a new US image restoration method that utilizes the fundamental and harmonic compo-

nents of the observed image. Most of the existing methods are based on a linear image formation

model. Under the first-order Born approximation, the RF image is assumed to be a 2D convolution

between the TRF and the point spread function of the system. Therefore, a resulting inverse prob-

lem is formed and solved using an ADMM-like algorithm. More specifically, we propose to recover

the unknown TRF by minimizing a function composed of two data fidelity terms corresponding to

the linear (fundamental) and nonlinear (first harmonic) components of the observed image, and a
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sparsity-based regularization term to stabilize the solution. To account for the attenuation in the

depth of harmonic images, an attenuation term in the direct model of the harmonic image is proposed

based on a spectral analysis performed on the observed RF signals. The proposed method was first

applied in a two-step manner: first estimating PSF, followed by estimating TRF. In a second step,

a solution to simultaneously estimate the PSF and the TRF is proposed, and another solution to

account for the spatial variability of the PSF is presented. The interest of the proposed method is

shown on synthetic and in vivo results and compared with the conventional restoration methods.
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4.8 (a) Zero phase fundamental PSF ĥf , (b) Estimated fundamental PSF hf , (c) Zero
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2 Chapter 1 - Introduction

1.1 Context of ultrasound imaging

An acoustic wave is a mechanical wave that creates vibration in a medium and propagates with a

proper sound velocity. During propagation, the sound waves create a successive series of compression

and decompression in the adjacent region of the medium in the direction of propagation. The

wavelength of the sound waves, λ, is the spatial period where the sound pattern repeats in the

medium:

λ = c

f
(1.1)

where f is the wave frequency and c is the speed of sound in the medium. In the soft tissues, the

average of speed of sound is about 1540 m s−1.

Ultrasound (US) refers to the sound waves with frequencies higher than the upper limit of human

hearing which is 20,000 Hz. In the middle of 18th century, Lazzaro Spallanzani discovered that the

reflected echoes of inaudible sound help bats to navigate. In the early of the 20th century, the Austrian

neurologist Karl Dussik exploited transmitted ultrasound waves for the study of the brain ventricles.

Later, the Swedish cardiologist Inge Edler, and the German physicist Carl Hellmuth Hertz were the

first to use ultrasound in the study of heart movement, so-called echocardiography, by studying the

reflected ultrasound waves [SG07]. Since that discovery, followed by the improvement in the field

of electronics in the mid of the 20th century, US imaging is widely used until these days in several

medical application for diagnostic and therapeutic reasons:

• Diagnostic ultrasound

In this category, US is mainly used as imaging tool, where US images had become a essential

reference for the physician’s diagnosis. Thus, US images can be in the following applications:

– Fetal ultrasound imaging is used to examine a fetus during pregnancy. It is also used to

view the ovaries and uterus during pregnancy.

– An abdominal ultrasound examines abdominal organs and tissues.

– Breast ultrasound screening can help detect breast cancer in women.
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– Bone sonometry is a type of ultrasound imaging that play a growing role in the assessment

and management of osteoporosis.

– An echocardiogram is the US imaging of the heart. Echocardiograms are often combined

with Doppler ultrasound, which visualizes blood flow through blood vessels and organs.

– Opthalmic ultrasound examines traumatic eye injuries, evaluates of intraocular tumors,

retinal detachment and vascular disease.

– Ultrasound can help assess joint inflammation.

– Pelvic Ultrasound can examine the uterus, bladder, or prostate. A pelvic ultrasound can

diagnose abnormal bleeding, pain, menstrual problems, ovarian cysts, kidney or bladder

stones, and cancer in the uterus or ovaries.

– Ultrasound skin imaging is used to detect skin cancer and inflammatory conditions as well

as in cosmetic.

• Therapeutic Applications

Based on their physical characteristics, the US waves are used, in this case, to treat some

medical problems [TH07]. Some typical applications in this category include:

– High intensity focused ultrasound (HIFU) consists of applying high power energy on a

focal point. This mechanism leads to instantaneous cell death and coagulative necrosis

– Lithotripsy is used to treat kidney, liver or bladder stones using high energy shock waves.

– Sonophoresis used to increase the penetration of pharmacologically active drugs through

the skin.

– Sonothrombolysis can aid the dissolution of blood clots.

There exist many other applications. The therapeutic application of US is out of the scope of

this thesis.

Nowaday, US imaging keeps several advantages over other medical imaging modalities. First, US

presents one of the lowest cost techniques among medical imaging modalities. US imaging can also
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Modality Ultrasound X-ray CT MRI

Physical agent Ultrasound X-ray X-ray Magnetic field

Principle Mechanical properties Mean tissue absorption Tissue absorption Biochemistry

Spatial resolution
frequency and axially
dependent 0.3− 3 mm ∼ 1 mm ∼ 1 mm ∼ 1 mm

Penetration frequency dependent 3− 25 cm Excellent Excellent Excellent

Safety Very good Ionizing radiation Ionizing radiation Very good

cost $ $ $$$$ $$$$$$$S

Portability Excellent Good Poor Poor

Speed ≤ 10 ms ∼ 1 min ≥ 1 min ≤ 0.1 s

Table 1.1: Comparison of imaging modalities [Sza04].

deliver a high frame rate, which helps to obtain a real-time imaging of the moving organs as in

echocardiography. In addition, US is non-ionizing, unlike computed tomography (CT) and X-ray,

and harmless to the human body (see Table 1.1). All the cited advantages have placed the US

imaging in the top of used imaging techniques in the medical diagnosis phase.

Despite all the previously cited advantages, US imaging cannot compete with most of the other

medical imaging modalities in terms of image quality, where the resolution represents one of the most

important criteria. The resolution represents the ability of the imaging system to distinguish fine

details. One can see in Table 1.1 that the spatial resolution of US images is frequency dependant.

Thus, one of the intuitive appropriate methods to improve resolution is increasing the frequency.

Hence, with such an approach, another limitation occurs, related to the depth of US wave penetration.

Due to the physics of US, the penetration of US waves in the medium decreases with the increase

of the frequency. Nevertheless, the use of high frequencies ultrasound is particularly adapted to

applications such as skin or eye imaging. However, the use of such high frequencies induces a number

of instrumentation-related technological challenges. In particular, building probes performing at high

frequencies is an ongoing challenge in this field.
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1.2 Physics of Ultrasound

1.2.1 Piezoelectric elements and transducers

Generating US waves and collecting US echoes is performed using US transducers (probe). The

latter consists of one or a series of piezoelectric elements. These elements work using the double

piezoelectric effect (direct and inverse) discovered experimentally by Pierre Curie and his brother

Jacques in 1880. This detailed piezoelectric effect is as follows (see Figure 1.1):

• The direct piezoelectric effect: by applying mechanical constraints, the piezoelectric elements

transform the mechanical waves into voltage.

• The inverse piezoelectric effect: by applying a voltage, the piezoelectric crystal produces me-

chanical deformation.

Figure 1.1: (a-c) Direct , (d-e) inverse piezoelectric effect [MF06].

Thus, in practice, a voltage is applied to the transducer’s piezoelectric elements to generate US

waves that propagate through the medium. After interacting with the tissues, the echoes return to

the transducer, where its piezoelectric sensors transform the received vibration into a voltage that

will be processed afterward to form the US image. Most commercial US transducers are formed by

tens or hundreds of piezoelectric elements arranged in a linear or curvilinear array (see Figure 1.2). A

detailed description of the types of the transducers and their acquisition schemes will be presented in

the Section. 1.3.2. The elements (elementary transducers) are characterized by width in the lateral

direction and height in the elevation direction. The Kerf is the spacing between elements, and pitch

is the distance between the centers of two consecutive elements. The crystal elements used widely in
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Figure 1.2: US probe linear array on the left, curvilinear array on the right [Tou14].

the US probes nowadays are the lead zirconate titanate (PZT) due to its high conversion ratio. The

frequency range is between 1 and 50 MHz for most clinical applications. The choice of the transducer

specifications relies on the application.

1.2.2 Ultrasound wave propagation

1.2.3 Linear propagation

US waves carry the information from the imaged medium to the imaging system. During propagation,

the US waves interact with the medium yielding different physical phenomena: reflection, scattering,

and attenuation. In this section, the US wave propagation is described under the hypothesis of linear

propagation. In order to build the propagation equation, two linearized Euler’s equations describing

the conservation of the mass and the motion are considered in a homogeneous medium with no

viscosity and heat conversion [HB88]:

• Conservation of mass:

∂ρ

∂t
+ ρ div(~u) = 0. (1.2)
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Figure 1.3: (a) Plane wave and (b) Spherical wave [Mor13].

• Conservation of momentum

ρ0
∂~u

∂t
+∇p = 0. (1.3)

where ~u represents the particle velocity, ∇ and div(.) represent the gradient and the divergence

operator respectively. The equation (1.2) considers that no mass loss or gain occur during propaga-

tion. Based on the Newton’s second law, the equation (1.3) relates the perturbation of the medium

to external forces. Thus, by applying the divergence operator on the equation (1.3) and the time

derivative on the equation (1.2) we obtain the Helmoltz equation [Bey74]:

1
c2
∂2p

∂2t
−∇2p = 0, (1.4)

where ∇2 refers to the Laplacian operator defined as follows:

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (1.5)

The analytical solution of the equation (1.4) depends on the geometry of the US waves. The US

waves are considered as spherical or plane waves. The corresponding wavefronts (i.e. the phase

surfaces during propagation) are shown in Figure 1.3.

While propagation, the thermal conductivity is relatively low. Thus, the compression is considered

adiabatic and can be expressed as follows:

p

p0
=
(
ρ

ρ0

)γ
, (1.6)
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where γ refers to the ratio of specific heat. p0 and ρ0 represent the pressure and density at equilibrium.

The US propagation is considered isentropic ( there is no net transfer of heat or matter), and therefore,

for a constant entropy s, the speed of propagation can be written as:

c2 =
(
∂p

∂ρ

)
s

(1.7)

Using (1.6) and (1.7), the relation between the speed of the propagation of US waves, the initial

transmitted pressure and the density of the medium can be expressed as follows:

c2
0 = γ

p0
ρ0
. (1.8)

1.2.4 Nonlinear propagation

The propagation of US waves was assumed linear in the previous section. However, in medical

applications, the US propagation is in fact a nonlinear process. In this case, the equation (1.3)

should consider a propagation in a non viscous and lossless medium and therefore becoming[HB88]:

ρ

(
∂~u

∂t
+ (~u.∇)~u

)
+∇p = 0 (1.9)

In (1.9), the term (~u.∇)~u) represents the consecutive acceleration that has been introduced to (1.3).

This added term makes the propagation a nonlinear process. This section presents the nonlinear

parameter that expresses the level of non linearity in the medium, the distortion effect, and the

nonlinear propagation equation.

1.2.4.1 Nonlinear parameter

During the propagation process, the US waves are distorted due to the nonlinear interaction with

the medium. A nonlinear parameter was deducted to quantify the level of this non-linearity. The

equation (1.6) is valid for gases and does not present the relation between the pressure and the

density. Therefore, a Taylor expansion is applied on the pressure in order to express its evolution as

a function of the density [FW54, Bey60]:

p = p0 +
(
∂p

∂ρ

)
s

(ρ− ρ0) + 1
2!

(
∂2p

∂ρ2

)
s

(ρ− ρ0)2 + . . . (1.10)
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Considering p′ = p− p0 and ρ′ = ρ− ρ0, (1.10) can be written as follows:

p′ = A
ρ′

ρ0
+ 1

2!B
(
ρ′

ρ0

)2
+ . . . , (1.11)

with the parameter A and B expressed as:
A = ρ0

(
∂p
∂ρ

)
s
≡ ρ0c

2
0

B = ρ2
0

(
∂2p
∂ρ2

)
s
.

(1.12)

Considering only A, the relation between the density and the wave pressure is linear and the propa-

gation is considered linear. However, by also considering B, the relation between density and wave

pressure becomes nonlinear. The nonlinear parameter is thus defined as the ratio between B and A.

B can be re-written as follows:

B = ρ2
0

(
∂2p

∂ρ2

)
ρ=ρ0

= ρ2
0

(
∂

∂ρ

(
∂p

∂ρ

))
ρ=ρ0

= ρ2
0

(
∂c2

∂ρ

)
ρ=ρ0

= 2cρ2
0

(
∂c

∂ρ

)
ρ=ρ0

= 2ρ2
0c

3
0

(
∂c

∂p

)
ρ=ρ0

.

(1.13)

Hereby, the nonlinear parameter (the ratio between the quadratic, B, and the linear, A, coefficient

of the Taylor development) can be expressed as follows:

B

A
= 2ρ0c0

(
∂c

∂p

)
ρ=ρ0

, (1.14)

In the literature, a nonlinear coefficient β is used for standardization and simplification reasons and

is expressed as follows:

β = 1 + B

2A (1.15)

1.2.4.2 Wave distortion

The nonlinear parameter has a direct impact on the velocity of the pressure wave:

c = c0

(
1 + B

2A
u

c0

) 2A
B

+1
(1.16)

Because the ratio between the particle velocity and the u/c0 is small, the speed of propagation is

usually simplified by:

c = c0 +
(

1 + B

2A

)
u = c0 + βu (1.17)
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Using the expression of the particle velocity, the speed of propagation in (1.17) can be further

expressed as:

c = c0 + β
p

ρ0c0
(1.18)

Therefore, the speed of sound variation ∆c can then be expressed as a function of the pressure

variation ∆p:

∆c = c− c0 = β

ρ0c0
∆p (1.19)

However, in the particular case of the ultrasound propagation, the mean pressure value is null and

the variation is the same of the pressure value (∆p = p). The maximum and minimum of the speed

of propagation, respectively c+ and c−, are then expressed in two successive phase as follows:

• Compression: The pressure variation is positive and the velocity of the wave in the medium is

greater than c0:

c+ = c0 + ∆c = c0 + B

2A
p

ρ0c0
(1.20)

• Dilatation case: where the variation of pressure is negative and the velocity of the wave is less

than c0:

c− = c0 −∆c = c0 −
B

2A
p

ρ0c0
(1.21)

Thus, (1.20) and (1.21) demonstrate that in the compression phase, the US waves travel faster

than the dilatation phases (lower pressure wave). Thereby, in the presence of nonlinearity, a distortion

phenomenon takes place and harmonics appear in the spectrum of the signal. These harmonics

translate the nonlinear behavior of the wave propagation (see Figure 1.4). The higher the nonlinear

coefficient, the faster the distortion. In theory, the distortion is amplified during propagation until

the pressure wave becomes a sawtooth at a shock distance zsh [MMGZ05, RS77]:

zsh = ρ0c
3
0

ω0βp0
(1.22)

Due to the frequency dependant attenuation, it is hard to reach this shock distance in the case of

medical imaging, especially when the energy of initial wave pressure is low. However, we can see

in (1.22) that the nonlinear process is not only linked to the nonlinear coefficient but also to the
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Figure 1.4: Distortion of US waves due to nonlinearity: (a) Sinusoidal pressure wave transmitted at
z = 0 and (b) after z = 500 mm . In the Fourier spectrum, (c) the harmonics are initially not visible
and appear in (d) due to wave distorsion. The illustration has been obtained for a 3 MHz wave with
an initial pressure of 100 kPa after 500 mm of propagation in water (B/A = 5) [Var11].
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frequency. Indeed, the nonlinear process can be fastly developed by increasing the frequency of the

initial wave. However, due to the frequency dependant dissipation, the higher frequencies (harmonics)

are more attenuated than the fundamental one. This makes hard to reach the shock distance easily

in the medium.

1.2.4.3 Nonlinear propagation equation

The nonlinear wave propagation has been largely described in the literature [HB88, HB+98]. One of

the first equations describing the nonlinear propagation was the Burger’s equation [Bey74]. In medical

imaging, the finite size of the elementary transducer elements has to be taken into consideration. The

Burger’s equation does not consider the source diffraction. Therefore, the KZK equation, developped

by Kuznetsov, Zabolotskaya and Khokhlov [Zab69, ABTT84], had upgraded the Burger’s equation

by adding the term considering the diffraction effect related to the source. The upgraded equation

is expressed as follows:
∂p

∂z
= ∆⊥p+ D

2c3
0

∂2p

∂τ2 + βp

ρ0c3
0

∂p

∂τ
(1.23)

where ∆⊥ represents the diffraction’s effect of the transducer. In medical imaging, the geometric

dimension of medical probes defines the diffraction in the KZK equation. For example, for linear

arrays, the diffraction element ∆⊥ is expressed as follows:

∆⊥p =
∫ τ

−∞

(
∂2p

∂x2 + ∂2p

∂y2

)
dτ
′
, (1.24)

where (x, y) are the lateral and elevation dimensions in the probe plane, and τ
′ is the integration

variable to the delayed time τ .

1.2.5 Reflection and transmission

The US waves are reflected or transmitted on the boundaries between two media with different

acoustic impedance Z (expressed in Kg.m−2.s−1 or Rayleigh) like in geometrical optics with:

Z = ρ× c, (1.25)

where c is the speed of sound in the medium.
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Figure 1.5: Reflection and transmission on the boundaries of two regions.

Different classical values of acoustic impedance, speed of sound and density are presented in Table

1.2. Based on the Snell law, the difference of impedance between two regions in the medium creates

an interface where the incident pressure waves are divided into reflected and transmitted waves

(see Figure 1.5). This phenomenon plays a major role in the definition of the interface and the

characteristics of the medium at the end of the process in the US image.

The amplitude of the two transmitted and reflected waves depends on the incident angle θi and

on the acoustic impedance of the two media. The intensity of reflection and transmitted wave are

defined by the reflection coefficient R and transmission coefficient T :


R = (Z2 cos (θi)− Z1 cos (θt))2

(Z2 cos (θi) + Z1 cos (θt))2

T = 1−R = 4Z1Z2 cos (θi) cos (θt)
(Z2 cos (θi) + Z1 cos (θt))2 .

(1.26)

Under normal incidence (i.e., θi = 0), the coefficient of reflection depends mainly on the difference

of impedance between the two regions and the formulation of R and T are simplified to:


R0 = (Z2 − Z1)2

(Z2 + Z1)2

T0 = 4Z1Z2

(Z2 + Z1)2 .

(1.27)
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Medium
Density

kg/m3

Speed of sound

m/s

Characteristic acoustic impedance

kg/m2 · s

Air 1.2 333 0.4× 103

Blood 1.06× 103 1566 1.66× 108

Bone 1.38− 1.81× 103 2070− 5350 3.75− 7.38× 106

Brain 1.03× 103 1505− 1612 1.55− 1.66× 106

Fat 0.92× 103 1446 1.33× 108

Kidney 1.04× 103 1567 1.62× 108

Lung 0.40× 103 650 0.26× 106

Liver 1.06× 103 1566 1.66× 108

Muscle 1.07× 103 1542− 1626 1.65− 1.74× 106

Spleen 1.06× 103 1566 1.66× 108

Distilled water 1.00× 103 1480 1.48× 108

Table 1.2: Acoustical characteristics for some materials [Sza04]

For example, in the case of imaging skull, the difference between the acoustical impedance of the

bone of the skull and the gel added in the intermediate region between the transducer and the

skin is relatively high. This leads to high reflection coefficient. This makes the imaging of brain a

hard task to accomplish using US imaging. However, another type of reflection depending on the

size of the imaged particles can occur during propagation, namely the scattering, explained hereafter.

1.2.6 Scattering

A scattering effect occurs when US waves interact with a target whose size is much smaller than the

wavelength of the incident waves (see Figure 1.6). In this case, the Snell law does not hold anymore,

and the results of this type of interaction are spherical waves going in all the directions called back-

scattered waves. The targets are called scatterers. This scattering phenomenon is the origin of the

speckle noise in the US images (further detailed in the Section 1.3.5). Furthermore, tissues are often
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Figure 1.6: (a) Specular (mirror effect) and (b) scattering [Kou].

modeled as set of scatterers. Thus, in low-frequency US imaging, the scattering is more likely to

appear since the wavelengths are long.

1.2.7 Attenuation and penetration

The intensity of ultrasound waves experiences loss as they travel through tissues. This loss is referred

to as ’attenuation’. The penetration is defined by the maximum depth that the ultrasonic waves

can reach in the imaged tissues. The attenuation is mainly caused by absorption and diffraction.

Considering a forward plane wave, the local pressure can be expressed as follows:

p(z, t) = A(z)s(t− z/c), (1.28)

where s(t− z/c) is the wave emitted by the probe along the axial depth z, and t is the propagation

time. In the ideal case, in the absence of attenuation, A(z) = A0, where A0 is the original amplitude

of the US emitted wave at z = 0. Yet, typical tissues concerned by ultrasound imaging exhibit

attenuation, thus A(z) depends on z-position and the amplitude decay can be expressed as follows:

A(z) = A0e
−αLz, (1.29)

where αL is the amplitude attenuation coefficient expressed in Nepers.cm−1 and written as follows:

αL = 1
z
× ln( A0

A(z)). (1.30)
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Medium Attenuation at 1 MHz dB.cm−1 α(f)/β

Air 12 f2

Water at 20◦C 0.0022 f2

Blood 0.18 f1.3

Brain 0.85 f

Fat tissues 0.63 ≈ f

Lung 41 1/f

Table 1.3: Attenuation coefficient for different type of tissues [Sza04]

Hereby, the attenuation coefficient, in dB.m−1, is expressed as follows:

α = 20 log10(e)αL ≈ 8.69αL. (1.31)

The latter coefficient is related to the frequency of the US waves by the following equation:

α(f) = βfm, (1.32)

where m is a number between 1 and 2 for biological tissues. Therefore, one may observe that the

attenuation is not only depth dependant but also frequency dependant. In other words, the higher

the frequency of the US pulse, the lower will be the penetration depth. Table. 1.3 presents the

attenuation in different biological medium.

1.3 Ultrasound image formation

1.3.1 Imaging principle

Within US imaging, the US transducer is placed against the skin with a gel placed in between the

skin and the probe in order to decrease the attenuation due to the propagation of US waves in the air.

Then, the transducer sends US waves, and records the echoes that are afterwards used to construct

the US image through series of processing techniques. Finally, the image is presented on the machine

display ( see Figure 1.7).
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Figure 1.7: Block diagram of US imaging process.

1.3.2 Beamforming to RF image

The acquisition scheme in US imaging is fundamentally related to the transducer configuration. Two

main schemes exist in application: the sector and the rectangular schemes.

Rectangular scans are obtained using a linear transducer (see Figure 1.8(b)). Within a linear trans-

ducer, the piezoelectric elements are arranged in line. This type of transducers is used, for example,

in imaging of the carotid, thyroid or cysts in the liver.

Sector scans are obtained either using a convex or a phased array transducer. In the case of the

convex transducer the elementary transducers are place in a convex form. The resulted field of view

(FOV) is then polar cross-sectional and are larger than the rectangular transducers (see Figure 1.8

(a)).

In the phased array, all the elementary transducer are used in the same time in transmission and

reception. A delay is applied to the elements in order to control the direction of the beam. The

phased array enable to have a large FOV with a small array. The phased array was revolutionary

in the heart imaging where a small transducer is needed to image between the ribs and having a
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Figure 1.8: (a) Convex array transducer, (b) Linear array transducer, (c) Phased array transducer
[Sza16].

controllable and large FOV (see Figure 1.8(c)). Beamforming plays a crucial role in US image for-

mation, heavily influencing the characteristics of the final image. The standard way of beamforming

is to delay and weight the reflected echoes before averaging them. A sub-part of transducer elements

(called aperture) are activated in the transmission phase. Then, in reception, the US probe collects

the back-scattered waves and transforms them into electrical signals. In the classical methods, the

same aperture is used in emission and reception. Each active transducer of the aperture records an

electric signal called radio frequency (RF) signal. All the received signals are delayed and summed

in order to compensate the delays due to the time-of-flight differences and build hereafter the RF

line. This procedure is repeated by shifting the activated zone (aperture) all along the transducer

surface in order to build the different RF lines of the image. This technique is called delay and sum

(DAS) and is most commonly used and represents the conventional US beamforming (see Figure

1.9). The set of beamforming delays defines the steering angle and focal distance of the transmitted

and received beams. In the last decades, a breakthrough in the domain of the beamforming had
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Figure 1.9: Delay-and-sum beamforming in a phased array ultrasound imaging system [JKKY05].

existed through several modern beamforming techniques. The latter techniques had accelerated the

advances in the fast imaging techniques and improved the quality of the images. These methods will

be detailed in the Chapter 2.

1.3.3 US image modes

After receiving the US waves, there are several methods to visualize the recieved echoes depending

on the application. Here we present the different modes of the US images applied to presents the US

image.

1.3.3.1 A-mode

A-mode refers to amplitude mode. This mode represents an historical application of ultrasound. The

envelope of the received signal is built and presented in function of time. Based on the receiving time,

and knowing the speed of the sound of in the medium, the depth of each interface can be precisely

estimated (see Figure 1.10). This visualization mode was used to reveal brain tumors and nowadays

is widely applied in ophtalmologic applications in which a precise measurements of the inside of the

eyes are needed.
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Figure 1.10: A-mode graph [PL06].

1.3.3.2 M-mode

M-mode refers to motion mode (also called also TM-mode refers to time motion mode). This mode

consists on the juxtaposition of the same scan line (A-mode) in order to form 2D images through

time in order to detect the motion of active organs. The results are presented as an intensity in a

brightness mode on the y-axis and the time on the x-axis. This technique is highly applied in the

emergency department, in order to visualize the movement of the heart or a specific valve inside the

heart. For example in Figure 1.11 (b), one can follow the motion of the heart valves with respects

to time in parallel with the EEG signal presented in the bottom of the image.

1.3.3.3 B-mode

The US B-mode (B stands for brightness) images are 2D displays of echo signal amplitudes. In order

to form the 2D image, the active aperture of the transducer is moved according to the lateral axis

x where the beam is directed in the axial direction z. One RF line represents one column of the

2D image. The RF lines are juxtaposed in order to build the 2D RF image, also called RF image.

The interpretation of RF image is visually difficult. Thus, a demodulation step should be applied.

This demodulation can be done using the envelope detection techniques such as Hilbert transform
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Figure 1.11: (a) Scheme for obtaining the M-Mode, (b) an M-Mode example in cardiac imaging
[Sza04]

followed by a logarithmic compression. The latter compression reduces the dynamic of the image

from 120 to 60 dB to suit the human vision. The detailed representation of envelope detection and

logarithmic compression is illustrated in Figure 1.12.

1.3.3.4 Doppler Mode

Another important application of US in medical applications is the Doppler effect. It consists of

the estimation of the blood flow velocity and its direction ( see Figure 1.13). The frequency of the

emitted US waves f0 is shifted lower or higher as the US waves are reflected by blood. Therefore,

the transducer receives US waves with a different central frequency, and the frequency shift ∆f , so

called Doppler shift, is expressed as follows:

∆f = 2f0vcos(θ)
c

, (1.33)

where c is the velocity of US waves, θ is the angle between the wave front direction and the target

velocity direction, and v is the velocity of the blood flow.



22 Chapter 1 - Introduction

Figure 1.12: Relationship between RF and B-mode image for a thyroid image [Bas08]. (a) RF image,
(b) B-Mode image, (c) an extraction of axial profile, RF signal in blue and corresponding envelope
in red

Figure 1.13: Doppler effect application in medical US imaging.
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1.3.4 Spatial resolution

The imaging system is characterized by the spatial resolution. The spatial resolution is the ability

of the imaging system to differentiate and highlight two closed structures in the imaged field. The

spatial resolution includes three type of resolutions: axial, lateral and azimuthal resolutions.

1.3.4.1 Axial resolution

Axial resolution is the capability of the imaging system to differentiate two close structures located

in the axial direction of the US beams (z-direction). The axial resolution depends on the number of

cycles of the transmitted signal, in other words it depends on the US frequency and the bandwidth.

The axial resolution rax can be expressed as follows [Jen07]:

rax = λ
M

2 , (1.34)

where M is the number of cycles of the transmitted signal. Since the axial resolution is frequency-

dependent, it can be improved by increasing the frequency of US waves and thus decreasing the length

of the transmitted pulse. This technique is applied in US high frequency imaging (see Figure 1.14).

However, the attenuation is frequency dependant, thus by increasing the frequency, the penetration

of the US waves decreases. In practice, for central frequencies of 5 Mhz and with 3 cycles of the

transmitted signal, the axial resolution is about 0.2 mm.

1.3.4.2 Lateral resolution

The lateral resolution is the ability of the system to distinguish and display two close structures that

lie in the plane perpendicular to the ultrasound beam direction. Lateral resolution depends on the

geometry (i.e, on wavelength λ, and focal distance, Lf ), and it depends on the inverse of the diameter

of the active transducer, D [Jen96]:

rlat = λ
Lf
D
. (1.35)

The lateral resolution is maximum in the focal point were the beam is the thinner (see Figure 1.15).

Thus, the thinner the beam, the better the lateral resolution. Therefore there exist two ways to

improve lateral resolution. First, lateral resolution can be improved using beamforming techniques
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Figure 1.14: (a) A high frequency wave with a short pulse length, (b) A low frequency wave with a
long pulse length [Che16]

Figure 1.15: lateral resolution in US imaging.

in order to adjust the focal point in the region of interest dynamically. Second, the lateral resolution

can be improved by increasing the frequency and improving the geometry of the transducer. For

example, in practice, the lateral resolution goes from 1.01 to 0.64 mm by increasing the frequency

from 3 MHz to 5 MHz.

1.3.4.3 Azimuthal resolution

Azimuthal resolution (so called elevational resolution) represents the extent to which an ultrasound

system is able to resolve objects within an axis perpendicular to the plane formed by the axial and

lateral dimensions. The elevational axis represents the ’thickness’ of the beam itself. The beam height
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depends on the height of the individual piezoelectric transducer elements (i.e. on the geometry of

the transducer elements).

1.3.5 Speckle

US imaging is characterized by a granular texture called speckle, which indirectly carries information

on the structure of the medium but greatly affects the contrast and boundary of objects of interest

such as organs or cysts. The scattering detailed before, is the origin of the speckle noise. Depending

on the location of other scatterers in the medium, the scattered ultrasound waves may either undergo

constructive or destructive interference depending on the phase of the waves when they interact. This

results in a granular texture made of light and dark areas in the formed image. The distribution of

speckle can be used in speckle tracking and tissue characterization.

1.4 Open challenges

As presented in this introductive chapter, US imaging presents several advantages: effectiveness, low

cost, non-invasivness. Thus, US imaging is one of the most used techniques in medical imaging.

However, several drawbacks appear in the quality of US images. US images present, in contrast

with other imaging modalities, a low signal-to-noise ratio. The main reasons behind the latter

issue are: firstly, the presence of speckle, secondly, the use of short pulses in time, which makes

the broadband spectrum in the frequency domain more affected by multiple noise sources. On

the other hand, the resolution enhancement of the US images is one of the main challenges in US

applications. However, two trade-offs between resolution\contrast and resolution\penetration should

be considered through the enhancement process. In order to increase contrast, the transmit and

receive bandwidths must be narrowed, which reduces resolution. The penetration of ultrasound

signals can be improved by reducing their frequency, which consequently occurs a degradation in

the resolution of US images. Therefore, many studies proposed several methods in order to enhance

the US image resolution taking into consideration the trade-offs previously cited. These studies can

be classified into two main categories: pre-processing and post-processing techniques. The thesis
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proposes a post-processing method applied jointly on two US image modalities with the goal to

enhance resolution, while preserving a good contrast and overcome the attenuation in depth.

1.4.1 Organization of the manuscript:

The remaining of the thesis consists of 3 chapters.

• Chapter 2: This chapter presents, as exhaustive as possible, the US image modelling from

the US propagation equation. In the following, the stat-of-art of the pre-processing techniques

(modern beamforming techniques, harmonic imaging and pulse inversion) and post-processing

methods (filtering and deconvolution) applied for US image enhancement is presented. The

orientation of this thesis by adopting the post-processing approach , more precisely the decon-

volution, is justified at the end of the chapter.

Main contributions:

• Chapter 3: Based on the advantages of both image restoration and the harmonic image in

Chapter 2, this chapter introduces a new approach of joint deconvolution of fundamental and

harmonic images. We presented a slightly different harmonic image model than the funda-

mental one by considering an attenuation matrix in depth of the harmonic image. The joint

deconvolution problem is solved in the ADMM framework. The advantage of joint deconvolu-

tion was presented on simulation data [HBK+18, HBKT19a, HBKT19b]. Encouraged by the

latter results, this approach is applied on deeper scale by considering real data images which

consist a bigger challenge of the proposed methods [HBKT21]. This chapter follows the trend

of deconvolution with pre-estimated PSF where the PSF is estimated in a first step before the

restoration process. In this chapter, we present the entirety of the results on real and simulation

data and prove the interest of the proposed approach.

• Chapter 4: This chapter considers an upgrade of the restoration method presented in Chapter

3. The contribution in this chapter is twofold: Firstly, an fully blind joint deconvolution solution



1.4 - Open challenges 27

is presented in order to estimate the PSF simultaneously with the restoration process. Results

are presented on phantom and real data [HBM+20]. In the second part of this chapter, we

present a solution considering the spatial variability of the PSF all along the axial direction

of the image. This solution considers a smooth interpolation (depth-dependant) of different

restored image on different depth with the corresponding PSF [HBV+20]. Results on real data

are presented and compared to the results presented in the Chapter 2 where the PSF was

considered spatially invariant all along the image.
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2.1 Introduction

As presented in the previous chapter, the US images suffer from different drawbacks related to the

physics of ultrasound, and instrumentation. In addition, the usefulness of US depends partly on the

skills of the technician performing the examination. Thus, the reproduction of the same images is

hard and depends on human skills. All the cited drawbacks have presented a challenge to researchers

in order to enhance or restore the US images.

A lot of research and advances have been made during the last decades to improve the US image

quality through several goals: removing the speckle (despeckling), enhancing the resolution, improv-

ing the contrast, denoising, increasing the penetration and the frame rate. In medical US imaging,

the image enhancement can be done: 1) during acquisition, and in this case, the methods are titled

as pre-processing methods, or 2) after the acquisition, and the methods in this case are classified as

post-processing methods.

This chapter will present the state-of-art of enhancement methods and is organized as follows: firstly,

the US image model is shown. Secondly, the pre-processing methods are presented, and thirdly, the

state-of-art of post-processing methods applied on US images are discussed in detail.

2.2 US image formation model

Several methods were introduced in literature to solve the linear and non-linear US propagation

equation starting from the full-wave non-linear equation and model hereafter the US image. The

partial differential equation (PDE) was solved in the time domain using finite difference methods

[TTC11, PDRT09] and in the Fourier domain using spectral methods such as the angular spectrum

method [TTC11, PDRT09].

In the case of linear propagation, [Tup69, P. 71] present an ultrasound imaging model based on the

spatial impulse response approach. In the absence of any scattering targets, the medium is considered

uniform with density ρ0 and adiabatic compressibility κ0. In this case the speed of propagation c0

can be written as follows:

c0 = 1
√
ρ0κ0

(2.1)
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In the presence of inhomogeneity, the scatterers can be modeled by adding spatially dependant terms

∆ρr and ∆κr to the density and the compressibility respectively. The total pressure field p(r, t) at

time t and position r can be expressed in the following partial differential equation (PDE) [GL77]:

∇2p(r, t)− 1
c2

0
· ∂

2p

∂t2
(r, t) = 1

c2
0
· ∂

2p

∂t2
(r, t)γ(r) +∇ · [µ(r)∇p(r, t)] (2.2)

The scattering terms γ(r) and µ(r) represent the monopole and the dipole radiation ( see [AT00] for

detailed defenition) and expressed as follows:

γ(r) ≡ ∆κ(r)
κ0

, µ(r) ≡ ∆ρ(r)
ρ0 + ∆ρ(r) (2.3)

The solution of (2.2) is not straightforward. Many ways exist in the literature to solve it. For better

clarity, we recall here the method presented by [NPK+06]. The full linear propagation equation in

(2.2) is expressed by the PDE in the Fourier domain as follows [GL77, MI86] :

∇2P (r, ω) +
(
ω

c0

)2
P (r, ω) = −(SP )(r, ω) (2.4)

where r represents an arbitrary position in scattering volume. P (r, ω), the solution of the PDE, is

the total pressure in the field, c0 is the sound velocity in the medium at equilibrium and S is the

scattering operator that depends to the variation of the compressibility γ(r) and the variation density

µ(r) as well. S can be defined:

S ≡ γ(r)
(
ω

c0

)2
−∇ · µ(r)∇. (2.5)

The PDE (2.4) is linear and homogeneous. However, it can be considered as inhomogeneous equation

by considering the right term in (2.4) as the source of scattered pressure waves [GL77]. In this case,

the PDE denotes an homogeneous solution and particular solution. The homogeneous solution,

Pi(r, ω), is the incident pressure when the scattering term is set to zero. Ps(r, ω) is the particular

solution representing the scattered pressure field. Therefore, thanks to the linearity of (2.4), the total

pressure field can be expressed as the sum of the incident pressure field transmitted by the probe and

the scattered field produced by the interaction with the scatterers and can be expressed as follows:

P (r, ω) = Pi(r, ω) + Ps(r, ω) (2.6)
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2.2.1 Incident pressure

The incident field is generated from the US transducer. The coordinate of the system are presented

in Figure 2.1, where A is a surface bounding the transmit and receive subapertures, r0 is the location

of the center of A, ra is an arbitrary point on A, V is a volume within which the scatterers being

considered are contained and r′ is an arbitrary point in V. The surface A is made up of infinitesimally

small area elements d2ra. Each of this elements contributes as a simple point source mounted on a

rigid baffle. A perception of the sound field for a fixed time instance can be obtained by employing

Huygens’ principle in which every point on the surface A is the origin of an outgoing spherical wave.

Further, the aperture A is assumed flat, so no re-radiation from scattering and reflection takes place.

Thus, the incident pressure field is expressed as the Rayleigh integral [Jen91]:

Pi (r, r0, ω) = ρ0
2π

∫
A
jωV (ra, ω) e

−j ω
c0
|r−r0−ra|

|r− r0 − ra|
d2ra = jωρ0Ht (r− r0, ω) , (2.7)

where

Ht(r, ω) ≡
∫
A
V (ra, ω) e

−j ω
c0
|r−ra|

2π |r− ra|
d2ra (2.8)

refers to as the spatial transmit transfer function that accounts entirely for the spatial distribution

of the incident pressure field and incorporates the effects of apodization and focusing. V (ra, ω) is

the temporal Fourier transform of the normal velocity on the transmit subaperture’s surface A.

2.2.2 Scattered pressure field

In order to calculate the scattered pressure field, the Helmholtz equation (2.4) is solved using the

Green function method where the scattering term is replaced by a point source as follows:

∇2G
(
r, r′, ω

)
+
(
ω

c0

)2
G
(
r, r′, ω

)
= δ

(
r− r′

)
(2.9)

where G (r, r′, ω), the Green function, is the solution of (2.9) and represents the pressure field in the

presence of a point source centred at r′. The scattered waves from the volume V are considered to

be propagating into an effectively unbounded medium (i.e V covers all of three-dimensional space)

and thus G (r, r′, ω) can be expressed as follows:

G
(
r, r′, ω

)
= −e

−j ω
c0
|r−r′|

4π |r− r′| (2.10)
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Figure 2.1: Coordinate system of the scattering field [NPK+06].

The particular solution to (2.4) is then the product of the right hand side of (2.4) and G (r, r′, ω)

integrated over the volume V:

Ps (r, r0, ω) = −
∫
v
(SP )

(
r′, r0, ω

)
G
(
r, r′, ω

)
d3r′ (2.11)

Considering a weak scattering, the scattered pressure is negligible in equation (2.6), and the total

pressure field becomes equivalant to the incident pressure: P (r, r0, ω) ≈ Pi (r, r0, ω). Using the

equations (2.10) and (2.11), the scattered pressure field can be expressed as follows:

Ps (r, r0, ω) ≈
∫
R3

(SPi)
(
r′, r0, ω

) e−j ωc0
|r−r′|

4π |r− r′| d
3r′ (2.12)

(2.12) represents the scattering field as a convolution between the incident pressure and the spherical

wave 1
4π|r| exp

(
−j ωc0

|r|
)

which refers to the first Born approximation. The latter approximation

considers the multiple scattering (interaction between the scattering of waves of more than one target)

as negligible. By replacing the incident pressure in (2.12) by the formula in (2.7), the scattered field

is expressed as follows:

Ps (r, r0, ω) ≈ jωρ0

∫
R3

(SHt)
(
r′ − r0, ω

) e−j ωc0
|r−r′|

4π |r− r′| d
3r′ (2.13)
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2.2.3 Force on the received aperture

As explained before, the transducer elements receive the scattered echoes, and form the RF trace

thanks to the electromechanical properties of the PZT elements. The A-line R (r0, ω) is the sum-

mation of the scattered pressure field over the receive subaperture and filtering this sum by the

electromechanical response of PZT elements. Therefore, the force exerted on the receive subaperture

is expressed as follows:

F (r0, ω) =
∫
A
W (ra, ω)Ps (r0 + ra, r0, ω) d2ra, (2.14)

where W (ra, ω) is the spatio-temporal response of the active aperture on reception and incorporates

the effects of apodization and focusing on reception collectively. For convenience, Hr(r, ω) is defined

as the spatial receive transfer function:

Hr(r, ω) ≡
∫
A
W (ra, ω) e

−j ω
c0
|r−ra|

4π |r− ra|
d2ra (2.15)

By substituing Ps (r0 + ra, r0, ω) by it expression in (2.12), and replace S by its expression in (2.5)

(see [NPK+06] for details) the received force can be expressed as:

F (r0, ω) ≈ jω3ρ0
c2

0
×
∫
R3
Ht
(
r′ − r0, ω

)
Hr
(
r′ − r0, ω

) [
γ
(
r′
)
− µ

(
r′
)]
d3r′ (2.16)

2.2.4 RF voltage

In this section, the electromechanical conversion of the received fored into a voltage trace is presented.

The A-line R (r0, ω) is a measure of the force on the active aperture when it is centred at r0 over the

surface of the active aperture weighted by the electromechanical trasnfer function Em(ω) and thus

the RF voltage trace in the Fourier domain can be expressed as:

R (r0, ω) ≈ jω3ρ0
c2

0
Em(ω)×

∫
R3
Ht
(
r′ − r0, ω

)
Hr
(
r′ − r0, ω

) [
γ
(
r′
)
− µ

(
r′
)]
d3r′. (2.17)

For representation, we can express the RF voltage trace as the Fredholm integral of the first kind:

R (r0, ω) ≈
∫
R3
Hpe

(
r′ − r0, ω

)
f
(
r′
)
d3r′ (2.18)
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where f(r) represents the reflectivity function (scatterer field). Hpe (r, ω) is the pulse echo kernel

containing the pulse echo wavelet Vpe(ω), receive and transmit transfer function. The voltage trace

can thus be expresses as follows:

R (r0, ω) ≈Vpe(ω)Ht(−r, ω)Hr(−r, ω) ⊗f(r)|r=r0
, (2.19)

where
Hpe(r, ω) ≡ Vpe(ω)Ht(r, ω)Hr(r, ω),

Vpe(ω) = jω3Em(ω),

f(r) ≡ ρ0
2c2

0
[γ(r)− µ(r)],

(2.20)

The voltage trace in (2.18) can be expressed in the time domain as follows:

r (r0, t) ≡
1

2π

∫ ∞
−∞

R (r0, ω) ejωtdt ≈
∫
R3
hpe

(
r′ − r0, t

)
f
(
r′
)
d3r′ (2.21)

where the pulse echo integral kernel hpe(r, t) is given by:

hpe(r, t) ≡
1

2π

∫ ∞
−∞

Hpe(r, ω)ejωtdt = vpe(t) ∗
t
ht(r, t) ∗

t
hr(r, t) (2.22)

where vpe is represents the pulse-echo electromechanical impulse response, hpe(r, t) the pulse-echo

spatial impulse response representing the point spread function (PSF) of the system and f(r) the

inhomeginetiy in the field due to the presence of scatters so called the tissue reflectivity function

(TRF).

2.2.5 2D image model

We align the coordinates of the system with x, y and z in a way that the aperture surface relies in

the xy plan, and thus the position vector r0 is expressed as (x0, y0, 0) and r′ is written as (x, y, z).

The equation (2.21) can be writtne as:

r (x0, y0, t) ≈
∫∫∫

hpe (x− x0, y − y0, z, t) f(x, y, z)dxdydz (2.23)

This equation presents the tissue reflectivity function filtered with a linear filter laterally and ele-

vationally shift invariant but axially variant [NPK+06]. This description guides to representing the
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RF image as a spatial convolution between PSF and the TRF [BD80]. From the image processing

perspective, and based on the equation (2.23), the US image can thus be expressed in a linear model

as a convolution between the PSF and the scatterer field called tissue reflectivity function (TRF).

The TRF represents the information to be restored after mitigating the PSF effect. Further details

about the US image model will be presented in Section. 2.4.2.

2.3 Pre-processing techniques

The limits of US imaging detailed previously had led to works devoted to the ultrasound field to com-

pensate for known degradation due to tissue properties. The intuitive approach consists of improving

the acquisition set-ups. In the following section we will quickly review the pre-processing approaches.

2.3.1 Modern beamforming techniques

Beamforming techniques have improved in order to generate ultrasound beams whose propagation

is less affected by tissue inhomogeneities. These techniques have presented several advances yielding

an increase the penetration without remarkable degradation of the resolution and with a reasonable,

and sometimes higher frame rate.

2.3.1.1 Dynamic focusing

In the conventional US beamforming techniques, where the focal point is fixed in the transmission

and reception phases, the resolution of the image is acceptable in the near fields. Nevertheless, the

image loses its resolution in depth and become blurrier due to increased lateral beam bandwidth. In

order to increase the depth of penetration and reduce side lobes, a dynamic focusing approach was

proposed in the literature. Dynamic focusing can be applied during transmission and/or reception.

During the transmission, the dynamic focusing can be done by sending series of pulses, where each

pulse focuses on a point in depth. After that, a montage step can be applied where images obtained
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with different transmission focal lengths are cut around the focus and mounted together. The main

drawback of this technique is that, applying several transmissions leads to decreasing the frame rate.

It is worth noting that dynamic focusing can be applied in the reception phase and in this case, the

focal length is increased electronically with time. Thus, the focus is applied to different points in

the imaging area. Technically, this method can be done offline and does not cause a decrease of the

frame rate, and conserves a good lateral resolution [SVE94].

2.3.1.2 Synthetic aperture

Another approach, called synthetic aperture, was proposed in the literature to form high-resolution

US images [CKDG80]. This technique was applied firstly in RADAR applications [CM91]. In this

case, one transmitter/receiver exists, and the aperture is synthesized by moving the antenna on an

airplane or satellite. In ultrasound, the transducer is fixed, and so are its elements. Therefore, the

synthetic aperture techniques consist of activating one element of the transducer in transmission and

activate all the elements in reception. Each transmission/reception step produces a low resolution

image due to the unfocused beam generated during transmission by one element [JNGP06, TNL09].

A dynamic focusing is applied during reception. The resulted image is the mean of the focused

low resolution images, which result in a high resolution image ( see Figure 2.2). The latter method

can improve resolution and frame rate, making it a suitable solution for motion estimation. Even

though a dynamic focusing is applied in reception, the resulting image does not present a competitive

penetration depth compared to conventional beamforming techniques.

2.3.1.3 Coded transmission and pulse compression

The coded transmission techniques were developed firstly in RADAR applications in order to im-

prove the resolution and the signal-to-noise ratio (SNR) for long-range distances [Sie88]. The coded

excitation operates a transmission of long pulses in which a code is embedded. After the reception,

the echo signal is filtered by an autocorrelation-based filter to detect and eliminate the code. This

process is called decoding or compression. The adaptation of this method in US imaging was intuitive

and can be classified into two categories. The first method consists of modulating the phases of the
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Figure 2.2: Basic principle of synthetic aperture method [Nik02].

excitation with a constant frequency [Tak79, PHL06]. The second method aims to modulate the

frequency with a constant phase. In this case, a chirp is sent with ascending or descending frequency.

This method had presented since the first applications in the 90’s an improvement in the SNR in

depth, and consequently, an improvement in the resolution [O’D92, HLT98] without increasing the

transmitted pressure. The compression of pulse was applied for a classic probe [MGJ+00], intravascu-

lar probe [MJR+12] and for contrast agent imaging [BCB+05]. The main drawback of chirp imaging

is the presence of important side lobes that can reach 13 dB [CH05] in the axial direction due to the

chirp compression. Hereafter, several methods of filtering and coded excitation have been proposed

in order to reduce the level of side lobes and reach −45 dB [HLT98, O’D92, CH05]. One of the

most used approaches to reduce the level of side lobs, so-called resolution enhancement compression
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(REC) [Oel07], consists of sending two different impulses with different bandwidths and convolving

them with two different chirps (see Figure 2.3). The latter method helps to produce an equivalent

wave with the ability to increase the bandwidth and consequently improving the resolution while

reserving a good depth of penetration.

Figure 2.3: Simulated impulse responses, chirps, and convolutions. (a) Pulse with approximately 48
% 3 dB pulse/echo bandwidth. (b) Pulse with approximately 97 % 3 dB pulse/echo bandwidth. (c)
Modified chirp used to excite the 48% bandwidth source. (d) Linear chirp used to excite the 97%
bandwidth source. (e) Convolution of the pulses with their respective chirps sequences. [Oel07].

2.3.2 Compounding

Compounding methods were investigated in order to reduce the speckle in the US images at the

beginning of the 1980s. These methods consist on combining series of images acquired using different

angles, apertures, or multiple frequencies. The speckle can be reduced by
√
N by combining N

images where the images are statistically not correlated [Bur78]. However, the reduction of speckle

is less than
√
N where the obtained images are correlated or partially correlated. One can classify
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these methods into two categories: Spatial and frequency compounding. The spatial compounding

consists of acquiring several images with different angles. The series of images with different angles

can be obtained by electronically steering the beam in different angles [TSVR86, OMF10, EPS+01].

It can also be done by moving laterally the transducer [VE08]. One can see in Figure 2.4. C and F,

where the spatial compounding is applied, reduces speckle patterns in contrast to the conventional US

images in Figure 2.4. B and C, respectively. In addition, the spatial compounding method overcomes

impressively the acoustic shadowing artifact in the Figure 2.4. The main drawback of these methods

is the significant reduction of the frame rate. Thus, in order to overcome the decrease of the frame

rate, [BAF03] had proposed the use of three transducer place with different angles, where one of this

transducer transmit the pulses, and three of them acquire the echoes. The main drawback of the

latter methos is the complexity of the the application in terms of instrumentation and computation.

An alternative practical approach in the same scope is frequency compounding. The latter approach

consists of sending different pulses with different frequencies [TASVR86, MvRT82]. Another approach

of frequency compounding consists of insonifying the medium with a broadband pulse. Then, the

received RF signals are filtered with a bank of narrowband filters and combining the output images of

all filters [NBSF82, DC07]. The main motivation of the compounding methods was the reduction of

speckle in the US images, so-called despeckling. The improvement of the resolution was a secondary

effect. However, in frequency compounding methods, by fixing a bandwidth, a reduction of axial

resolution can occur [TASVR86]. Therefore, [DC07] adopts the use of a bank of 2D directive filters

based on modified Gabor function. The latter method had proven a speckle reduction with relatively

significant resolution enhancement. Another approach had proposed the combination of frequency

compounding and REC methods [SO09]. In this case, the frequency compounding uses a larger

bandwidth, and the axial resolution was doubled.

The compounding approach affects several characteristics of the image simultaneously (resolution,

speckle distribution, etc...). However, in different applications, and especially motion estimation, the

speckle distribution is the main parameter on which these methods rely. Thus, an improvement of

resolution and contrast without despeckling is needed and will be presented through post-processing

techniques that will be presented in the Section 2.4.
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Figure 2.4: Spatial compounding. A, diagram of sound waves transmitted and received at multi-
ple different angles in spatial compounding. B, conventional US image of a mass without spatial
compounding. C, US image with spatial compounding of the same mass, which accentuates lesion
boundaries and increased lesion conspicuity. D, left breast mammogram in the craniocaudal view
showing a popcorn-like calcification in the outer breast. E, correlative conventional US image of the
popcorn-like calcification showing posterior acoustic shadowing. F, Ultrasound image of the same
calcification with spatial compounding showing complete loss of posterior acoustic features [CHS17].

2.3.3 Harmonic imaging

As previously detailed in Section 1.2.4.2, the US waves occur distortion during propagation. The

nonlinear interactions, sources of harmonics in the echo signals, were first observed using contrast

agents in the late 90’s [Bur96]. For application related to blood perfusion measurements and lesion

characterization, US contrast agents (UCA) are injected into the blood circulation, and due to
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their high nonlinear coefficient, the energy of the harmonics frequencies in the backscattered waves

is important [BCB+05, FBK+00]. UCA combined with second harmonic imaging and the Doppler

technique has presented an improvement in perfusion imaging. The nonlinear interaction of the waves

with the tissues themselves can be the origin of the harmonics. In this case, the technique is called

tissue harmonic imaging (THI). The THI technique is applied for detecting abdominal disease, breast

lesions, and it was validated clinically through different experiments [TGEP99, CGC+00, MHEK+07].

It is worth mentioning here that a transducer with large bandwidth allows acquiring an echo with

spectral information around the fundamental and harmonic frequencies. Different images can be

extracted from the same initial RF image:

• Broadband image or raw image where the entire spectrum is used to reconstruct the US image,

• Fundamental image where only the spectrum around the fundamental is used to form the

so-called fundamental US image,

• Second harmonic image (named harmonic imaging) which consists of eliminating the spectrum

around the fundamental and keeping only the second harmonic ( see Figure 2.5)

In medical imaging, the fundamental and the broadband images are quite similar because of the low

level of the second harmonic component and the broadband image is usually displayed on commercial

scanner.

The classical method to do the separation is by applying a filter to extract the harmonic echoes.

However, in broadband excitation, an overlap can occur between the fundamental and the harmonic

bands. This could lead to a truncation of wanted information if the optimal parameters of the filter

were not properly chosen. Thus, the separation can be done using beamforming techniques such

as pulse inversion and phase cancellation (detailed in the next section). It can also be done using

post-processing techniques such as system identification [HBK+18, PE03b], or linear filtering in the

case of narrow band [VBTC13, TJ04].

Comparison of harmonic and fundamental images
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Harmonic imaging increases the ability to see some invisible lesions and regions in the image. We

present below a comparison between the characteristics of harmonic and fundamental US images:

1. An improvement in the lateral resolution in the harmonic images was remarkable due to the

narrowing in the width of the US beam and reducing the side lobes [AFS15] (see Section 1.3.4.2).

2. An improvement in the axial resolution since the wavelength of the harmonic image is less than

the fundamental (see Section 1.3.4.1) [TGEP99].

3. Harmonic images have a lower dynamic range than fundamental because the power of the

harmonic signal is lower than that of the fundamental one by 10 dB or more [Sza04].

4. Due to the points 1,2,3, the image’s contrast is improved, and the boundaries of the organs are

better determined.

5. Since the attenuation is frequency dependant (see Section 1.2.7), the US harmonic images

undergo a more significant attenuation in contrast with the fundamental image as the pulse

propagates through the tissues [WBH97, SBBG86].

6. Harmonic imaging can reduce near field artifact and noise since harmonic waves are not pro-

duced in the superficial part. It can reduce other artifacts such as reverberation artifact, side

lobes artifact, etc... [MFBS98, BTM+98]

Thus, one can see in Figure 2.6, the image of chronic cholecystitis, that the wall of the fallen bladder is

better defined in the harmonic image. In addition, the harmonic image presents much more contrast

and details.

2.3.4 Pulse inversion

An alternative to filtering, pulse inversion (PI), is one of the pre-processing techniques widely used

nowadays [SCB99, SCL05, HUW+17]. PI consists of sending successively two pulses out of phase.

Adding these two received echoes cancels the fundamental echoes and keeps the harmonic ones.

Thus, PI suffers when applied on moving anatomical structures due to the time delay between the
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Figure 2.5: Representation of pressure pulse distortion at the origin of harmonic US imaging and
examples of fundamental and harmonic US images.

two cycles. Thus, this technique eliminates the side lobes effect of linear filtering in the reconstruction

of harmonic imaging.

2.4 Post processing techniques

As discussed previously, pre-processing methods show interesting ability to improve contrast, SNR,

resolution, etc... However, their implementations remain complex and lack of flexibility. To overcome

these drawbacks, many works have been devoted to post-processing.

2.4.1 Filtering

Two combined types of noise exist in the US images and can be modeled as a multiplicative noise

(speckle) and an additive noise (thermal and electronic noise). In the first attempts, the non-adaptive
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Figure 2.6: Images at (a) the fundamental and (b) second harmonic (bottom) of chronic
cholecystitis [TGEP99]

filters were presented using median and mean filters. However, the use of the latter filters has intro-

duced a critical blurring effect that reduces the resolution on the edges of the anatomic structures

and consequently obstructs the diagnostic process [BD86]. In addition, the statistics of speckle in the

imaged medium are heavily dependant on the distribution of scatterers. Thus, the filtering procedure

should be more robust and adjustable based on the variation of noise proprieties in the medium. The

filtering techniques applied in US imaging can be classified into 3 groups: adaptive filtering, wavelets

and, anisotropic diffusion.

Adaptive filters

Adaptive filters are commonly used in image processing to enhance or restore data by removing

noise without significantly blurring the structures in the image. The adaptive filters developed in

signal processing field were applied, in the 80’s, to synthetic aperture radar (SAR) [FSSH82, LTN90].

Those filters were used later on US images [JSF04, Per16]. The adaptive filters rely on identifying

regions with fully developed speckle based on a-priori information of speckle statistics. Therefore, the

identified homogeneous regions are heavily smoothed using low pass (local mean) filter. The latter
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approach was presented in [BD80] using local mean filters and quantitatively applied on cardiac US

images in [MLSBG89]. However, the results had presented an increase of the cardiac chambers dimen-

sions and affected the diagnostic values accordingly. Another approach was presented in [CYFB03] in

which the presented solution consists of selecting a region size by estimating a homogeneity value for

region growth. Then, selected regions are processed with an arithmetic mean filter, and edge pixels

are filtered using a nonlinear median filter. Another application of adaptive filters was introduced in

[PE03a]. This approach uses second-order Volterra filters in the least-squares approach to generate

quadratic images after filtering the quadratic components from the linear components. The filters

were applied to UCA images. The coefficients of the filters were estimated based on the contrast

ratio between a selected region UCA region and another tissue region. Adaptive filters had presented

a better performance than the non-adaptive approach [NLG+07].

Wavelet filters

Alternatively, the wavelet filters were applied in the context of noise suppression in US images. The

wavelet transform is a method that decomposes a signal into a set of linear combinations of shifted

and scaled versions of a mother wavelet. The wavelet filtering consists of setting zero the coefficients

representing the noise while preserving the coefficient representing structure in the image and then

applying the inverse wavelet transform. The modification of the wavelet coefficients is called wavelet

shrinkage. Wavelet shrinkage is effective to reduce additive noise on images. However, in order to

filter multiplicative noise, the wavelet shrinkage is applied on the logarithmic transform the image

[GOL+94]. The latter approach was followed with several attempts in order to choose the optimal

threshold level. One can cite [ZLG98], which applied soft thresholding on the logarithmic transfor-

mation of the image, followed with a nonlinear contrast stretching and then hard thresholding on the

middle scales in order to remove small noise perturbations and preserve the image features. Another

approach proposed by [GCS04] consists of modeling the wavelet coefficients in the sub-band as a

generalized Gaussian distribution and then estimating the threshold by minimizing the Bayes risk

function. On the other hand, [HGG99] proposed to combine adaptive filtering with wavelet approach.
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Anisotropic diffusion

The last category of US image filters is anisotropic diffusion filters. Diffusion equation is a partial

differential equation that describes particle movement from areas with high concentration to an area

with low concentration. Therefore, the noise suppression while identifying edges is controlled by a

diffusion coefficient within the differential equation. [PM90] considers that a space-variant filter is, in

fact, isotropic but depends on the image content. It approximates an impulse function close to edges

and other structures that should be preserved in the image over the different levels of the resulting

scale space. Thus, [PM90] introduced a generalization of the partial differential equation, so-called

anisotropic equation, where the diffusion coefficient can be a matrix value depending on the image

position. The main goal was to preserve edges while smoothing the intra-regions. This method is also

called the speckle reducing anisotropic diffusion method (SRAD). This work was followed by several

ones considering the anisotropic diffusion in despeckling [YA02, SHTA04, LPC+05]. A combination

between the anisotropic diffusion and the wavelet filters was proposed in [YCB+06] and nowadays

presents one of the best candidates applied in cardiac image enhancement applications for example.

Limitations of filtering approaches

The filtering approach induces tuning parameters like the size of the filter or the threshold. These

parameters are, in general, defined empirically. Thus, a wrong choice of the latter parameters may

lead to erroneous results. In addition, logarithmic compression is applied to the images. Thus the

multiplicative noise is assumed to be transformed after logarithmic compression to a Gaussian model

or Rayleigh probability density. Therefore, this assumption is considered restrictive in a denois-

ing approach. On the other hand, the filtering approach does not deal with US image artifacts as

reverberation and shadowing. Another significant aspect of US image enhancement/restoration is

deconvolution and will be presented in the following section.

2.4.2 Deconvolution

Under the first Born approximation, and consequently the assumption of linearity, the US image can

be expressed as a convolution between the TRF and the PSF ( see (2.26)). The deconvolution is a

technique used to improve resolution in US images by counteracting the effect of the PSF. Since the
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first proposition of the convolution model of US images [FK80], deconvolution has been widely applied

in the US image enhancing. To do so, a linear US image model is adopted based on what was already

presented in the Section 2.2. As a result, the US image model can be expressed as a convolution

term with an additive white Gaussian noise (AWGN), which mimics the measurement noises. In the

following, we will adopt the lexicographic notation of the images, which makes correspond to each

matrix matrix X a vector x corresponding to the vertical concatenation of the columns of X. For

example, if we note:

X =


x1,1 x1,2 . . . x1,n2

...
...

...

xn1,1 xn1,2 . . . xn1,n2

 =
[

x1 x2 . . . xn2

]
∈ Rn1×n2 (2.24)

the corresponding lexicographical notation is then, with N = n1× n2

x =
[

xT1 xT2 . . . xTn2

]T
∈ RN (2.25)

Therefore, after a lexicographical ordering of the image pixels, the US image model can be written

as follows:

y = Hx + n, (2.26)

where {y,x} ∈ RN represents the lexicographically ordered RF image after acquisition and the

TRF image to be restored respectively, H ∈ RN×N is assumed to be Block circulant with circulant

block (BCCB) matrix related to the 2D PSF and N is the number of pixels of the image. Although,

considering a circular convolution is not mandatory in the model, the BCCB matrices are diagonalized

in the Fourier domain, which can be very useful for practical computation. n ∈ RN is the AWGN

with variance of σ2. The model in (2.26) was widely applied in the litterature of US deconvolution

[Jen92, Ng07, TS01]. Based on the presented model, the deconvolution recovers x from y.

2.4.2.1 Point spread function (PSF)

In order to estimate the TRF, knowledge of the PSF is mandatory. If the PSF is not measured

experimentally, which is generally the case, the PSF is estimated from the image itself. In addition,
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the deconvolution process presents a high sensitivity to the estimated PSF [SPN+09]. Here one can

define the supervised deconvolution (also called ’non-blind’ deconvolution) as the case where the PSF

is measured or known. In the case where the PSF is estimated, the deconvolution is called blind

deconvolution. The PSF is none other than the response of the US imaging system to a single point

object. We mention that the model in (2.26) is intrinsically non-stationary [NPK+06]. Indeed the

PSF is spatially variant along the imaged medium. The spatial variation of the PSF comes from

two main elements: the imaging system and the tissues themselves. The imaging system imposes a

variation of the PSF related to the beamforming techniques and, in particular, the focusing and the

apodization ( see Figure 2.7). The dynamic focusing was introduced in order to reduce the variability

of the PSF along the depths. However, even with the reduction of the variability, the PSF can still be

considered spatially variant. Since the variation of the PSF is also considered tissue-dependent, one

can not ignore the attenuation effect, and as a result, the acoustic pulses not only become smaller

in amplitude as they propagate, but they also change shape, as one can see in Figure 2.8. The

2D convolution model may not be valid over the entire image because of the spatially variant PSF.

However, [NPK+06] presented, starting from US propagation equation, that the PSF is shift variant

along the axial direction due to the physical reasons (e.g., attenuation, scattering). This variation

is considered in some studies solving the restoration problem of US images [FBKV18a, Mic17]. To

further reduce the complexity of the restoration problem, most of the existing studies have addressed

the restoration problem by dividing the image into several local regions along the axial direction.

In each region, the local PSF is assumed shift-invariant [AV85, NO98, GCC+09, CBK16b]. The

following sections will consider a spatially invariant and known PSF.
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Figure 2.7: Point spread function phantom simulated using the Field II software [Jen53]. Different
apodization and focolization are employed in each image.

Figure 2.8: Variation in pressure-pulse shape of an initially Gaussian pulse propagating in a medium
with a 1dB/MHz1.5− cm absorption for three different increasing propagation distances (z) [Sza04].
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2.4.2.2 Problem statement

Image deconvolution is often approached as a statistical inference problem. Hereby, the vectors y, x

and n are considered as single realizations of random process that follows an appropriate probability

density function (PDF). Indeed, in order to estimate x knowing y andH, the common solution can be

either the maximum likelihood (ML) by maximizing the log-likelihood log[p(y|x)] or by the maximum

a Posteriori (MAP) by maximising the log-posterior log[p(x|y)]. Assuming that the additive noise

follows a Gaussian distribution with a zero mean and variance σ2
N :

pn(n) = 1
(2πσ2

n)N
exp

(
− 1

2σ2
n

‖n‖22
)
, (2.27)

and then the likelihood is expressed as follows:

p(y | x) = pn(y−Hx) = 1
(2πσ2

n)N
exp

(
− 1

2σ2
n

‖y−Hx‖22
)
. (2.28)

Maximizing the likelihood in (2.28) returns to minimizing the data fidelity term ‖y −Hx‖22. The

matrix H is ill-conditionned and the simple solution proposed in this case with the pseudo-inverse

amplifies the out-of-band noise. This makes the system ill-posed based on the definition of Hadamard

that defines the well-posed problem as a problem having three main proprieties: the problem admits

a solution, the solution should be unique and the solution changes only with the initial conditions. In

order to prevent the ill-posidness, the inverse problem based on the (2.26) can be solved using MAP.

In this case, MAP requires a prior information p(x), so called the regularization and maximizes the

posterior distribution of the TRF defined as:

p(x|y) ∝ p(y|x)p(x), (2.29)

where ∝ means ’proportional to’, p(x) is the prior of x and the likelihood functions p(y|x) follows

the Gaussian distributions:

y|x ∼ N (Hx, σ2IN ) (2.30)

where IN is theN×N identity matrix, σ2 is the noise variance, N stands for the Gaussian distribution

and the additive noise nf is assumed to be independent. The negative log-posterior of x guides to
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the estimate of x using MAP as follows:

− log p(r|y,y) ∝1
2‖y−Hx‖2 + log[p(x)], (2.31)

where p(x) represents the prior information about x. The estimation of TRF can be expressed in

the MAP framework as follows:

x̂MAP = min
x

1
2‖y−Hx‖2︸ ︷︷ ︸
data fidelity

+ g(x)︸ ︷︷ ︸
regularization

. (2.32)

Different type of regularization were proposed and applied in US image deconvolution and will be

presented in the following section.

2.4.2.3 Regularizations

• Gaussian prior In this case the prior of the TRF x is considered Gaussian, and the cost

function in (2.32) can be expressed as follows:

min
x

1
2‖y−Hx‖22 + λ‖x‖22, (2.33)

where λ represents the regularization parameter which weights the importance between the

data fidelity term (1
2‖y − Hx‖22) and the regularization term λ‖x‖22. This problem is well

known as Wienner filtering and it was one the first deconvolution techniques applied in US

imaging [FK80, RW84, ZWZ98]. Considering a spatially invariant PSF, the matrix H can be

diagonalized in the Fourier domain and the restoration problem can be solved efficiently in the

Fourier domain:

x̂ = HT

HTH + λIN
y = f(H, λ)y (2.34)

where f(H, λ) represents the Wiener filter which is related to the PSF and the regularization

parameter λ. λ can be estimated, or assumed to be the ratio between the squared spectrum of

the noise and the squared spectrum of the signal [Tax95, TJ04]. In addition, [CBK15] presents

a detailed comparison between several methods of estimation of the regularization parameter

applied on simulation data. However, the main shortcoming of this method is Gibbs-like ar-

tifacts, which are usually produced by the filter near edge-shaped structures in the TRF x.
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Despite the computational efficiency and due to its linearity, the Wiener filter is not able to

interpolate the information lost in the image formation process. Therefore, the Wiener solu-

tions are over smoothed. Finally, the assumption that the reflectivity follows a Gaussian model

may be unfair given the complexity of the natural tissues. Therefore, Laplacian prior, widely

applied in US image deconvolution, could be an alternative.

• Laplacian prior

The prior p(x) is assumed in several applications of US image deconvolution to follow the

Laplacian distribution. In this case the regularization terms appears as an `1-norm and the

optimization problem in (2.32) becomes as follows:

min
x

1
2‖y−Hx‖22 + λ‖x‖1 (2.35)

The latter convex function is not differentiable, thus the traditional gradient-based algorithms

cannot be considered directly [BBV04]. Thus, the solution of the cost function in (2.35) can

be solved applying the interior point methods [BTN01]. Yet, in the image deconvolution ap-

plications, the large scale of the matrices and theirs high density have lead to quickly discard

the latter option because of the complexity of its adaptation to deal with millions of variables.

These limitations have motivated the development of gradient descent algorithms, for which the

computational cost is relatively cheap and dominated by vector-matrix multiplications involving

H and HT [FNW07]. In this category of first order methods, several algorithms were inspires

by the iterative shrinkage (called soft thresholding): the iterative shrinkage-thresholding algo-

rithm (ISTA) [DDDM04], gradient projection method (GSPR) [FNW07], (SPARSA) standing

for sparse reconstruction by separable approximation [WNF09]. All the previous methods relies

on a soft thresholding step that can be expressed as follows:

x(k+1) = Tλt
(
x(k) − 2tHT

(
Hx(k) − y

))
, (2.36)

where λt is the threshold, and Tλt is the soft thresholding operator that can be expressed in a
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scalar fashion as follows:

Tδ(x)(i) = xi
|xi|

max (|xi| − δ, 0) (2.37)

The origin of the iterative shrinkage-thresholding method can be traced back to the iterative

Forward-Backward methods [BJ77, Pas79] that circumvents this difficulty of non-smoothness

of the `1-norm if data fidelity term in (2.35) (or whatever other function) is differentiable with

a Lipschitz-continuous gradient. This scheme consists in performing alternatively a gradient-

descent (corresponding to an explicit step on the smooth function) followed by a proximal step

(corresponding to an implicit step on the non-smooth function). The latter scheme belongs to

the general framework of splitting methods (Chapter 12 in [FP07]) where one can cite another

category of splitting methods: the Douglas-Rachford [EB92], Bregman method [GO09] that had

presented solution to the `1 minimization. The Bregman iterations belongs to augmented La-

grangian (AL) scheme where the alternating direction method of multipliers (ADMM) [EB92]

is widely used nowadays in the convex optimization problems. The split Bregman method is

equivalent to the ADMM in certain conditions [Ess09]. Howerver, a lot of researches have been

established in order to improve and increase the convergence speed of ISTA methods: two steps

IST (TwIST) in which each iterate depends on the two previous iterates or another fast IST

algorithm (FISTA) [BT09] that is a variant of Nesterov’s optimal gradient based algorithm for

smooth problems [Nes83]. For the sake of completeness, on can also cite the recent methods

based on AL scheme: split augmented Lagrangian shrinkage algorithm (SALSA) [ABDF10a],

constrained Salsa for constrained problems (C-SALSA) [ABDF10b], and NESTA algorithm

[BBC11].

• Generalized Gaussian distribution

Besides the traditional prior distribution (Gaussian and Laplacian) of the TRF, the reflectivity

functions can be assumed as random sequences of i.i.d. random variables obeying the zero-mean,

Generalized Gaussian distribution (GGD). This distribution had been adopted in several works

for tissue characterization application [AMP+11] and for US image deconvolution [ZBKT14,
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ZWB+16c, CZBK15]. The GGD PDF can be expressed as follows:

p (xi) = a exp
(
−
∣∣∣∣xib
∣∣∣∣p) (2.38)

where p > 0 is the shape parameter, σx is the standard deviation, b = σx
√

Γ(1/p)/Γ(3/p) is the

scale parameter, a = p/(2bΓ(1/p)) is the normalization term and Γ(·) is the Gamma function.

One can notice that with p = 1 and p = 2, the Laplaciand and the Gaussian distribution can

be obtained respectively, hence its name as GGD. The cost function is expressed as follows:

min
x

1
2‖y−Hx‖22 + λ‖x‖pp (2.39)

Different solution were proposed in the literature in order to solve the latter `p regularized

problem: iteratively reweighted least square (IRLS) [BT74], approximate message mapping

(AMP) [DMM09] for compressed sensing applications, expectation maximization (EM) frame-

work [AMP+11], and more recently with the rising popularity of proximal operators, the prox-

imal forward backward (PFB) algorithms [PPC11]. In US restoration, another solutions were

presented in the literature in the Bayesian framework [ZBKT14, ZBKT16, CZBK15]. Figure

2.9 presents the application of different norms in the deconvolution of US images.

• Total variation prior Indeed, total variation (TV) was widely used as prior for deconvolu-

tion problems. Thus, TV does not penalise the discontinuities in the image while imposing

smoothness, and resulting a better edge-preserving. The regularization based on TV prior can

be expressed as follows:

‖x‖TV =
√
‖∂hx‖2 + ‖∂vx‖2 =

√
‖Dhx‖2 + ‖Dvx‖2, (2.40)

where ∂h and ∂v correspond to the horizontal and vertical gradients. Dh and Dv are two

matrix representing the gradient operator, and equivalent to the horizontal and vertical discrete

differences of the image. Thus, the deconvolution problem can be written considering an AWGN

noise as follows:

min
x

1
2‖y−Hx‖22 + τ‖x‖TV (2.41)
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Figure 2.9: (a) Observed B-mode image, (b) restored B-mode images with `2-norm, (c) `1-norm
and (d) `p-norm (results from [ZBKT16])

Thereby, several optimization algorithms have solved the latter problem such as FISTA [BT09],

forward-backward algorithms [FP10], ADMM [ZWB+16a]. The application of TV regulariza-

tion was investigated in [MBK12, MBBK13, NWY10] in a deconvolution and super-resolution

applications on US images using ADMM algorithms.

2.5 Blind image deconvolution

The deconvolution solutions presented in the previous sections requires a known PSF. However,

in real case, the PSF is rarely measured and an estimation of the PSF is mandatory step in the

restoration procedure. Thus, two perspectives were presented in the literature in order to estimate

the PSF. The first methods rely on estimating the PSF a priori, and followed by one of the ’non-

blind’ deconvolution approach presented in the previous section. This approach is called sequential
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and so-called in the this thesis ’deconvolution with pre-estimated PSF’. The other approach is to

estimate simultaneously the PSF and the TRF. The latter approach is called in this thesis: ’fully

blind deconvolution’.

2.5.1 Deconvolution with pre-estimated PSF

The first attempts in the sequential approach were based on modeling the PSF as a deterministic

or stochastic model. This approach relies on the estimation of the parameter of the model in order

to estimate the PSF. Autoregressive moving average (ARMA) model was proposed in [JMGS93].

The latter approach was limited to 1D signals deconvolution along the axial direction but their

extension to the 2D case was very quickly restricted from a computational point of view. A more

efficient way to perform this estimation is based on a non-parametric approach. Here [APR95] had

proposed a higher-order statistics (HOS) based approach that was shown to be less sensitive to noise.

However, a drawback of this approach is that consistent estimates of higher order statistics require

long stationary time realizations to be available. Moreover the extension to higher dimensional cases

is not straightforward and may become fairly too computationally demanding. Thus, an alternative

method of PSF estimation was proposed in the literature: homomorphic filtering.

The homomorphic methods is nowadays one of the most widely applied techniques [OBS01]. The idea

is to transform the convolution model into a form where the PSF and the TRF are easily dissociated.

More precisely, these methods use the classical cepstrum estimation of US images [JL94, Tax95] or

its more complex versions [Tax97, TS01]. Ignoring the additive noise corrupting the measurements,

the linear model (2.26) in the frequency domain is given by:

Y (ω) = H(ω)X(ω) (2.42)

where Y (ω), X(ω) and H(ω) are the Fourier transforms of y(r), x(r) and h(r) respectively. r and ω

represent the location of images in the spatial and frequency domain respectively. The log spectrum

of the RF image y is applied, namely cepstrum, as follows:

Ŷ (ω) = log |Y (ω)|+ i∠Y (ω)

= log |X(ω)|+ log |H(ω)|+ i{∠X(ω) + ∠H(ω)}
(2.43)
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where |.| and ∠ represent the magnitude and phase of the complex signals respectively. It has

been shown that the PSF energy is confined to the first few samples of the cepstrum domain, while

the reflectivity function energy is distributed over the entire cepstrum domain. In other words,

log |X(ω)| and ∠X are spiky noise-like sequences while log |H(ω)| and ∠H are smooth signals. Hereby,

the estimation of the PSF’s cepstrum is applied into two steps: the magnitude and the phase. In

[JL94, TF99], it was shown that a low pass filtering can be applied in order to estimate the magnitude.

This approach was extended to 3D in [Tax01]. However, estimating the phase represents a difficult

problem to solve since the phase is wrapped [TJ04, STJ99]:

−π ≤W{∠Y } ≤ π (2.44)

The first attempts have considered a minimum phase approach [JL94]. Hereafter, the minimum phase

approach was adopted in [APR95, Tax97], and has formed a base for a large contributions based on

the cepstrum estimation [TJ04, JT06, MA05, MT07]. In this case, a simple Hilbert transform can be

applied in order to estimate the phase. However, this assumption is far from realistic. Thus, several

works have investigated the phase unwrapping of the cepstrum. A generalized homomorphic filtering

technique was proposed in [MA05]. This technique had replaced the truncation of the cepstrum

by projecting the real and imaginary components of the cepstrum on a reduced resolution space. It

relies on the difference of smoothness properties between the PSF and the TRF [ILV89, Jen94, MA05,

NPK+07]. Once the PSF is estimated in the sequential methodology, any ’non-blind’ deconvolution

method can be applied. [JMGS93] had considered a parametric model of the PSF and had applied

a Wiener filtering. [HLL+01] had presented deconvolution method in the Bayesian framework based

on Markov random field models. In the same perspective, authors in [ZBKT14] had presented a joint

deconvolution-segmentation method applied on US images and based on Gaussian estimators based

on GGD priors. Another non-parametric approach of PSF estimation was proposed by [MT07] based

on inverse filtering. This work was lately outperformed by the generalized homomorphic filtering

proposed in [MA05] due to the high sensitivity of the inverse filtering approach to the noise. Thus, a

large number of applications had adopted the homomorphic filtering approach for the PSF estimation

in a first step followed by a second step, the deconvolution step of US images in super-resolution



2.6 - Orientations 61

[ZWB+16b, MBK12], compressive sensing approaches [CBK16b] in an ADMM framework.

2.5.2 Fully blind deconvolution

In this case, the PSF is estimated concurrently with the TRF. The idea is that by estimating and

updating the PSF estimation during the TRF estimation process, an enhancement is expected.

[MBBK13] adopted the homomorphic estimation of the PSF with minimum phase as the prior in-

formation and had built a joint restoration problem that estimates the TRF and the coefficients

of the PSF to reduce the inaccuracy due to the minimum phase assumption. In the same scope,

[MBK19] had considered the magnitude of the PSF estimation done by homomorphic filtering as the

prior information and had combined to the restoration problem, the estimation of the PSF phase.

The phase of the latter is estimated jointly with the TRF in the restoration problem. [MT07] had

taken the same prior information in the latter approach but considering an inverse filter in order

to estimate the phase. [JT08] modeled the TRF as a white Gaussian signal and therefore solve the

blind deconvolution by alternating Wiener deconvolution. Authors in [YZX12b] have presented a

deconvolution problem based on the single-input multiple-output (SIMO) channel model, where the

PSF is the single input, and the TRF signals are the multiple outputs. However, most of the methods

in this scope had solved a problem similar to the following:

min
x∈RN ,h∈Rn

αP (x) + γP (h) + ‖y −Hx‖22 (2.45)

where P (x) and P (h) are the regularization terms containing prior information about the TRF and

the PSF, respectively. h represents the PSF with a support of size n. Another alternative solution

is to give the PSF a closed-form model and replaces the PSF estimation by the estimation of its

model’s parameters [ZWB+16c]. However, this model risks being far from reality due to non-realistic

assumptions.

2.6 Orientations

This chapter presented several works applied in the US image enhancement used in the pre-processing

and post-processing approaches. Although the first category presents promising results, it suffers from
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slow advances in the technological aspect. Thus, the second category had gained a lot of interest

based on its ability to restore images after acquisition. On the other side, we have presented the

edge of the harmonic images in terms of resolution. Although, it suffers from higher attenuation in

contrast to the fundamental image, harmonic US image is still widely used in the medical application

for diagnostic purposes. Comparing the fundamental and the harmonic images, we showed that the

fundamental images keep a considerable edge over the harmonic images in terms of signal-to-noise

ratio. Therefore, in the scope of post-processing, this thesis aims to apply a joint restoration of

the fundamental and harmonic image. This restoration aims to present a better enhancement of the

restored images with contrast to the conventional deconvolution solutions. The thesis aims to present

a solution to restore the two US image modalities jointly in order to collect their advantages while

trying to overcome the attenuation issue. This work was inspired by [TJ04] that proves the interest

of the latter approach in terms of resolution enhancement. This manuscript will present in Chapter

3 the advantage of the proposed approach, and will solve the restoration problem considering spatial

variability of the PSF and presenting a new method of the PSF estimation in the Chapter 4.



Chapter 3

Joint ultrasound image deconvolution

Part of this chapter has been adapted from the journal paper [HBKT21]
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3.1 Introduction

US imaging is one of the leading imaging modalities due to its low cost, high frame rate, non-

ionizing risk, and ease of use. However, the quality of the US images (in terms of resolution, contrast

and SNR) imposes the application of enhancement techniques. Thereby, in the previous chapter,

we presented the applied methods (pre-processing and post-processing methods) to improve the

quality of US images. Although the post-processing techniques show promising results, the slow

technological advances and the cost of the implementation are the significant limitations guiding to

seek alternative solutions through post-processing techniques. This thesis presents a post-processing

method of restoration of US images: deconvolution. The deconvolution is well established nowadays

in the literature of restoration of US images.

On the other hand, we have presented the harmonic images as a US image modality in the previous

chapter offering a distinctive edge over the fundamental image in terms of resolution and contrast.

However, it always suffers from the frequency dependant attenuation and low signal-to-noise ratio.

The raw US data contains both fundamental and harmonic components, which can be isolated to

reconstruct fundamental or harmonic images (see Figure 2.5). This separation can be done using

beamforming techniques such as pulse inversion and phase cancellation [SCB99]. It can also be

done using post-processing techniques such as system identification [HBK+18, PE03b], or linear

filtering. In this work, linear band-pass filters are used for this separation due to their simplicity

and low-frequency overlap between the fundamental and harmonic components. Taxt and Jirik in

[TJ04, JT08] have presented the interest of the deconvolution of harmonic US images. In addition,

they have introduced a compounding step between the envelope of the restored fundamental and

harmonic images. The latter approach has offered a remarkable enhancement in resolution and

speckle reduction compared to the conventional deconvolution approach that uses one image modality

in the restoration process. Encouraged by these results, the main contribution of this thesis follows the

trend in [TJ04, JT08] by including the harmonic information in the restoration process. However, we

will present an advanced approach by applying a joint deconvolution that employs fundamental and

harmonic images simultaneously. In other words, instead of restoring the two images independently,
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we propose in this work a joint deconvolution of fundamental and harmonic images through the

minimization of an appropriate cost function. The data fidelity terms are constructed from the

fundamental and harmonic image formation models using the unknown PSF. Existing algorithms for

PSF estimation are based on parametric models [BRP+19a] or estimate the PSF directly from the RF

data [MA05]. This chapter follows the trend of deconvolution with estimated PSF in a pre-processing

step from the beamformed RF images followed by the estimation of the TRF. The proposed method

can be used regardless of the acquisition scheme, which can be conventional focused or synthetic,

i.e., with a plane or diverging wave imaging. The results reported in this chapter have been obtained

using RF images beamformed with the classical delay and sum approach, which is applied to raw

data acquired using the standard pulse-echo imaging sequence.

3.2 US image formation models

In the case of linear propagation, a US image model expresses the US RF signal as a convolution

between a spatially varying PSF and the TRF. Interestingly, a similar model can also be considered

in the case of nonlinear propagation with small nonlinearities (see [NPK+06] and [ZAI03]). Note

that this assumption also holds in THI, given that the scattering of soft tissues is weak.

To further reduce the complexity of the restoration problem resulting from a spatially varying PSF

[FBKV18a, Mic17], and to maintain realistic conditions, most of the existing studies have addressed

the restoration problem with a spatially invariant PSF by restricting the process to small image

segments [AV85, NO98, GCC+09, CBK16b]. The proposed work follows this trend by considering

a spatially invariant PSF. However, in contrast to most of the existing works, linear and non-linear

propagation models are jointly considered for TRF restoration. After forming the fundamental and

harmonic images by filtering the beamformed RF image (more details about the filtering process are

given in section 3.6.2), the following image formation models are considered:

yf = Hfx + nf , (3.1)

yh = WHhx + nh, (3.2)
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where yf and yh ∈ RN are the observed fundamental and harmonic RF images, N is the number

of image pixels, x ∈ RN is the TRF to be estimated and nf and nh ∈ RN are white Gaussian

additive noises. Moreover, the matrices Hf and Hh ∈ RN×N are block circulant with circulant blocks

(BCCB) matrices formed using the fundamental and harmonic PSFs hf and hh. The attenuation

of the harmonic image with depth is considered in the second model by using a diagonal matrix W

∈ RN×N that accounts for the level of attenuation at each depth. This attenuation can be adjusted

using the ratio between the energies of the fundamental and first harmonic spectra. The choice of

this matrix will be explained in the section devoted to simulation results. The proposed restoration

problem consists in estimating the TRF x from the measurements yf and yh. Note that the models

in (3.1) and (3.2) also depend on the fundamental and harmonic PSFs, that are unknown in practical

situations. The estimation of the TRF r and the unknown PSFs Hf and Hh are detailed in the next

section.

3.3 Problem reformulation

This section introduces the algorithm proposed to estimate the TRF from fundamental and harmonic

RF images based on the direct models (3.1) and (3.2), for a known PSF and a known weight matrix

W . From a Bayesian perspective, the TRF can be estimated using the standard maximum a posteriori

(MAP) estimator, which maximizes the posterior distribution of the TRF defined:

p(x|yf ,yh) ∝ p(yf |x)p(yh|x)p(x), (3.3)

where ∝ means ’proportional to’, p(x) is the prior of x and the likelihood functions p(yf |x) and

p(yh|x) are those of the following Gaussian distributions

yf |x ∼ N (Hfx, σ2
fIN )

yh|x ∼ N (WHhx, σ2
hIN ),

(3.4)

where IN is the N ×N identity matrix, σ2
f and σ2

h are the noise variances, N stands for the Gaussian

distribution and the two additive noises nf and nh are assumed to be independent. The negative
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log-posterior of r is given by

− log p(x|yf ,yh) ∝ 1
2‖yf −Hfx‖2︸ ︷︷ ︸

Fundamental data fidelity term

+

1
2‖yh −WHhx‖2︸ ︷︷ ︸

Harmonic data fidelity term

+ log[p(x)].︸ ︷︷ ︸
Regularization

(3.5)

In this work, we consider a Laplacian prior distribution p(x), leading to an `1-norm regularization

term. This prior has been used successfully for US imaging e.g., in [YZX12b, MBBK13, CBK16b,

MT07]. Finally, the TRF image x is estimated by solving the following minimization problem:

x∗ = arg min
x

1
2‖yf −Hfx‖22 + 1

2‖yh −WHhx‖22 + µ‖x‖1, (3.6)

where µ is a hyperparameter weighting the contribution of the sparse regularization with respect to

the two data fidelity terms

3.4 Optimization

The cost function in (3.6) is convex but non-differentiable because of the `1-norm, thus preventing

the use of traditional gradient-based algorithms. As an alternative, variable splitting-based algo-

rithms developed for non-differential problems such as the alternating direction method of multipliers

(ADMM) [BPC+11], the forward-backward algorithm (FBA) [CP11] or the fast iterative shrinkage

thresholding algorithm (FISTA) [BT09], can be used to solve (3.6). This paper proposes to estimate

the TRF from fundamental and harmonic RF images using a dedicated algorithm based on ADMM

[GM76, BPC+11]. The choice of ADMM was mainly based on the results in [FBDA09, ABDF10a].

Specifically, the latter presents a particular parametrization and solution in the Fourier domain aim-

ing at improving the convergence properties of ADMM, shown to have better performance than

FISTA. The parametrization adopted in the proposed algorithm follows this trend.

3.4.1 Basics of the Alternating Direction Method of Multipliers

In this section, we present the basics of ADMM before going into the details of implementation. The

ADDM algorithm is well suited to distributed convex optimization, and in particular to large-scale
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problems arising in statistics, machine learning, and related areas [BPC+11]. The main motivation

for using ADMM is to split the optimization problem in (3.6) into several sub-problems that are

easy to solve, as shown hereafter [FBDA09, ABDF10a]. ADMM is a general optimization framework

adapted to solve the following problem:

min
u,v

f1(u) + f2(v)

s.t. Au+Bv = c, (3.7)

where f1 and f2 are closed convex and separable functions (depending on u and v respectively). The

ADMM algorithm is based on the augmented Lagrangian LA defined as:

LA(u,v,λ) = f1(u) + f2(v) + β

2

∥∥∥∥Au+Bv + λ

β

∥∥∥∥2

2
, (3.8)

where β is a regularization parameter for the linear constraint and λ is the vector of Lagrangian

multipliers. The vectors u,v and λ are then computed as follows [BPC+11]:

For k = 0, . . .
uk+1 = arg minu LA(u,v(k),λ(k))

vk+1 = arg minv LA(u(k+1),v,λ(k))

λ(k+1) = λ(k) + β(Au(k+1) +Bv(k+1) − c).

(3.9)

3.4.2 Proposed ADMM parametrization

In this subsection, we intoduce the ADMM parametrization proposed to solve the (3.6). First, note

that (3.6) can be rewritten as follows:

(u∗,w∗, z∗) = arg min
u,w,z

1
2‖yf −Hfu‖22 + 1

2‖yh −Wz‖22 + µ‖w‖1 (3.10)
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with



f1(u) = 1
2‖yf −Hfu‖22

f2(v) = 1
2‖yh −Wz‖22 + µ‖w‖1

z = Hhr,w = u = r

v =

w
z


and



A =

 IN
Hh



B =

−IN 0

0 −IN


c = 02N

The main motivation behind the proposed parameterization, and in particular the use of the aux-

iliary variables u and v, is to separate the operators W and Hh. As it will be shown below, Hh

can be diagonalized in the Fourier domain due to its BCCB property, while W is a diagonal matrix

in the spatial domain. Separating Hh and W simplifies the optimization algorithm, which can be

divided into two easier subproblems in the Fourier domain (for Hh) and in the spatial domain (for

W ), where these two matrices have diagonal representations.

3.4.3 Implementation details

The solution of (3.10) can be iteratively obtained in the ADMM framework as described in Algorithm

1 and further detailed in the following three main steps. Note that the algorithm is initialized by

setting u(0), z(0) and w(0) to the fundamental image and the Lagrangian multipliers λ(0) to 0.

Step 1: Update u

The vector u can be updated using the analytical solution of the optimization problem in line 3 of

Algorithm 1. Denoting as λ =
[
λ1
λ2

]
∈ R2N the vector of Lagrangian multipliers, the update of u at

iteration k is defined as:

uk+1 = (HT
f Hf + βHT

hHh + βIN )−1(HT
f yf + βHT

h z
k − λk1 −HT

h λ
k
2 + βwk). (3.11)

Under the hypothesis of circular convolution, Hf and Hh are BCCB matrices having the spectral

decompositions:

Hf = F ∗ΛfF (3.12)

Hh = F ∗ΛhF , (3.13)
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Algorithm 1: ADMM algorithm for TRF estimation
Input: yf , yh, Hf , Hh.
1. Set k = 0, choose µ > 0, β > 0, u0, v0, λ0

2. Repeat until the relative cost function error < ε

// Estimate u (closed-form solution in the Fourier domain)

3. uk+1 = min
u

1
2‖yf −Hfu‖22 + β

2

∥∥∥∥∥Au+Bvk + λk

β

∥∥∥∥∥
2

2

// Estimate v =

w
z


// Estimate w using soft thresholding

4. wk+1 = min
w

µ‖w‖1 + β

2

∥∥∥∥∥uk+1 −w + λk1
β

∥∥∥∥∥
2

2
// Estimate z (closed-form solution in the Fourier domain)

5. zk+1 = min
z

1
2‖yh −Wz‖

2
2 + β

2

∥∥∥∥∥Hhu
k+1 − z + λk2

β

∥∥∥∥∥
2

2
// Update the Lagrangian multiplier

6. λk+1 = λk + β(Auk+1 +Bvk+1)

where F and F ∗ are the 2D Fourier and inverse Fourier transform matrices, Λf = diag(Fhf ) and

Λh = diag(Fhh) are diagonal matrices whose diagonal elements are the Fourier coefficients of the

first column of matrices Hf and Hh. The solution of (3.11) can finally be written as follows:

uk+1 = F ∗(Λ∗fΛf + βΛ∗hΛh + βIN )−1(Λ∗fF yf + βΛ∗fFzk − Fλk1 −Λ∗fFλk2 + βFwk). (3.14)

The computational complexity of the solution is reduced from O
(
N3) in (3.11) to O (N logN) in

(3.14) (using the decompositions in (3.12) and (3.13)). In (3.14), Λ∗fΛf and the Fourier operator can

be computed with complexities of the order O (N) and O (N logN).

Step 2: Update v

v =

w
z

 is updated using two substeps:

Substep 2.1: Update w
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Update w by minimizing the cost function in line 4 of Algorithm 1. The solution to this problem

can be simply implemented by a soft-thresholding operator [CBK16a]:

tk = uk+1 + λk1/β

wk+1 = softµ
β

(tk) = max
{
|tk| − µ

β
, 0
}
sign(tk). (3.15)

Substep 2.2: Update z

The optimization problem in line 5 of Algorithm 1 has an analytical solution defined as:

zk+1 = (W TW + βIN )−1(W Tyh + βHhu
k+1 + λk2). (3.16)

Step 3: Update λ

Update the Lagrange multiplier as suggested in [BPC+11]

λk+1 = λk + β(Auk+1 +Bvk+1). (3.17)

As shown in Algorithm 1, the proposed ADMM-based algorithm iterates the previous steps until a

stopping criterion has been satisfied. The stopping criterion for all the results reported in this paper

was the relative error between two consecutive values of the cost function in (3.10) defined as:∣∣∣F (xk+1
)
− F

(
xk
)∣∣∣

F (xk) < ε (3.18)

where F is the cost function and k is the iteration number. The tolerance parameter ε was set to

10−4.

3.5 PSF estimation

The strategy of deconvolution in this chapter follows the trend of deconvolution with pre-estimated

PSF. Thus, the TRF estimation algorithm proposed in the previous subsection imposes an estimation

of the fundamental and harmonic PSFs in a first step. These PSFs can be estimated from the data,

i.e., from the beamformed RF images that are also used for TRF restoration. Several parametric
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approaches have been investigated for this estimation, exploiting an a priori model of the PSF (see

e.g. in [BRP+19a, MA05, RKB08]). To overcome the rigidity of parametric models, several non-

parametric methods can be also found in the literature, among which one may cite the homomorphic

technique [Opp65, Tax97, JL94]. The homomorphic method assumes that the PSF and the TRF

have disjoint supports in the cepstrum domain, and thus estimate the amplitude of the PSF by low

pass filtering. Application of the homomorphic filtering to US image restoration has been studied

in [Tax95, MA05]. In this work, the adopted PSF estimation methods is the one presented in

[MA05] based on homomorphic filtering. The goal of the latter method is to discriminate the PSF

and the TRF terms based on their smoothness properties. The PSF function is usually smooth in

contrast to the reflectivity function that can be considered as noise. Thus, the PSF estimation, after

homomorphic transformation, is divided into two mains steps: estimation of the PSF-amplitude and

estimation of the PSF phase. Based on the smoothness difference, the TRF can be considered as a

white Gaussian noise. Therefore, in order to calculate the amplitude of the PSF, a de-noiser can be

applied on the real part of the homomorphic transformation of the observation. The log spectrum

of the TRF is approximated to be viewed as white Gaussian noise contaminated with spiky outliers

( statistical demonstration is presented in [MA05, MA03]). The latter outliers may be considered

as useful information by the de-noiser and falsify the desired result. So in order to accomplish the

estimation of the amplitude of the PSF, an outlier removal step is applied [MA03] followed by the

denoising step. The de-noiser by wavelet shrinkage was applied here as introduced in [Don95]. The

latter de-noiser transform the signal into a wavelet orthogonal domain, then apply a soft-thresholding

step with a threshold t, and finally apply in inverse mapping. The straightforward estimation based

on the smoothness of the log-amplitude of the PSF can not be applied on the PSF phase. The

main issue here is the phase are wrapped and a phase unwrapping step is considered essential in

this case before the estimation based on the smoothness propreties. To do so, a so-called ’smoothing

integration’ method is proposed. Thus, recovering the PSF phase can be done by applying a de-noiser

on the partial derivatives of the PSF phase and then integrated the obtained result. Equivalently, the

estimation is performed by integrating the measured partial derivatives of the RF-image phase over

a predefined “smooth” subspace. For the same reason in the case of log amplitude of the spectrum,
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an outlier removal should be applied on the derivative of the phase before integration. The threshold

t of the de-noiser by wavelet shrinkage was set to 1 in our application. Finally, the estimation of the

PSF was done from a region of interest (ROI) extracted around the transmission (TX) focal point,

in order to benefit from optimal SNR conditions. Note that a detailed analysis of the sensitivity of

ultrasound deconvolution to PSF parameters can be found in [SPN+09].

3.6 Data and evaluation metrics

In this section, we will present the several synthetic and real data used to test our approach and

their acquisition setup as well. In the following, a spectral analysis of the experimental data and its

relation with the attenuation matrixW in (3.2) will be detailed. On the other hand, we will present

the quantitative metrics used in this thesis to compare the results quantitatively.

3.6.1 Data simulation and acquisition

3.6.1.1 Synthetic data

• Kidney phantom

A controlled ground-truth TRF was computed from a kidney magnetic resonance image (MRI)

slice, by generating 106 scatterers (i.e., 30 scatterers per resolution cell) with random Gaussian

amplitudes. The gray levels of the MRI image pixels were used to scale the variance of the

Gaussian distribution. The size of the resulting TRF image is 1150× 300 pixels. Fundamental

(yf ) and harmonic (yh) RF images were simulated by convolving this TRF with two spatially

invariant PSFs hf and hh, with central frequencies f0 =3.5 MHz and 2f0 =7 MHz. The two

PSFs were generated based on a simple Gaussian window modulated by a sine function. The

full width at half maximum (FWHM) of the fundamental PSF was 3 mm in the lateral direction

and 1.1 mm in the axial direction. The FWHM of the harmonic PSF was 1 mm in the lateral

direction and 0.5 mm in the axial direction. Both PSFs were generated using 6 sine cycles.

The resulting images were contaminated by additive white Gaussian noise corresponding to a

signal to noise ratio SNR = 40 dB. The harmonic image was finally generated by including
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an attenuation matrix W , accounting for the loss of wave amplitude due to absorption and

scattering, to respect the direct model introduced in Section 3.2. More precisely, the simulation

of W was inspired by the exponential attenuation model used in US imaging defined by:

A(z) = A0e
−µAz, (3.19)

where A(z) is the signal amplitude at a given depth z, A0 is the initial signal amplitude and

µA is the attenuation factor, fixed to 1.15 Nepers/cm. Note that this model assumes that the

attenuation only depends on depth, and is thus constant with respect to the lateral direction.

• Fetus image

To further consider nonlinear propagation effects, a second synthetic RF image was generated

using a non-linear ultrasound image simulator called CREANUIS [VBTC13]. The objective of

this second simulated image was to account for more realistic simulations and to evaluate the

interest of the proposed method for short excitation pulses. In particular, a linear probe with

a 245 µm pitch and 30 µm kerf was simulated. In transmission, 64 elements were activated,

focused at 30 mm depth, and apodized with a Hanning window. The TX signal was a 1-cycle

sine burst at 3 MHz with Gaussian tapering. The TRF corresponded to the fetus example

available in Field II [JM97]. The nonlinear coefficient B/A was fixed at 3.5.

3.6.1.2 Experimental images

The experimental data were acquired with a ULA-OP 256 research scanner connected to the wide-

band 192-element linear array probe LA533 (Esaote S.p.A., Florence, Italy), with 110% bandwidth

centered at 8 MHz and a 245 µm pitch. In transmission (TX), 64 elements were activated, focused

at 33 mm depth, and apodized with a Hanning window with an F-number equal to 4. The TX

excitation signal was a 10-cycle sine burst at 5 MHz with Hanning tapering and peak amplitude of 90

Vpp, for all the performed scans [MRTM86]. The size of the RF images is 384× 4480, i.e., there are

384 scanned RF lines and the number of samples covering the depth of 45 mm is 4480. The sampling

frequency was 78.125 MHz. Two acquisitions were considered to test the proposed algorithms, as
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described by hereafter.

• Phantom image

The first data was acquired on a tissue-mimicking phantom (model 404GS LE, Gammex Inc.,

Middleton, WI, USA) including both anechoic/hypoechoic cysts and wire targets, as shown

in Figure 3.1. The simple structures in this phantom allowed us to objectively evaluate the

resolution and the contrast gain enabled by the proposed method.

Figure 3.1: Phantom model 404GS LE, Gammex Inc.

• Carotid image

The second acquisition was done in vivo by scanning the carotid artery and jugular vein of

a young healthy volunteer (see Figure 3.2). This image contains more complicated structures

and represents a more difficult challenge than the previous phantom to prove the functionality

of the proposed restoration procedure.
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Figure 3.2: Position of the patient’s neck during ultrasound carotid imaging [CAN+17].

3.6.2 Spectral analysis of the experimental data

This section provides an analysis of the experimental data in the Fourier domain. This analysis has

mainly two objectives:

• Justify the separation of fundamental and harmonic images by linear filtering,

• Explain how the attenuation matrix W was estimated from real data.

In order to obtain the fundamental and harmonic images, a bandpass FIR filter with a Hamming

window was applied to the RF image. The filter bandwidths for the fundamental and harmonic

images were set to [4MHz, 6MHz] (order 50) and [9MHz, 11MHz] (order 60) respectively. These

bandwidths are in agreement with the fundamental and first harmonic frequencies of the transducer,

i.e., f0 = 5 MHz and 2f0 = 10 MHz. An example of the result obtained with this filtering procedure

is shown in Figure 3.3 for a carotid image. Note that there is a reduced spectral overlap between

the fundamental and first harmonic spectra, justifying the use of linear filtering for their separation.

In the case of experimental images, the attenuation matrix W was constructed directly from the

observed data, without considering any a priori model. More precisely, we computed the ratios

between the energies of the fundamental and harmonic components within sliding blocks extracted

from the RF image at each depth [YCM+07]. An example of estimated weights obtained with this

method is shown in Figure 3.4.
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Figure 3.3: Carotid image: (a) Spectrum of the original RF image, (b) spectrum of the filtered
RF image containing the mixed information from fundamental and harmonic data, (c) spectrum of
the fundamental image yf after filtering, (d) spectrum of the harmonic image yh after filtering, (e)
spectrum of one RF line highlighting the fundamental and first harmonic filtering.
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(a) (b)

Figure 3.4: Example of weights for the carotid image: (a) Regions used to compute the energies of
the fundamental (red) and harmonic (blue) spectra, (b) Diagonal elements ofW with respect to the
axial direction.

3.6.3 Quantitative metrics

To evaluate quantitatively the accuracy of the deconvolution results, five metrics were employed.

Two of these metrics are only applied to the simulated data because they require the knowledge of

the ground truth TRF. The three other metrics are dedicated to experimental data, for which the

true TRF is not available.

• Structural Similarity (SSIM)

The SSIM is an image quality measure taking into account human visual perception defined as

[WBSS04]:

SSIM = (2µxµx̂ + c1) (2σxx̂ + c2)(
µ2
x + µ2

x̂ + c1
) (
σ2
x + σ2

x̂ + c2
) , (3.20)

where µx, µx̂, σx and σx̂ are the means and standard deviations of the true image x and its re-

construction x̂ (obtained using restoration or beamforming) and σxx̂ is the covariance between

x and x̂. The values of c1 and c2 were set to the default values used in SSIM: c1 = (0.01×L)2

and c2 = (0.03× L)2, where L is the dynamic range.
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• The Root Mean Square Error (RMSE) The root mean square error between a vectorized

image x and its reconstruction x̂ (obtained using restoration or beamforming) is defined as:

RMSE =
√
‖x− x̂‖22. (3.21)

• The Contrast-to-Noise Ratio (CNR) The CNR defines the contrast level between two

regions extracted from an image in dB:

CNR = 10 log10

 |µ1 − µ2|√
σ2

1 + σ2
2

 , (3.22)

where µ1 and µ2 are the means of pixels located in the two defined regions, and σ1 and σ2 are

the standard deviations of these regions.

• The Resolution Gain (RG) The RG is measured based on the normalized autocorrelation

function before and after deconvolution. The number of pixels of the normalized autocorrelation

function having values higher than 0.75 (3dB) was counted in the original and the deconvolved

images. The resolution gain is defined as the ratio between these two numbers, as suggested in

[YZX12a].

3.7 Results and discussion

The accuracy of the proposed restoration algorithm was evaluated and compared to two existing

state-of-the-art methods. The first method consists in restoring the TRF from the fundamental RF

image only, without accounting for the first harmonic data. This approach (referred to as “LASSO-

fundamental”) estimates the TRF by minimizing the following LASSO-type cost function [ZAI03,

TJ04]:

min
r

1
2‖yf −Hfx‖22 + µ‖x‖1. (3.23)

Note that similarly to the proposed algorithms, the `1-norm regularization is used in order to allow

a fair comparison.
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The second approach takes into consideration both fundamental and harmonic RF images as in

[TJ04]. It sums the TRF estimated by (3.23) and the TRF estimated from the harmonic RF image

using the following problem:

min
r

1
2‖yh −Hhx‖22 + µ‖x‖1. (3.24)

The final RF estimator (referred to as “LASSO-sum” in this work and as compounded estimator in

[TJ04]) is obtained by pixel-wise summation of the two restored TRFs, normalized such that the pixels

of the final TRF sums to 1. Finally, the proposed approach will be also compared to an estimator

based on (3.24) only, referred to as “LASSO-harmonic”, in order to appreciate the interest of the

harmonic image. Note that the LASSO problem is very common and can be solved using several

optimization algorithms, as suggested in the literature [BPC+11, KKL+07]. In order to obtain a fair

comparison with the proposed algorithm, ADMM was also used to minimize the functions in (3.23)

and (3.24).

3.7.1 Results on synthetic data

Two kinds of results are presented in this section to compare the proposed method with LASSO-

fundamental, LASSO-harmonic, and LASSO-sum. Firstly, results will be presented in a supervised

approach where the same PSF is used for the generation and the restoration of the images. Secondly,

the joint deconvolution with estimated PSF is adopted to mimic the practical cases where the PSF

is estimated from the data before restoration.

3.7.1.1 Supervised approach

The simulated TRF and the corresponding fundamental and harmonic images are shown in Figure 3.5

(a-c). Figure 3.5 (d) shows the exponential attenuation mapW , used to simulate the harmonic image,

which decays from 1 to 0.3 with the imaging depth following (3.19). The original and estimated TRFs

obtained using the different methods are displayed in Figure 3.6. Zooms corresponding to the red

rectangles are also displayed in Figure 3.6 for better visualization. The visual inspection of the TRF

allows us to appreciate qualitatively the better accuracy of the proposed method in terms of contrast

and resolution. A quantitative assessment is provided in Table 3.1 confirming the qualitative results.
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Note that the resolution gain (RG) is computed both with respect to fundamental and harmonic

images, defined as ”RG/fund” and ”RG/har”. More specifically, the proposed method yields a good

compromise between the fundamental image and the good spatial resolution of the harmonic image,

with the ability of compensating the high harmonic attenuation with depth.
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(a) Tissue reflectivity function (b) Fundamental B-mode image (c) Harmonic B-mode image

(d) Attenuation map

Figure 3.5: (a) TRF mimicking a human kidney (r of size 1150 × 300 pixels), (b) simulated fun-
damental image yf , (c) simulated harmonic image yh, (d) attenuation map used to simulate the
harmonic image in (b), whose values are equal to 1 (no attenuation) close to the probe and to 0.3
(high attenuation) at the bottom of the image. Note that all the images are shown in B-mode for
better visualisation and with 60 dB dynamic range.
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(a) Tissue reflectivity func-
tion

(b) LASSO fundamental (c) LASSO harmonic

(d) LASSO sum (e) Joint solution

Figure 3.6: (a) TRF mimicking a human kidney (r of size 1150 × 300 pixels), TRF estimated by
(b) LASSO-fundamental, (c) LASSO-harmonic, (d) LASSO-sum and (e) proposed method. All the
estimated TRFs are obtained using a supervised approach, i.e., using the true PSF.Note that all the
images are shown in B-mode for better visualisation and with 60 dB dynamic range.
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LASSO
Fundamental

LASSO
Harmonic

LASSO
Sum

Proposed
method

CNR (dB) -0.931 -5.874 -0.857 1.859

SSIM (%) 47 53.2 55.35 57.9

RMSE 1.031 1.110 1.010 0.685

RG/fund 63 63 63 63

RG/har 25 25 25 25

Table 3.1: Quantitative results corresponding to the images Figure 3.6(b),(c),(d) and (e). The CNR
is computed with respect to the rectangular regions shown in Figure 3.5.

3.7.1.2 Joint deconvolution with pre-estimated PSF approach

The proposed method is evaluated using two sets of synthetic data by estimating both PSFs and

the TRF successively. This experiment estimates the PSFs using the fundamental and harmonic

images through the homomorphic filtering detailed in [MA05]. This is performed prior to the TRF

restoration process.

• Results on kidney phantom image:

The first set of data is obtained using the synthetic data of kidney phantom. The results are displayed

in Figure 3.7. One can observe that the deconvolution is less accurate than in the supervised case

because the PSFs are estimated and not set to their true values. However, the proposed method pro-

vides very competitive results compared to the state-of-the-art. Quantitative results corresponding

to this experiment are provided in Table 3.2, confirming the interest of the proposed method: The

proposed methods and LASSO harmonic present the highest score in resolution gain, which proves

the impact of considering the harmonic images in the restoration in terms of resolution. In addition,

the proposed method presents the highest scores in terms of CNR, SSIM and RMSE.

In order to investigate the efficiency of PSF estimation, the true fundamental and harmonic PSF,
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(a) LASSO fundamental (b) LASSO harmonic

(c) LASSO sum (d) Proposed method

Figure 3.7: Estimated TRF using the joint deconvolution with pre-estimated PSF: (a) LASSO-
fundamental estimated from the fundamental image in Figure 3.5 (b), (b) LASSO-harmonic estimated
from the harmonic image in Figure 3.5(c), (c) LASSO-sum and (d) proposed method. All the TRF
were estimated using PSF pre-estimated by homomorphic filtering of the RF images. Note that all
the images are shown in B-mode for better visualisation and with 60 dB dynamic range.
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LASSO
Fundamental

LASSO
Harmonic

LASSO
Sum

Proposed
method

CNR 3.067 3.061 3.231 5.254

SSIM (%) 43.63 44.15 40.05 49.79

RMSE 1.334 0.911 0.1309 0.0783

RG/fund 2.739 9 3.571 9

RG/har 1.087 3.571 2.027 3.571

Table 3.2: Quantitative results corresponding to the images of Figure 3.7.

and the estimates obtained by the pre-processing (homomorphic filtering) step are shown in Figure

3.8. Besides the visual assessment, Table 3.3 confirms a good similarity, in the sense of RMSE,

between the actual PSF and its estimate.

PSF in
Figure 3.8(c)

PSF in
Figure 3.8(d)

SSIM 0.9976 0.9981

RMSE 0.1511 0.2022

Table 3.3: Quantitative assessment of the estimated PSF with respect to the true PSF.

• Results on the fetus image:

The interest of the proposed method for short excitation pulses and in the presence of non-linear

propagation affects can be appreciated in Figure 3.9 for a fetus image simulated with CREANUIS

[VBTC13]. Results reported in Table 3.4, confirm the visual interpretation: the proposed method

yields the highest resolution gain among all the restoration methods and the second best CNR after

LASSO-harmonic, which misses however the information in depth because of attenuation.
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(a) (b)

(c) (d)

Figure 3.8: Left column shows the fundamental PSF: (a) true, (c) estimated by homomorphic filtering.
Right column shows the harmonic PSF: (b) true, (d) estimated by homomorphic filtering.

LASSO
Fundamental

LASSO
Harmonic

LASSO
Sum

Proposed
method

CNR 12.162 12.928 12.388 12.617

RG/fund 1.235 2.333 1.909 3

RG/har 0.629 1.101 0.818 1.286

Table 3.4: Quantitative results corresponding to the images of Figure 3.9.
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(a) Fundamental image (b) Harmonic image (c) LASSO-fundamental

(d) LASSO-harmonic (e) LASSO-sum (f) Proposed method

Figure 3.9: Results on data simulated with CREANUIS: (a) Fundamental image (blue and green
regions are used to compute the CNR), (b) harmonic image (yellow region is used to compute the
RG), TRF estimated by (c) LASSO-fundamental, (d) LASSO-harmonic, (e) LASSO-sum, and (f) the
proposed method. All the TRF were restored using a PSF pre-estimated by homomorphic filtering.
Note that all the images are shown in B-mode for better visualisation and with 60 dB dynamic range.
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3.7.2 Results on phantom and real images

This subsection analyzes some results obtained using phantom and real carotid data. In contrast

to the simulated data, the system PSFs are unknown in these scenarios and have to be estimated.

Therefore, we investigate a PSF pre-estimation using homomorphic filtering followed by a TRF

deconvolution.

3.7.2.1 Phantom image

The fundamental and harmonic images associated with the considered phantom are shown in Figure

3.10 (a, b). The better spatial resolution enabled by harmonic images can be clearly observed by the

wire responses. The attenuation of harmonic echoes is very low for this example. For this reason, the

matrix W accounting for attenuation in the harmonic direct model was set to the identity matrix.

The results using the proposed approach and the different restoration methods are shown in Figure

3.10 (c-f). In general, all the restoration methods that consider the harmonic data (LASSO-harmonic,

LASSO-sum, and proposed method) exhibit good spatial resolution. Furthermore, LASSO-sum and

the proposed algorithm compensate the harmonic attenuation at high depths by including information

from the fundamental image, as shown in the zooms of Figure 3.10. Cysts are also better defined in

the restored images compared to the noisy images. To confirm these remarks, a plot extracted from

the estimated TRF is shown in Figure 3.11. The proposed method provides images with good spatial

resolution, i.e., with a similar or better full width at half maximum of the wire echo compared to

harmonic and fundamental images.
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(a) Fundamental image (b) Harmonic image (c) LASSO-fundamental

(d) LASSO-harmonic (e) LASSO-sum (f) Proposed method

Figure 3.10: Results on phantom data: (a) Fundamental image (yellow region is used to compute the
RG), (b) harmonic image (blue and green regions are used to compute the CNR), TRF estimated by
(c) LASSO-fundamental, (d) LASSO-harmonic, (e) LASSO-sum, and (f) proposed method. All the
TRF were restored using a PSF pre-estimated by homomorphic filtering. Note that all the images
are shown in B-mode for better visualisation and with 60 dB dynamic range.
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Figure 3.11: Horizontal profile passing by the two cysts (regions 1 and 3) and the wire in between
(region 2), the orange line in Figure3.10.(d).

Quantitative results are provided in Table 3.5. They show on one hand the competitivity of the

proposed method both in terms of contrast and spatial resolution, and on the other hand that slightly

better results are obtained, for all the methods, with the PSF estimated in a pre-processing step.

LASSO
Fundamental

LASSO
Harmonic

LASSO
Sum

Proposed
method

CNR 0.469 1.686 1.494 2.417

RG/fund 2.778 3.154 3.545 6.231

RG/har 2.231 2.333 2.231 2.636

Table 3.5: Quantitative results computed from the images of Figure 3.10.
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3.7.2.2 Carotid results

The fundamental and harmonic carotid images are shown in Figure 3.12 (a, b). From these images,

one can clearly observe the better spatial resolution of the harmonic image, at the cost of higher

attenuation with depth compared to the fundamental image. In contrast to the phantom experiment,

the attenuation matrix W was estimated as explained in Section 3.6.2. This matrix has a crucial

role for this dataset, due to its ability to balance fundamental and harmonic information. The

experiments on carotid are following the same scheme as for the phantom. Results displayed in Figure

3.12 allow us to conclude that LASSO-sum and the proposed method, which use both fundamental

and harmonic images, are able to gather useful information from both observations. In particular,

they provide a spatial resolution similar to that of the harmonic image. However, harmonic images

are highly attenuated with depth, and more generally can be attenuated in any region corresponding

to tissues with a high harmonic response. For those particular regions, the fundamental image plays

an important role in order to compensate for this lack of information in the harmonic image. This

effect can be appreciated in the zoomed regions shown in Figure 3.12. Figure 3.13 shows profiles

extracted from the TRF confirming these observations. Quantitative results are provided in Table

3.6, which highlights the interest of combining information from both fundamental and harmonic

RF images. For this particular carotid experiment, one can observe that the harmonic image has

a relatively strong amplitude for small depths, thus providing a very good spatial resolution and

contrast, except for high depths. In particular, the CNR measured from the harmonic image is

very high. However, one can observe that all the deconvolution methods allow spatial resolution to

be increased, highlighted by RG values always higher than 1 in Table 3.6. The proposed method

reaches a compromise between spatial resolution (best compared to fundamental image and second

best, hence very close to the best, compared to the harmonic image) and contrast (best CNR among

all the deconvolution methods and close to the harmonic image).
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(a) Fundamental image (b) Harmonic image (c) LASSO-fundamental

(d) LASSO-harmonic (e) LASSO-sum (f) Proposed method

Figure 3.12: Results on carotid data: (a) Fundamental image (green region is used to compute
the RG), (b) harmonic image (blue regions are used to compute the CNR), TRF estimated by (c)
LASSO-fundamental, (c) LASSO-harmonic, (d) LASSO-sum, and (e) proposed method. All the TRF
were restored using PSF pre-estimated by homomorphic filtering. Note that all the images are shown
in B-mode for better visualisation and with 60 dB dynamic range
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(a) (b)

Figure 3.13: (a) TRF profiles corresponding to the red line in (b).

LASSO
Fundamental

LASSO
Harmonic

LASSO
sum

Proposed
method

CNR 9.832 13.438 8.38 12.069

RG/fund 2.226 5.308 8.513 9.857

RG/har 1.194 2.846 5.882 5.286

Table 3.6: Quantitative results computed from the images in Figure 3.12.
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3.8 Discussion

The models used in this chapter for fundamental and harmonic components were linear based on the

first order Born approximation. If this assumption is valid for fundamental images in most practical

applications, it is only valid for harmonic images acquired from mediums with low nonlinearities. To

extend the proposed work to other applications than THI, such as perfusion techniques, non-linear

models should be considered to better fit the harmonic image formation model. The imaging forma-

tion models could be also improved by including spatially-variant PSFs, adapted to various imaging

strategies such as the classical focus scheme used in this work or synthetic strategies based on plane

or diverging waves. These more sophisticated models would certainly help to increase the accuracy

of the image restoration process, e.g., by reducing the reverberation in the restored TRF images.

The blind deconvolution problem investigated in this work assumed that the noises of the funda-

mental and harmonic images are independent. Since the cross-correlation coefficient between the

anechoic regions in the real data between the fundamental and harmonic images is close to zero, the

latter assumption is considered fair enough in our application. Inverting the proposed image forma-

tion models for the fundamental and harmonic images is an ill-posed inverse problem that requires

regularization to stabilize the solution. In the present work, the regularization term was based on

an `1-norm motivated by the assumption of a Laplacian-distributed TRF. However, other statistical

models might be considered, e.g., using a generalized Gaussian distribution, which is more general

than the Laplace distribution and was already shown to be a good candidate for US image restoration

[ZBKT14, AMP+11]. Hence, this generality comes with an additional challenge of the appropriate

choice of the shape parameter, or in other words of the choice of p in the `p-norm that replaces the

`1-norm in the Laplacian case. Hereafter, we provide a simulation result, in Figure 3.14, and Table.

3.7, that compares the `1-norm to `p-norm with p = 3/2 and p = 4/3 (that ensure analytical solutions

for the proximal operator). One may remark that in this particular case the results are very similar,

thus sustaining the choice of the `1-norm in this work.
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Figure 3.14: Simulation data (a) TRF, (b,c,d) joint solution with l-1 norm, l-p norm (p=3/2), lp
norm (p=4/3).

l1 norm l1.3 norm l1.5 norm

PSNR (dB) 21.22 18.48 20.11

RMSE 0.0868 0.1191 0.0987

SSIM (%) 58.1 38.8 51.2

Table 3.7: Quantitative results computed from the images in Figure 3.14 using SSIM, RMSE and
PSNR.

It is interesting to mention here that the regularization parameters were fixed to their best values

by cross-validation. Thus, the hyperparameter µ balances the weight between the data fidelity term

and the `1-norm regularization promoting sparsity. The hyperparameter β is proper to ADMM and

allows the convergence of the algorithm to be monitored. It balances the importance of the linear
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constraint with respect to the data fidelity terms. Practically, the values of these hyperparameters

were set to µ = 0.1 and β = 1 for synthetic data (extracted from the cross-validation results in Figure

3.15 and 3.16 applied on the simulation data), and to µ = 0.05 and β = 0.5 for the two real datasets

(interestingly it was not necessary to change these values from one real dataset to another).

(a) (b)

Figure 3.15: Illustration of the influence of the hyperparameter µ on the result in terms of (a) PSNR
and (b) NRMSE.

(a) (b)

Figure 3.16: Illustration of the influence of the hyperparameter β on the result in terms of (a) PSNR
and (b) NRMSE.
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The execution time of the proposed deconvolution algorithm is about 1 minute for one ultrasound

image, on a standard 3.6 GHz Intel Core i7 with a straightforward MATLAB implementation. The

current implementation 1 uses optimized ways of handling high dimensional operators, by computing

some of the steps in the Fourier domain as explained previously.

3.9 Conclusion and perspectives

This chapter introduced a restoration method adapted to US imaging. Its main advantage compared

to the state-of-the-art is to consider two image formation models for fundamental and harmonic

images, that are used jointly in the restoration process. This strategy combines information from

both RF images, in particular the good spatial resolution of harmonic data and the good SNR

(especially for high depths) of fundamental data. An accurate knowledge of the PSF is an important

prerequisite for any deconvolution method. In this chapter, the estimation of the PSFs was achieved

in a pre-processing step, by homomorphic filtering. Considering a fully blind restoration will be

presented in the following chapter. In order to simplify the problem, this chapter had considered

a spatially invariant PSF. The spatial variability of the PSF will be considered in the following

chapter. ADMM was adopted in the proposed work to minimize the cost function resulting from the

US deconvolution process. Results on real and experimental medical ultrasound images confirmed

the interest of the proposed approach.

1The Matlab code is available at https://www.irit.fr/~Adrian.Basarab/codes.html.

https://www.irit.fr/~Adrian.Basarab/codes.html
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On the fully blind and block-wise joint
restoration

Part of this chapter has been adapted from the conference proceedings [HBM+20],

[HBV+20]

99



100 Chapter 4 - On the fully blind and block-wise joint restoration

4.1 Introduction

In the previous chapter, a joint deconvolution algorithm using a pre-estimated PSF was introduced.

Results on synthetic and real images were presented in order to prove the accuracy of the proposed

algorithm and the interest of the PSF estimation and US deconvolution approach. Following these

encouraging results, this chapter considers improving the previously proposed algorithm by taking

into account two challenges related to the PSF. The first is its estimation from the data that was

previously obtained within a pre-processing step. However, the estimation of the PSF and the

deconvolved images are mutually dependent. Therefore, in this chapter, we introduce a deconvolution

method that alternates between the estimation of the PSF and the deconvolved image, based on a

recently proposed PSF estimation algorithm. The second challenge addressed is the spatial variability

of the PSF. It is well known that the PSF in US imaging is spatially variant, especially in the US

wave propagation direction. This variation represents an important issue for deconvolution algorithms

accounting for spatially invariant PSF, as the one presented in the previous chapter. To mitigate

this issue, we introduce in this chapter a block-wise restoration algorithm.

4.2 Fully blind joint deconvolution

After the solution presented in the previous chapter that considers the PSF estimation in a pre-

processing step, this section proposes to estimate the PSF and TRF simultaneously. Some of the

existing approaches have considered a parametric model that can reduce the computational com-

plexity of the PSF estimation step. However, a further upgrade of the adopted PSF model is needed

given the complexity of the PSF and its variations in real images. Most of the works around fully

blind deconvolution approaches consider a non-parametric model for the PSF [YZX12a, JT08]. These

methods require a prior information for the PSF. Following this trend, a recent hybrid method was

proposed in the literature that considers the estimation of the amplitude of the PSF using homomor-

phic filtering, followed by an alternate estimation of the TRF and the phase of the PSF constrained by

the estimated amplitude [MBK19]. This section follows another trend based on joint deconvolution

of the fundamental and harmonic US images.
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4.2.1 Problem reformulation

The objective here is to solve a blind restoration problem to estimate jointly the PSFs hf and hh
and the TRF x from the observed RF images yf and yh. Based on the model presented in (3.2) and

(3.1), we express the joint blind deconvolution problem as the minimization of the following function:

min
x,Hf ,Hh

1
2‖yf −Hf x‖22 + 1

2‖yh −WHhx‖22 + µ‖x‖1, (4.1)

where the first two terms represent the fundamental and harmonic image data fidelity terms, ‖x‖1 is

a regularization term and µ is a hyper-parameter controlling the weight of this regularization with

respect to the two data fidelity terms. In this work, we consider a Laplacian prior distribution for the

TRF, leading to an `1-norm regularization in the function to minimize as in [MBBK13, CBK16b].

Moreover, Hf and Hh ∈ RN×N are BCCB matrices accounting for the fundamental and harmonic

system PSFs reconstructed using the PSFs kernels hf and hh ∈ Rp×q (see appendix A for more

details about how to built a BCCB matrix from the associated PSF kernel).

4.2.2 Optimization algorithm

To solve the optimization problem in (4.1), we propose in this work an alternating minimization

method that estimates sequentially the PSFs and the TRF (we recursively estimate one variable

while the others are ’frozen’ and this operation is conducted for all variables). However, the cost

function in (4.1) is not jointly convex with respect to Hf , Hh and x. To ensure the convergence

towards a reliable solution, we add two constraints on the PSFs. Specifically, a partial information

about the PSFs is added to constrain the problem: the magnitudes of the Fourier transform of hf
and hh. Note that magnitudes of the PSFs can be easily estimated by denoising the cepstrum of the

observed images [MA05]: The TRF function is assumed to be a white Gaussian noise in the cepstrum

domain while the PSF is a regular smooth function. On the contrary, the estimation of the phase

of the PSF cannot performed easily [MA05]. Thus, in this work, we propose to estimate the phase

of the Fourier transform of the PSFs as in [MBK19] while considering the amplitude of the Fourier

transform of the fundamental and harmonic components of the PSFs as constraints. Taking into

account these two constraints (for the fundamental and harmonic PSFs) the proposed optimization
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algorithm alternates between sequential updates of the TRF and the PSFs as:

x ∈ min
x

1
2‖yf −Hf x‖22 + 1

2‖yh −WHhx‖22 + µ‖x‖1 (4.2)

hf ∈ min
hf

1
2‖Yf − hf ~X‖22 s.t. |F(hf )| = ĥf (4.3)

hh ∈ min
hh

1
2‖Yh − hh ~X‖

2
2 s.t. |F(hh)| = ĥh. (4.4)

where F(.) is the 2D Fourier transform operator. Note that we keep the matrix-vector representation

in (4.2) in order to keep the similarity with the representation in Chapter 3. The PSF estimations

steps in (4.3) and (4.4) are expressed as a spatial convolution between the PSF kernels hf and

hh ∈ Rp×q with the TRF image X ∈ Rm×n. We note that x ∈ RN , yf ∈ RN are the vectorized

version of X ∈ Rm×n and Yf ∈ Rm×n respectively (with N = m × n, see Appendix A). In order

to consider the attenuation in (4.4), Yh ∈ Rm×n is considered as the resized version of the vector

W−1yh ∈ RN . Fnally, note that ĥf and ĥh are the Fourier transform magnitudes of the PSFs, which

are estimated by denoising the cepstrum of Yf and Yh [MA05].

4.2.2.1 TRF estimation

The TRF estimation step (4.2) can be solved using the solution presented in Chapter 3 (see Algorithm

1).

4.2.2.2 PSF estimation

The minimization problems in (4.3) and (4.4) aim at estimating the phases of the PSFs. Therefore,

the recently proposed method in [MBK19], inspired from [PS94] was adopted to estimate the PSF’s

phase. Applying Parseval theorem, (4.3) and (4.4) can be expressed as:

min
Hf

1
2‖Yf −Hf . X‖

2
2 s.t. |Hf | = ĥf , (4.5)

min
Hh

1
2‖Yh −Hh . X‖

2
2 s.t. |Hh| = ĥh, (4.6)



4.2 - Fully blind joint deconvolution 103

where (.) denotes element wise multiplication, X = F(x∗), Hi = F(hi), Yf = F(yf ) and Yh = F(yh).

Using Hi = ĥi . e
j∠Hi = ĥi . Ui, the previous equations can be rewritten as follows:

min
Uf

1
2‖Yf − (X . ĥf ) . Uf‖22 (4.7)

min
Uh

1
2‖Yh − (X . ĥh) . Uh‖22. (4.8)

Note that the minimizations in (4.7) and (4.8) are conducted with respect to the phase vectors Uf
and Uh. This reformulation shows that the PSF estimation problems are reduced to estimating the

optimal phases of the all-pass filters Uf and Uh. The reader may refer to [MBK19] for details about

the algorithm able to solve the two problems above. The resulting alternating minimization proposed

in this chapter is summarized in Algorithm 2 where in the first iteration, the estimation of the TRF is

done with the zero-phase PSF, i.e., the magnitude of the PSFs estimated by homomorphic filtering.

Algorithm 2: ADMM algorithm for blind restoration
Input: yf , yh, ĥf , ĥh
1. Set k = 0, choose µ > 0,β > 0 u0, v0

2. Repeat until stopping criterion is satisfied
// Estimate x using Algorithm 1

3. x← arg min
x

1
2‖yf −Hf x‖22 + 1

2‖yh −WHhx‖22 + µ‖x‖1

// Fundamental PSF estimation

4. Uf ← arg min
Uf

1
2‖Yf − (X . ĥf ) . Uf‖22

// Harmonic PSF estimation

5. Uh ← arg min
Uh

1
2‖Yh − (X . ĥh) . Uh‖22

Output: x, hf = F−1(ĥf .Uf ), hh = F−1(ĥh.Uh).

4.2.3 Results

Three series of results are presented in this section to compare the proposed method with the blind

restoration method used for LASSO-fundamental, LASSO-harmonic and LASSO-sum (see Section
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3.7). A further comparison with the joint blind deconvolution with pre-estimated PSF will be pre-

sented in the discussion section. We recall here that the LASSO-fundamental and LASSO-harmonic

are TRF estimators based on one image modality (fundamental and harmonic image respectively).

The LASSO-sum method, presented in [TJ04], applies a compounding solution by applying a pixel by

pixel summation of the restored images for the previously cited modalities. Thus, the latter approach

aims to improve the resolution of the restored image thanks to the harmonic image. We notice that

all the presented results and the so-called proposed method are fully blind deconvolution approaches.

4.2.3.1 Simulated image

In this subsection, the proposed method is applied to a simulated kidney image. The ground truth

as well as the fundamental, harmonic image and the attenuation map are shown in Figure 4.1.

Results are presented in Figure 4.2 and assessed quantitatively in Table 4.1. One can see that the

proposed method presents a good resolution and contrast while mitigating the attenuation of depth.

Quantitatively, the proposed method presents the highest scores of SSIM, CNR and RMSE compared

to the ground truth. Also, it presents the second highest score of resolution gain. In addition, one

can see in the cropped area in Figure 4.2 (d) a good definition of the anatomical edges thanks to

the previous cited enhancement, and mainly the ability of the proposed method to overcome the

attenuation effect existing in the US harmonic image. This proves that this approach is able to

reconstruct a US image with a good compromise between resolution, and contrast in one image.

We notice here that the same regions used for computing the RG and CNR in the previous chapter

were used. As explained previously, the main difference between the two blind approaches presented

in this thesis is the strategy applied in order to estimate the PSFs from the RF images. The true

fundamental and harmonic PSF, the pre-estimated ones following the method presented in Chapter

3 and the PSFs estimated by the proposed algorithm are shown in Figure 4.3. One can see that

the PSFs estimated in a pre-processing step are slightly better than those estimated with the fully

blind approach when compared to the ground truth PSFs ( see Table 4.2). However, the scores of

both approaches are considered satisfying (around 90 % of similarity with the ground truth). We

can explain this difference by the fact that the simulated PSFs are not complicated in their structure
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Figure 4.1: (a) TRF mimicking a human kidney (r of size 1150 × 300 pixels), (b) simulated fun-
damental image yf , (c) simulated harmonic image yh, (d) attenuation map used to simulate the
harmonic image in (b), whose values are equal to 1 (no attenuation) close to the probe and to 0.3
(high attenuation) at the bottom of the image. Note that all the images are shown in B-mode for
better visualisation.

and their phase information is not important. To further test the proposed algorithm, results on real

data will be presented in the following sections.
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Figure 4.2: Estimated TRF using an alternating estimation approach with: (a) LASSO-fundamental
estimated from the fundamental image, (b) LASSO-harmonic estimated from the harmonic image, (c)
LASSO-sum and (d) proposed method. All the TRF were estimated by alternating the estimation
of the PSF explained in Section 4.2.2 and the estimation of the TRF with one of the restoration
techniques considered.
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Figure 4.3: The upper row shows the fundamental PSF: (a) true, (b) estimated by homomorphic
filtering and (c) estimated by alternative minimization. The lower row shows the harmonic PSF: (d)
true, (e) estimated by homomorphic filtering and (f) estimated by alternative minimization.

LASSO
Fundamental

LASSO
Harmonic

LASSO
Sum

Proposed
method

CNR 3.242 2.775 3.196 3.198

SSIM/refl (%) 18.41 14 97 19.06 24.47

RMSE/refl 1.136 1.138 1.368 1.107

RG/fund 2.034 6.008 5.727 5.732

RG/har 0.807 3.289 2.091 2.275

Table 4.1: Quantitative results corresponding to the images of Figure 4.2.

PSF in
Figure 4.3 (b)

PSF in
Figure 4.3 (c)

PSF in
Figure 4.3 (e)

PSF in
Figure 4.3 (f)

SSIM 0.9976 0.9908 0.9981 0.9967

RMSE 0.1511 0.2960 0.2022 0.2668

Table 4.2: Quantitative assessment of the estimated PSF with respect to the true PSF.
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4.2.3.2 Phantom image

This section considers a phantom image containing wires located in different part of the image as

illustrated in Figure 4.4. The attenuation of harmonic echoes is very low for this example. For this

reason, the matrixW accounting for attenuation in the harmonic direct model was set to the identity

matrix. The fundamental and harmonic images are presented in Figure 4.4 (a) and (b)whereas the

deconvolution results are shown in Figure 4.5. In general, all the restoration methods that consider

the harmonic data (LASSO harmonic, LASSO-sum and proposed) exhibit good spatial resolution.

Furthermore, LASSO-sum and the proposed blind approach compensate the harmonic attenuation

at high depths by including information from the fundamental image, as shown by the zooms in

Figure 4.5. Cysts are also better defined on the restored images by the proposed method in contrast

with the native ones. Quantitative results are provided in Table 4.3. They confirm on one hand the

Figure 4.4: Wire phantom image: (a) Fundamental B-mode image, (b) Harmonic B-mode image.

superiority of the proposed method in terms of contrast compared to the other methods. In terms

of resolution the harmonic restored images present the highest score, whereas the proposed method
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comes second. However, the harmonic images lack of information of depth and deepest wires are less

contrasted in contrast with the proposed method. Thus, the proposed method provides overall very

competitive results with a good compromise between resolution and contrast.

Figure 4.5: Results on phantom data: TRF estimated by (a) LASSO-fundamental, (b) LASSO-
harmonic, (c) LASSO-sum, and (d) proposed method. All the TRF were restored using PSF esti-
mated alternatively with the TRF.

LASSO
Fundamental

LASSO
Harmonic

LASSO
Sum

Proposed
method

CNR 0.614 1.066 1.231 1.569

RG/fund 3.222 7.667 5.265 5.800

RG/har 1.074 3.133 2.765 2.933

Table 4.3: Quantitative results computed from the images of Figure 4.5.
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4.2.3.3 Carotid image

This section considers a carotid image whose fundamental and harmonic B-mode images are dis-

played in Figure 4.6 (a) and (b) respectively. From these images, one can clearly observe the better

spatial resolution of the harmonic image, at the cost of higher attenuation with depth compared

to the fundamental image. In contrast to the phantom experiment, the attenuation matrix W was

estimated as explained in Section 3.6.2. This matrix has a crucial role for this dataset, due to its

ability to balance between fundamental and harmonic information. The experiments on carotid are

following the same scheme as for the phantom. The visual inspection of the results in Figure 4.7

allows us to conclude that LASSO-sum and the proposed methods, that repose on both fundamental

and harmonic components, are able to gather useful information from both observations. In particu-

lar, they have the spatial resolution of the harmonic image and compensate for harmonic attenuation

with information from the fundamental image. Quantitative results provided in Table. 4.4 confirm

the interest of fusing information of both fundamental and harmonic RF images.

Figure 4.8 shows the estimated PSFs obtained with the proposed algorithm, by comparison to the

LASSO
Fundamental

LASSO
Harmonic

LASSO
Sum

Proposed
method

CNR 5.84 7.813 11.864 12.620

RG/fund 2.448 3.736 3.035 3

RG/har 1.48 2.26 1 1.875

Table 4.4: Quantitative results computed from the images of Figure 4.7.

pre-estimated PSFs with zero phase using homomorphic filtering. The proposed blind deconvolution

approach is able to estimate the unknown phases of the PSFs, which is very promising. We also com-

pared quantitatively the estimated PSFs after convergence with the smoothing integration method

proposed in [MA05]. The smoothing integration method has been widely applied to blind US image

deconvolution [ZBKT14, Mor13, Che16] and adopted in Chapter 3. Since in real images there is no

ground truth for the PSFs, in Table 4.5 we compare the estimated PSFs using the proposed method
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Figure 4.6: Carotid image: (a) Fundamental B-mode image, (b) Harmonic B-mode image.

with the estimated PSFs using the smoothing integration method. We can see a high similarity

between the estimated PSFs with RMSE values around 10−4 and SSIM values around 99%.

Fundamental
PSF

Harmonic
PSF

SSIM 99.84 99.72

RMSE (×10−4) 4,71 9,82

Table 4.5: Quantitative results comparing the fundamental and harmonic PSFs estimated by the
proposed method in contrast to the smoothing integration method.
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Figure 4.7: Results on carotid data: TRF estimated by (a) LASSO-fundamental, (b) LASSO-
harmonic, (c) LASSO-sum, and (d) proposed method. All the TRF were restored using PSF es-
timated alternatively with the TRF.

4.2.4 Discussion

The regularization parameters were set as follows in all the experiments: µ = 0.02 and β = 1. In

addition, 10 iterations were sufficient to ensure the convergence of the algorithm, with a stopping

criterion based on the relative error between two consecutive values of the cost function in (4.1).

The tolerance of the relative error was set to 10−5 (see Equation (3.18)). To finish, we would like

to provide some conclusions regarding the deconvolution methods of chapters 3 and 4. In terms of

visual inspection, both approaches present satisfying results mitigating the PSF effect and collecting

in one image a better version of the restored images using both fundamental and harmonic image. In
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Figure 4.8: (a) Zero phase fundamental PSF ĥf , (b) Estimated fundamental PSF hf , (c) Zero phase
harmonic PSF ĥh, (d) Estimated harmonic PSF hh.

addition, the interest of both proposed methods was clearly highlighted in contrast with LASSO-fund,

LASSO-harmonic and LASSO-sum. Quantitatively, if we compare Tables 3.5 and 4.3 for the phantom

image and Tables 3.6 and 4.4 for the carotid image, one can see that the deconvolution approach

with pre-estimated PSF presents higher scores in contrast with the fully blind approach. However,

the joint fully blind deconvolution method have a shorter computation time. Note that, in the blind

deconvolution with pre-estimated PSF, the estimation time of the PSF should be considered. Here,

we mention that the PSF estimation time in [MA05] depends on the size of the image (the bigger the

size of the image, the longer the estimation time). The relation between the computation time of the

PSF estimation and the size of the image comes from the fact that the approach presented in [MA05]

segments the RF image into overlapped horizontal RF segments, and then chooses different RF-blocks

in each segment and calculates the PSF estimation on each block. After all, the estimated PSFs of all

the blocks are averaged. In addition, the phase estimation presented in [MA05] is computationally

intensive. In order to decrease this estimation time, we have decided to estimate the PSF in the

two steps method from the focal point region, where the lateral resolution is the highest. Indeed,

the elapsed time of the estimation of the PSF from the whole image of carotid (size 384 × 4480)

followed by the joint deconvolution is about 3 hours whereas it is about 6 minutes when the PSF

estimation is restricted into the focal point region. On the other hand, the execution time of the

fully blind method is around 3 minutes (see Table 4.6). Note that all the simulations were done on a
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standard 3.6 GHz Intel Core i7 with a straightforward MATLAB implementation without GPU. The

Blind deconvolution with

pre-estimated PSF
Fully blind deconvolution

Computation

time

PSF estimation TRF estimation
142 seconds

6 minutes 10 seconds

Table 4.6: Comparison of the computation time of the blind deconvolution methods.

fully blind restoration considers only the calculation of the magnitude of the PSFs from the whole

image by homomorphic filtering and then the phase estimation is calculated iteratively based on

the phase difference between the observed image and the calculated TRF in the previous iteration.

Thereby, the choice of the deconvolution method is a compromise between the computational time

and the performance.

4.3 Joint deconvolution with a spatially varying PSF

The PSF of US images is spatially varying as discussed in the Section 2.2. Based on [NPK+06],

the PSF can be supposed to be axially varying. The lateral variability of the PSF depends on the

position of the target with respect to the central axis of the transducer. To compensate this variability,

apodization is applied by dynamically weighting the aperture so the PSF does not change laterally

on a given depth. In addition, the number of samples in the axial direction is much more higher than

the lateral direction ( few thousands samples in the axial direction while few hundreds in the lateral

one). Thus, assuming that the PSF is only axial varying is considered fair in ultrasound imaging

[ZAI03, NPK+06, MA05]. While few studies consider the spatial variation of the PSF [RSHB17,

FBKV18b, Mic17], most of the existing approaches assume an invariant PSF to reduce the complexity

of the restoration problem [Tax95, MA05, APR95, CBK16b]. In this case, image restoration is

applied to image segments where the hypothesis of invariant PSF may hold. Consequently, stitching

artifacts appear after merging the different restored segments in order to rebuild the whole restored
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image [NO98]. The objective of this section is to propose a fast and efficient way to restore jointly

fundamental and harmonic US images by solving an appropriate inverse problem using a block-wise

approach allowing us to take into account that the PSF is spatially varying..

4.3.1 Block-wise joint deconvolution

The approach proposed in [VBA+16] considers different PSFs at different depths and then creates a

sequence of images by convolution between the medium scattering map and the sequence of PSFs.

Finally, a PSF weighting function is applied in order to build the final image. In the inverse solution

considered in this work, a similar method is investigated, which can be summarized into two steps.

First, n PSFs are estimated at n different depths from image segments extracted from the RF images

using the method proposed in [MA05]. As a result, n RF restored images are obtained from the

deconvolution of the fundamental and harmonic RF images with the n estimated PSFs (see Figure

4.9).

Figure 4.9: PSF estimation and image deconvolution using a sequence of estimated PSFs.

Note that n different weighting functions are created corresponding to the n PSFs. Each weighting

function wi reaches its maximum at the depth where the ith PSF is estimated. The amplitudes of

the different weights wi are defined using continuous windows along the z-axis illustrated in Figure
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Figure 4.10: Principle of block weighting and weighting functions wi corresponding to the different
PSFs as a function of depth.

4.10 in the particular case of n PSFs and are normalized in order to obtain:

∀z ∈ R,
n∑
i=1

wi(z) = 1. (4.9)

Finally, in order to obtain the final restored image Im, the n restored images are merged using a

linear combination defined as:

Im =
n∑
i=1

wiRi (4.10)

In other words, in the region of the ith PSF, the restored image Ri is weighted with an amplitude of

0.5 while Ri−1 and Ri+1 are weighted with values from the negative and positive slope respectively

(between 0 and 0.5).

4.3.2 Results

Two acquisitions were considered to test the proposed method, as described hereafter.

Phantom image:

The first data was acquired on a tissue mimicking phantom (model 404GS LE, Gammex Inc., Mid-

dleton, WI, USA) including both anechoic/hypoechoic cysts and wire targets. The simple structures

in this phantom allowed us to objectively evaluate the resolution gain and the restoration of the

information in depth enabled by the proposed method.

Carotid image:
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Figure 4.11: Phantom experiment: (a) fundamental image, (b) harmonic image, (c) deconvolution
solution using a spatially invariant PSF, and (d) deconvolution solution using the proposed method.
The second row shows a zoom corresponding to the rectangular region displayed in (a).

The second acquisition was done in vivo by scanning the carotid artery and jugular vein of a young

healthy volunteer. This image contains more complicated structures and represents a more difficult

challenge than the previous phantom to prove the functionality of the proposed restoration procedure.

In both experiments, images were divided into eight segments for PSF estimation and block-wise im-

age restoration. The proposed method is compared to the joint deconvolution technique of Chapter

3 that considers a spatially invariant PSF. In the phantom experiment, the full width at half maxi-

mum (FWHM) computed around the wire locations was calculated as a metric of spatial resolution.

In the carotid experiment, the resolution gain [YZX12a] was calculated for both solutions obtained

using spatially invariant and variant block-wise PSFs. The images corresponding to the phantom

experiment are shown in Figure 4.11. The interest of image deconvolution can be appreciated in

Figure 4.11 (c,d), in particular the improved spatial resolution compared to the fundamental image
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Figure 4.12: Phantom experiment: gains of FWHM for each wire at each depth in the proposed
method and in the joint deconvolution with invariant PSF.

in Figure 4.11 (a) and the better signal to noise ratio at high depth compared to the harmonic image

in Figure 4.11 (b). Indeed, one can see that the anechoic/hypoechoic regions are well defined in

the Figure 4.11 (d) and the wires are thinner compared to the ones in the Figure 4.11 (c). Thus,

the improved resolution obtained using a spatially-varying PSF can be clearly observed: a FWHM

improvement is presented in Figure 4.12 at different depths confirming the advantage of the proposed

method. The FWHM improvement is the difference between the FWHM of a wire in the joint solu-

tion considering spatially invariant PSFs and the FWHM of the corresponding wire in the result of

the proposed method : This improvement highlights the advantage of considering a spatially varying

PSF in order to obtain better resolution. The images corresponding to the carotid experiment are

shown in Figure 4.13. One can observe that the proposed method eliminates the reverberation effect

caused generally by the deconvolution, while preserving a good restoration result. In particular, an

improvement of the resolution gain is obtained: with a RG of the proposed method with respect to

the harmonic image equal to 7.97 where the RG of the deconvolution method using only one invariant

PSF with respect to the harmonic image is 6.85 (an improvement of 1.12). We note here that the

RG is calculated in the red dashed section in the Figure 4.13. The red arrows in 4.13 (c) point out

reverberation effects caused by deconvolution with an invariant PSF where one can see the reduction
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Figure 4.13: Carotid experiment: (a) fundamental image, (b) harmonic image, (c) deconvolution
solution using an invariant PSF, and (d) deconvolution solution using the proposed method.
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of this reverberation by considering the spatially varying PSF (see Figure 4.13 (d)). Finally, one

can note that there is no boundary artifact between the several blocks thanks to the choice of the

weighting functions.

4.4 Conclusion

After presenting the advantages of the joint deconvolution of fundamental and harmonic images in

Chapter 3, the objective of this chapter was to introduce two strategies to improve the joint decon-

volution by proposing two upgrades related to the PSF. The first approach considers an alternating

PSF-TRF estimation. In this case the PSF is estimated simultaneously with the TRF. The results

were promising and an improvement of the computation time compared to a restoration approach

with a pre-estimated PSF. This result may push the joint deconvolution one step closer to be able

to be integrated as a plug and play segment in US imaging systems. Another point addressed in this

chapter is to exploit the fact that the PSF is spatially varying and to incorporate this knowledge

into the restoration. While the majority of existing restoration methods considers an invariant PSF,

we have considered an efficient block-wise restoration approach allowing the spatial variability of

the PSF to be considered. The spatial variability of the PSF was considered in the axial direction,

and neglected in the lateral direction. The latter assumption relies on the characteristics of the US

image and its acquisition specification. The proposed method is easy to implement, does not present

stitching artifacts, reduces the reverberation artifacts and can be coupled to any restoration solution.

We think that it is a simple way of bypassing the problems related to a spatially varying PSF.
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Conclusions and perspectives

5.1 Conclusions

The objective of this research work was to improve the resolution of US images by investigating

the deconvolution methods that take into consideration the non-linearity of US waves. US imaging

has many advantages related to its use that have contributed to its popularity, despite its relatively

low and variable image quality. Most of the work to improve the quality of US images has focused

on instrumental specifications and beamforming techniques. In parallel, post-processing techniques

had raised, and generally offered better flexibility. Chapter 1 of this manuscript is dedicated to US

physics, imaging system. Chapter 2 presented the state-of-the-art of the existing techniques that

improve the spatial resolution of US images through pre-processing and post-processing techniques.

In addition, under the first Born approximation, the derivation of the linear US image model based

on the US waves propagation equations was recalled in this chapter.

The main challenge of this thesis was to show the interest of integrating the non-linearity into the

restoration process. In the first contributions presented in Chapter 3, a new joint deconvolution

problem was established based on a US image model gathering the fundamental and the harmonic

information. An attenuation matrix was integrated in the harmonic image model in order to consider

the important attenuation in this image modality. For real images, the elements of this matrix were

estimated based on a spectral analysis. Furthermore, a cost function was formulated considering the

data fidelity term of fundamental and harmonic images and a Laplacian regularization. An ADMM

algorithm was finally investigated to solve the resulting deconvolution problem. A cross-validation

was applied in order to find the most optimal regularization parameters. In this chapter, the PSF was

estimated in a pre-processing step and considered spatially invariant. Results obtained on simulated
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and real images clearly showed the interest of combining the information contained in the two modes

instead of restoring them independently.

Chapter 4 presented two contributions related to the PSF. The first consisted in estimating the

PSF alternately with the TRF. An iterative alternating algorithm was applied in order to alternate

between the TRF and PSF estimation steps. The magnitude of the PSF, estimated by homomorphic

filtering, was designed as a constraint to the problem. Only the PSF phase was estimated in the

alternating problem based on the difference of phase between the observed image and the estimated

TRF in the previous estimation. The latter approach prevents an exhaustive and hard task: the PSF

phase unwrapping. The results applied on real and simulated images were promising in particular

from a perspective of complexity reduction compared to the pre-estimation approach of the PSF

presented in the Chapter 3. The second part of this chapter considered the spatial variation of the

PSF. The restoration was applied with estimated PSFs at different depths. A smooth interpolation

weighted the restored images in order to prevent the stitching artifact and to consider mainly the

spatial variability of the PSF in the axial direction. Results on real images showed a decrease of Gibbs

artifacts due to the PSF spatial invariability assumption considered in the restoration problem.

5.2 Future work and perspectives

The open challenges and perspectives resulting from this thesis are listed in what follows:

• Filtering: These works require the extraction of the fundamental and harmonic images. In

this work, linear band-pass filters were used due to the low spectrum overlap between the

fundamental and harmonic components. However, imaging with short emitted pulse or in the

presence of contrast agents may increase the overlapping and linear filtering will not be anymore

a suitable solution. Applying beamforming techniques such as pulse inversion represents an

interesting alternative to filtering. Alternatively, the application of blind source separation

on the raw images may be considered a potential perspective [WSVS+20]. Alternatively, we

proposed in a preliminary study a Hammerstein model in order to separate the fundamental

and the harmonic images [HBK+18]. In the same perspective, [PE03a] considered a Volterra
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model to separate the linear and quadratic components for contrast imaging applications.

• Harmonic image observation model: Under the first Born approximation, the harmonic

image model is expressed as a convolution between the TRF and the PSF. However, the latter

assumption can only be applied in the imaging of tissues with low non-linearity. In order to

expand the application of the proposed algorithm to the contrast imaging, a nonlinear model

of the harmonic image should be considered and consequently another framework that deals

with non-smooth and non-convex problem should be adopted [BST14].

• Fusion: For simplicity the TRF was considered the same for fundamental and harmonic images.

However, due to the non-linearity, some regions of the imaged tissues may have a relevant

nonlinear response whereas the information around the fundamental frequency is less important

(especially in contrast imaging). Thus, two data reflectivity functions should be considered in

a future work where the relation between the fundamental and harmonic images should be

investigated and integrated in the cost function in order to ensure the convergence of the fusion

algorithm. A recent work was established on the fusion of US and MRI images adress this task

[EMVB+20].

• Hyper-parameters: As explained in Chapters 3 and 4, hyper-parameters play an important

role in the image restoration process. The choice of hyper-parameters was done based on

cross-validation. It would be interesting to investigate some fast methods to tune these hyper-

parameters adaptively [XFG17, ACFBD19].

• Optimization framework: ADMM was adopted in the proposed work to minimize the cost

function resulting from the US deconvolution process. Despite its flexibility and interesting

convergence properties, other optimization algorithms could offer interesting perspectives as

FISTA [BT09], and the proximal alternating linearized minimization (PALM) [BST14] espe-

cially when considering a nonlinear image models.

• Spatial variability of the PSF: In this work, the spatial variability of the PSF was considered

in Chapter 4. The latter method consists in applying a interpolation after the restoration of the
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US image with different PSFs on different depths. However, it could be interesting to integrate

the spatial variability of the PSFs in the observation model and consider it into the resulting

inverse problem [Mic17, FBKV18b, BRP+19b].

• Deep learning: Recently, deep learning has appeared as a powerful tool for number of US

image enhancement tasks [VSCE19, LMG+20, YKHY18]. In addition, [KHY20] had presented

an unsupervised deep learning approach to deal with the US restoration problem. All the latter

research encourage to consider the artificial intelligence in a future work to deal with the joint

deconvolution problem.
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Appendix A

Blurring operator in spatial and
frequency domains

In this work, the image formation model considered is a 2D convolution between the PSF and the

TRF and can be expressed as follows:

Y = h~X, (A.1)

where X and Y ∈ Rm×n are the ground truth image and the observed image respectively (here we

mention that the output of the convolution is Y , which is cropped in order to have the same size of

X). h ∈ Rp×q is the PSF kernel (where p < m and q < n in our application). The image formation

model in (A.1) can be expressed as a matrix/vector multiplication as follows:

y = Hx, (A.2)

where y and x ∈ RN×1 (where N = m×n) are the stacked column vectors formed from Y and X by

lexicographical ordering. The matrix H ∈ RN×N is a block circulant with circulant blocks (BCCB)

matrix when circular boundaries conditions are considered [HNO06]. Note that the consideration of

circular convolution does not have any theoretical justification, but has a computational interest as

it will be further shown in this appendix.

A.1 Block circulant matrix with circulant blocks

A BCCB matrix is a matrix that can be partitioned into blocks and each individual block is circulant.

In order to present in details the construction of the BCCB matrix from the blurring kernel, let us

consider the following example of the convolution of the ground truth image X ∈ R6×6 with the PSF
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h ∈ R3×3 in order to create the observed (blurred) image Y ∈ R6×6:

X=



x11 x12 x13 x14 x15 x16

x21 x22 x23 x24 x25 x26

x31 x32 x33 x34 x35 x36

x41 x42 x43 x44 x45 x46

x51 x52 x53 x54 x55 x56

x61 x62 x63 x64 x65 x66



, h =


h11 h12 h13

h21 h22 h23

h31 h32 h33

 and Y =



y11 y12 y13 y14 y15 y16

y21 y22 y23 y24 y25 y26

y31 y32 y33 y34 y35 y36

y41 y42 y43 y44 y45 y46

y51 y52 y53 y54 y55 y56

y61 y62 y63 y64 y65 y66



The convolution mechanism consists in rotating the kernel h around its center and afterwards

the kernel is placed over each element of x. Considering circular boundaries, an element by element

multiplication and summation are applied in order to obtain the value of Y at the associated position

(see (A.3) and (A.4)). Afterwards, the previous procedure is repeated by moving the kernel over the

different element of x.



x66h33 x61h32 x62h31 x63 x64 x65 x66 x61

x16h23 x11h22 x12h21 x13 x14 x15 x16 x11

x26h13 x21h12 x22h11 x23 x24 x25 x26 x21

x36 x31 x32 x33 x34 x35 x36 x31

x46 x41 x42 x43 x44 x45 x46 x41

x56 x51 x52 x53 x54 x55 x56 x51

x66 x61 x62 x63 x64 x65 x66 x61

x16 x11 x12 x13 x14 x15 x16 x11



(A.3)

Thus we can express :

y11 = h33x66 + h32x61 + h31x62 + h23x16 + h22x11 + h21x12 + h13x26 + h12x21 + h11x22 (A.4)
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By way of analogy, the BCCB matrix H ∈ R36×36 can be expressed as follows:

H =



H2 H1 © © © H3

H3 H2 H1 © © ©

© H3 H2 H1 © ©

© © H3 H2 H1 ©

© © © H3 H2 H1

H1 © © © H3 H2



(A.5)

where © ∈ R6×6 is a matrix of zeroes, and Hk ∈ R6×6 is defined as follows:

Hk =



h2k h1k 0 0 0 h3k

h3k h2k h1k 0 0 0

0 h3k h2k h1k 0 0

0 0 h3k h2k h1k 0

0 0 0 h3k h2k h1k

h1k 0 0 0 h3k h2k



(A.6)

A.2 Spectral decomposition of the BCCB matrix

The large size of H matrix makes it difficult to use. However, the BCCB matrix, H, is a normal

matrix 1 and admits a spectral decomposition as follows:

H = F∗ΛF , (A.7)

where F ∈ CN×N is the 2D unitary discrete Fourier transform (DFT) matrix, * represents the

conjugate transpose and the diagonal matrix Λ = diag [λ1, · · · , λN ] contains the eigenvalues of H ∈

RN×N . Therefore, (A.2) can be expressed as follows:

y = Hx = F∗ΛFx (A.8)
1H is a normal matrix ⇒ H∗H = HH∗, where (.)∗ is the conjugate operator
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Note that Fx, where x is the vectorized version of the image of the imageX, represents the vectorized

form of its 2D Fourier transform and can thus be obtained in a computationally efficient way by a

2D fast Fourier transform. The same remark applies to F∗x that represents the inverse Fourier

transform of X and can thus be computed by the fast inverse Fourier transform. Using the fast

Fourier transform, the computational complexity is reduced to O(N logN) from O
(
N2). Since the

implicit matrix F is a unitary matrix, we have the following relationship:

H = F∗ΛF ⇒ FH = ΛF ⇒ Fh1 = Λf1 = λ/
√
N, (A.9)

where λ ∈ RN×1 is a vector which contains all the eigenvalues of H, f1 is the first column of the

matrix F and is thus a vector of ones and h1 is the first column of the BCCB matrix H. The

eigenvalues of H can be obtained by multiplying the first column of H by
√
NF . Equivalently, in

order to compute the eigenvalues of H, the DFT can be applied on a two dimensional array containing

the elements of the first column of the PSF. Indeed, we can get this array, from the PSF kernel h by

shifting the latter around its center. Thus, the convolution model can be expressed as follows:

Y = ifft2(S. ∗ fft2(X)), (A.10)

where .∗ represents an element-wise multiplication and S can be calculated from the kernel h as

follows:

S = fft2(circshift(h, 1− center)). (A.11)

Note that S is an array (and not a vector), and the eigenvalues are not sorted and

h1 = vec(circshift(h, 1− center)), (A.12)

where vec represents the vectorization step. In the case where the PSF array h is ’smaller’ than Y

and X, a zero-padding of h is applied to embed the p× q array in a larger array of size m× n and

ensure that all arrays in (A.10) have the same size.
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