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Line Detection as an Inverse Problem: Application
to Lung Ultrasound Imaging

N. Anantrasirichai, Member, IEEE, Wesley Hayes, Marco Allinovi, David Bull, Fellow, IEEE, and Alin Achim,
Senior Member, IEEE

Abstract—This paper presents a novel method for line restora-
tion in speckle images. We address this as a sparse estimation
problem using both convex and non-convex optimisation tech-
niques based on the Radon transform and sparsity regularisa-
tion. This breaks into subproblems which are solved using the
alternating direction method of multipliers (ADMM), thereby
achieving line detection and deconvolution simultaneously. We
include an additional deblurring step in the Radon domain via a
total variation blind deconvolution to enhance line visualisation
and to improve line recognition. We evaluate our approach
on a real clinical application: the identification of B-lines in
lung ultrasound images. Thus, an automatic B-line identification
method is proposed, using a simple local maxima technique in
the Radon transform domain, associated with known clinical
definitions of line artefacts. Using all initially detected lines as a
starting point, our approach then differentiates between B-lines
and other lines of no clinical significance, including Z-lines and
A-lines.

We evaluated our techniques using as ground truth lines
identified visually by clinical experts. The proposed approach
achieves the best B-line detection performance as measured by
the F score when a non-convex `p regularisation is employed
for both line detection and deconvolution. The F scores as well
as the receiver operating characteristic curves (ROC) show that
the proposed approach outperforms state-of-the-art methods with
improvements in B-line detection performance of 54%, 40% and
33% for F0.5, F1 and F2, respectively, and of 24% based on
ROC curve evaluations.

Index Terms—line detection, deconvolution, image restoration,
ultrasound, inverse problem, ADMM, sparsity regularisation

I. INTRODUCTION

L INES and boundaries in medical images frequently rep-
resent important structures as they can discriminate tis-

sue types, organs, and membranes. Although a number of
image enhancement and segmentation methods have been
proposed to help detect lines, none of these have considered
line artefacts, which are more difficult to visualise, yet are
still meaningful for clinical interpretation. One such clinical
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application is the detection of B-line artefacts in lung ultra-
sound images. The summation of these B-lines yields a score
denoting the extent of extravascular fluid in the lungs [1]–
[3]. Notwithstanding progress in dialysis techniques, volume
overload and cardiopulmonary congestion remain a major
problem in patients on hemodialysis and peritoneal dialysis.

Fluid status assessment is one of the challenging goals for
the nephrologist in patients on dialysis, characterized by a pro-
found impairment in the regulation of body fluid distribution.
Various techniques have been employed to quantify fluid over-
load in patients with end stage kidney disease, and among them
lung ultrasonography has attracted growing attention in recent
years [4]. B-lines are imaging artefacts which result from
subclinical transudate resulting in acoustic mismatch between
the lung parenchyma and adjacent pleura. Moderate to severe
lung congestion detected via quantification of B-lines using
lung ultrasound is a strong predictor of intradialytic morbidity,
death and cardiovascular events in adult dialysis patients [5],
[6]. The technique has also shown potential as a superior
predictor of fluid overload in infants and children on dialysis
when compared to other measures [2], [3]. Clinical limitation
when using lung ultrasound to quantify fluid overload is that
quantification of B-lines may not accurately reflect generalised
fluid overload in patients with conditions such as interstitial
lung disease or severe cardiac disease. Moreover, the technique
is operator dependent and requires specialist training [7].
This limits the application of lung ultrasound in the clinical
setting, as only a small number of trained individuals can
reliably detect B-lines. Hence, a small number of patients
have access to lung ultrasound, and it is not routinely used
in paediatric practice. Therefore, reliable image processing
techniques that improve the visibility of lines and facilitate
line detection in speckle images are essential. To the best of
our knowledge, only two automatic approaches [8], [9] and one
semi-automatic approach [10] have been proposed previously.
The method in [8] employs angular features and thresholding
(AFT). A B-line is detected in a particular image column if
each feature exceeds a predefined threshold. The method in [9]
uses alternate sequential filtering (ASF). A repeated sequential
morphological opening and closing approach is applied to
the mask until potential B-lines are separated. These methods
are far from being sufficiently reliable to be used in clinical
settings. This is particularly true for paediatric ultrasound data
due to the anatomical differences between children and adults.

For line detection, the Hough transform is the most popular
algorithm due to its simplicity. The transform uses a parametric
representation of a line: r = x cos(θ) + y sin(θ), where r is
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the shortest distance between the origin and the line, and θ
is an angle between the x axis and a vector perpendicular to
the line [11]. Applying the Hough transform is however not
straightforward in noisy images, particularly for multiplicative
speckle noise, as often encountered in medical images, due
to the multiple false peaks generated from collinear noisy
edge points. Several techniques have been proposed to deal
specifically with speckle noise [12], [13]. For example, the
method in [14] employs an adaptive-weighted bilateral filtering
(AWBF) to reduce speckle and preserve edge structure by
computing local entropy. Some techniques have focused on
line detection in noisy images [15], [16]. This includes the
method introduced by Czerwinski et al. [17] that uses eight
directional sticks as a rotating kernel transformation to en-
hance lines and curves in ultrasound images. A review of edge
and line detection methods using different denoising filters can
be found in [18]. These techniques generally require several
predefined thresholds and parameters, and hence need tuning
for use with data collected in different settings.

A Radon transform was employed to avoid the binary
edge detection process in [19]. This is similar to the Hough
transform but it directly operates on grayscale images [20].
Aggarwal and Karl [21] proposed one such line detection
method based on the Radon transform and showed very
promising results. However, when they applied their method to
real images (e.g. aerial and SAR images), the grayscale images
were converted to binary gradient images, which means that a
predefined threshold is still required. Moreover, their method
does not consider blur that generally occurs due to imperfect
image acquisition, e.g. defocus, or machine limitations, such
as low resolution and slow shutter speed.

In this paper, we propose a novel solution to an inverse
problem for line detection in ultrasound images. This extends
from our previous work [22], where lines in noisy ultrasound
images were modelled via a Radon transform only and they
were estimated using `1 regularisation. Here, we combine a
Radon transform with the point spread function (PSF) of the
ultrasound acquisition system in a single equation thereby
achieving line detection and deconvolution simultaneously.
This inverse problem is solved using the alternating direction
method of multipliers (ADMM) [23], offering a fast conver-
gence rate. We present solutions for various `p regularisations,
where p > 0 (small p leads to sparsity). We subsequently show
that the proposed method is suitable for B-line detection in
lung ultrasound images. The method also detects Z-lines and
A-lines in order to distinguish B-lines. Z-lines also appear as
vertical lines, but are not caused by an increase in lung density
so they must be discounted. The A-lines, which are reflections
of the pleural lines, help separating B-lines and Z-lines. We
specifically address images of children as these are technically
challenging due to chest size and rib positions. These images
are generally low-resolution and show obvious rib shadows
causing images to be low contrast.

The novel contributions of this work are summarised as
follows:

1) We propose an innovative way of detecting lines in
speckle images by solving an inverse problem;

2) We address the issue of joint line detection and decon-
volution, with the latter component being essential for
the accuracy of the former;

3) We propose solutions to the above inverse problems
based on both convex and non-convex optimisation
approaches with fast rates of convergence;

4) We introduce an automatic robust approach to B-lines
identification amongst various line artefacts present in
lung ultrasound, which also include the pleural line, A-
lines and Z-lines.

The remaining part of this paper is organised as follows. In
Section II we describe lung ultrasound imaging and associated
line artefacts. Then, the proposed line restoration via an inverse
problem solving is presented in Section III. An enhanced
method using an additional deblurring step is described in
Section IV. The B-line identification method, which uses the
set of previously restored lines, is presented in Section V.
The performance of the proposed methods is evaluated on sets
of both simulated and real ultrasound images in Section VI.
Finally, Section VII presents the conclusions of the paper.

II. CHARACTERISATION OF LUNG ULTRASOUND IMAGES

A. Line artefacts and their clinical meaning

Lung ultrasound, is a non-invasive, easy-to-perform,
radiation-free, fast, cheap and highly reliable technique, which
is currently employed for objective monitoring of pulmonary
congestion [24]. The technique requires ultrasound scanning
of the anterior right and left chest, from the second to the fifth
intercostal space, in multiple intercostal spaces [25]. The soft
tissues of the chest wall and the aerated lung are separated by
a pleural line, which is thin, hyperechoic and curvilinear.

Linear artefacts are thought to arise from ultrasound re-
verberations generated by the water-thickened interlobular
septa and other subpleural structures [26]. These artefacts are
referred to as B-lines. When the air content decreases and lung
density increases due to the presence in the lung of transudate,
the acoustic mismatch between the lung and the surrounding
tissues is lowered, and the ultrasound beam can be partly
reflected at deeper zones and repeatedly. This phenomenon
creates discrete vertical hyperechoic reverberation artefacts (B-
lines), that arise from the pleural line [27]. The presence of a
few scattered B-lines can be a normal variant, found in healthy
subjects, especially in the lower intercostal spaces. Multiple
B-lines are considered sonographic sign of lung interstitial
syndrome, and their number increases along with decreasing
air content and increase in lung density [28]. Note that the B-
lines are counted as one if they originate from the same point
on the pleural line.

A-line artefacts are repetitive horizontal echoic lines with
equidistant intervals, which are also equal to the distance be-
tween skin and pleural line [1]. The A-lines indicate subpleural
air, which completely reflects the ultrasound beam. The length
of an A-line can be roughly the same as the pleural line, but
it can also be shorter, or even not visible because of sound
beam attenuation through the lung medium. Finally, Z-lines
are short vertical comet tail artefacts arising from the pleural
line but not reaching the distal edge of the screen. They are
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Fig. 1. Line artefacts in lung ultrasound images. B-mode images (top row)
and lines overlaid on them (bottom row). There are two, zero and two B-
lines in the image on the left, middle and right, respectively. Red, yellow,
blue and green lines represent the pleural lines, B-lines, A-lines and Z-lines,
respectively.

found in normal persons as well as in those with an abnormal
collection of air in the pleural space. They do not erase the
A-lines and do not move with lung sliding. They are of no
clinical significance, so they should not be confused with the
B-lines. Fig. 1 shows various line artefacts in lung ultrasound
images, occurring in different machine settings.

B. Line artefact model

The simplest way of modelling lines in noisy images is by

y = Cx+ n, (1)

where y(i, j) is the observed noisy image (h × w) in the
two-dimensional Euclidean plane, i ∈ (−h2 ,

h
2 ], j ∈ (−w2 ,

w
2 ].

x(r, θ) is the line represented by a distance r from the centre of
y and a orientation θ from the the horizontal axis of the image,
and n is noise. C = R−1 is an inverse Radon transform. In its
general form without noise, a Radon transform R is described
in (2), where δ(•) is a delta function. This is the integral of
the image intensity over the hyperplane perpendicular to θ,
and projected on to a radial line oriented at θ.

x(r, θ) =

∫
R2

y(i, j)δ(r − i cos θ − j sin θ)didj. (2)

An inverse Radon transform C can be obtained using the
filtered backprojection algorithm [29]. It comprises a filtering
part (with the filter |v| in the Fourier domain) and a backpro-
jection part, expressed in (3a) and (3b), respectively.

g(r, θ) = IFTv→r (|v| FTr→v(x(r, θ))) , (3a)

y(i, j) =

∫ π

0

∫
R
g(r, θ)δ(r − i cos θ − j sin θ)drdθ, (3b)

where v is the radius in Fourier domain, FTr→v is a forward
Fourier transform in the r to v direction, and IFTv→r is an
inverse Fourier transform from v to r. To operate with an
image, R and C are discrete and can be implemented as
proposed in [30]. In this paper, we used MATLAB functions
radon and iradon to construct R and C, respectively [31].

For ultrasound images in particular, the lines can be more
precisely described using the model

y = HCx+ n, (4)

where H is a point spread function (PSF). The PSF of the
ultrasound system is spatially variant, particularly in the axial
direction of the ultrasound image. This spatial variation can be
compensated during the image acquisition or post-processing,
e.g. the time gain compensation (TGC) [32]. We therefore
employ the spatially invariant PSF, which can simply be
extended to the spatially variant case by applying overlapped
partition techniques [33], [34].

III. PROPOSED LINE RESTORATION IN SPECKLE IMAGES

To detect B-lines in lung ultrasound images, two major steps
are proposed: i) line restoration (Section III-A) using image
regularisation based on the Radon transform, and ii) B-line
identification (Section V-B), following the occurrence of line
artefacts in the ultrasonic domain [35].

A. Optimisation problem
Equation (4) poses an inverse problem for finding x, and

can be seen as two separate subproblems which can be solved
with two optimisation processes. The first step is to restore the
image w from the blurred speckle image y = Hw by solving

ŵ = arg min
w
{||y −Hw||22 + α||w||pp}, (5)

where p > 0 is related to the shape of the statistical distribution
of the ultrasound image. p = 1 and p = 2 are for the
Laplacian model and Gaussian model, respectively. p < 1
determines a non-convex penalty function, which achieves the
approximation of the ideal `0 case. The choice of p can be
related to an SαS distribution characterising ultrasound images
as shown in [36], [37].

The second process is to estimate the lines in the Radon
transform domain x from the image w = Cx, as shown in (6).
Here we strictly employ `q, 0 < q ≤ 1 norm in the regulariser
for enforcing sparsity as intuitively a collection of thin lines
determine a sparse dataset.

x̂ = arg min
x
{||ŵ − Cx||22 + β||x||qq}. (6)

Solving two optimisation problems separately is computa-
tionally inefficient; therefore, we estimate x and w simultane-
ously by solving the following optimisation problem:

x̂ = arg min
x
{||y −HCx||22 + α||Cx||pp + β||x||qq}. (7)

If the step size for θ is large, e.g. ∆θ > 1◦, a smoothness
term γ||∇Cx||1 should be included in (7) to suppress the
quantisation noise, which is due to the discrete predefined
range of orientations Θ [22].
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B. Implementation

The alternating direction method of multipliers (ADMM)
[23] is employed to solve the problem in (7). It is a variant
of the augmented Lagrangian scheme that uses partial updates
for the dual variables. It is easy to implement by splitting a
large problem into a series of subproblems:

minimize f(u) + g(v),

subject to Au− Bv = 0.
(8)

where

f(u) = ||y −Hu||22, u = w = Cx, (9a)

g(v) = α||w||pp + β||x||qq + γ||∇Cx||1, v = [w x]T , (9b)

A =

[
I
I

]
, B =

[
I 0
0 C

]
. (9c)

uT indicates the transpose of u, and I is the identity matrix
with the same size as y which is N×N . Then, the augmented
Lagrangian for (8) is

Lρ(u, v, z) = ||y −Hu||22 + α||w||pp + β||x||qq
+γ||∇Cx||1 + zT (Au− Bv) +

ρ

2
||Au− Bv||22,

(10)

where z = [z1 z2]T is the dual variable or Lagrange multiplier,
z1 ∈ RN×N , z2 ∈ RN×N . ρ > 0 is a penalty parameter.
To solve the case of non-convex problems, ρ is chosen to be
large and bounded as suggested in [38]. The ADMM technique
allows this problem to be solved approximately using the
following three-step iterations.

uk+1 := arg min
u
Lρ(u, vk, zk), (11a)

vk+1 := arg min
v
Lρ(uk+1, v, zk), (11b)

zk+1 := zk + ρ(Auk+1 − Bvk+1). (11c)

where k is an internal iteration counter. As v = [w x]T ,
the problem in (11b) can be divided into two subproblems
to restore wk+1 and xk+1 independently. The algorithm stops
with the convergence criterion ||xk+1−xk||/||xk|| < ε, where
ε is a very small number (ε = 10−3 in this paper). In the
following, we describe the ADMM algorithm for solving (11).

1) Solving uk+1: The problem in (11a) is a quadratic
function about u, which can be solved as follows.

uk+1 = arg min
u
||y −Hu||22 + (zk)T (Au− Bvk)

+
ρ

2
||Au− Bvk||22,

= (2HTH+ ρATA)−1(2HT y + ρATBvk − (zk)TA),

= (2HTH+ 2ρI)−1(2HT y + ρwk + ρCxk

− zk1 − zk2 ).
(12)

2) Solving wk+1 in vk+1: We define λ1 = α/ρ and add
a constant offset ||zk1/ρ||22. Consequently, this is a form of
proximal operator of λ1||w||pp and wk+1 can be computed
depending on the value of p [39].

wk+1 = arg min
w

α||w||pp + (zk1 )T (uk+1 − w)

+
ρ

2
||uk+1 − w||22,

= arg min
w

λ1||w||pp +
1

2
||uk+1 − w +

zk1
ρ
||22,

= proxλ1||.||pp

(
uk+1 +

zk1
ρ

)
.

(13)

If p = 1 (`1 norm), the proximal operator is a soft
thresholding described as

proxλ1||.||1(a) = sign(a) max(|a| − λ1, 0). (14)

If p = 2 (`2 norm or Euclidean norm), the proximal operator
is a block soft thresholding described as

proxλ1||.||2(a) = max(1− λ1/||a||2, 0)a. (15)

If 0 < p < 1 (non-convex `p norm), we employ an iterative
algorithm of Generalized soft-thresholding (GST) [40], which
proceeds as follows.

proxτp||.||p(a) = TGSTp (a, λ1), (16a)

TGSTp (a, λ1) = sign(a) max(bt+1 − τp(λ1), 0), (16b)

bt+1 = |a| − λ1p(b
t)p−1, (16c)

τp(λ1) = (2λ1(1− p))
1

2−p + λ1p(2λ1(1− p))
p−1
2−p , (16d)

where t is an internal iteration counter for the process of (16c)
and b0 = |a| = |uk+1 +

zk1
ρ |. We have found that satisfactory

results are achieved within 10 iterations (t ≤ 10).
3) Solving xk+1 in vk+1: We define λ2 = β/ρ, 0 < q ≤ 1.

xk+1 = arg min
x

β||x||qq + (zk2 )T (uk+1 − Cx)

+
ρ

2
||uk+1 − Cx||22,

= arg min
x

λ2||x||qq +
1

2
||uk+1 − Cx+

zk2
ρ
||22.

(17)

If q = 1, this problem is `1-regularized and the ADMM
generally solves it using Lasso (least absolute shrinkage and
selection operator) [23]. However, factorizing C or computing
CTC is not straightforward because it involves explicitly form-
ing the matrix version of C. Therefore we employ the R and
C transforms through a filtered back projection and Fourier
transform [41]. The problem in (17) is consequently solved
using two-step iterative shrinkage/thresholding (TwIST) [42].
This method offers fast convergence rate for ill-conditioned
problems (the condition number of C increases as the number
of projections decreases. An analysis of the ill-conditioned
nature of C can be found in [30]). Starting with x̆0 = xk, the
iterative process proceeds as follows.
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Fig. 2. Example of lung ultrasound image y (Left column) and their Radon
transform R(y) (Right column), where the horizontal axis is θ varying from
-45◦ to 135◦, the vertical axis is r varying from −rmax to rmax, and the
brighter intensity indicates higher magnitude of the Radon transform.

d = x̆t +R
(
uk+1 − Cx̆t +

zk2
ρ

)
, (18a)

x̆t+1 = (1− %)x̆t−1 − %x̆t + 2%Sλ2
(d), (18b)

Sλ2
(d) =

max(|d| − λ2, 0)

(max(|d| − λ2, 0) + λ2)
d, (18c)

where % is a two-step parameter, defined as in [42], t is
an internal iteration counter, and Sτ (•) is a soft-shrinkage
operator with a threshold λ2 > 0. The iteration process stops
when ||x̆t+1 − x̆t||/||x̆t|| < ε, xk+1 = x̆tfinal .

If 0 < q < 1, we employ the TwIST method with the
GST defined in (16b)-(16d). Also, we include a gradient
descent step size ν

t > 0, where t is an internal iteration
counter. This leads to convergence for non-convex problems
[43]. Consequently, the gradient addition step in (18a) and
the shrinkage/thresholding in (18c) become (19a) and (19b),
respectively.

d = x̆t +
ν

t
R
(
uk+1 − Cx̆t +

zk2
ρ

)
, (19a)

Sλ2
(d) =

|TGSTq (d, λ2)|
(|TGSTq (d, λ2)|+ τq(λ2))

d. (19b)

4) Computing zk+1: The last step in each iteration is for
updating z, which is

zk+1
1 = zk1 + ρ(uk+1 − wk+1), (20a)

zk+1
2 = zk2 + ρ(uk+1 − Cxk+1). (20b)

IV. ENHANCED LINE RESTORATION WITH EMBEDDED
DEBLURRING

The lines in ultrasound images can appear blurred because
of low resolution, low frequency ultrasound or motion during
image acquisition. To enhance line detection performance and
the visualisation of restored lines, we include an additional
convolution factor in the Radon transform domain with an
unknown blurring kernel D. This has the effect of further

sharpening detected lines. The line model is hence modified
to

y = HCDx′ + n. (21)

The estimated x′ in (21) is expected to be sharper than x in
(4) leading to better accuracy of automatic line detection. The
complete deconvolution problem becomes (22), where J(•)
and G(•) are smoothness prior terms.

x̂′ = arg min
x′
{||y −HCDx′||22 + α′||CDx′||pp

+β′||Dx′||qq + µ′1J(x′) + µ′2G(D)}.
(22)

Using the ADMM approach, we then have

f(u) = ||y −Hu||22, u = w = Cx = CDx′, (23a)
g(v) = α′||w||pp + β′||x||qq + µ′1J(x′) + µ′2G(D), (23b)

v′ =

 w
x
x′

 , A′ =

 II
I

 ,B′ =

 I 0 0
0 C 0
0 0 CD

 . (23c)

The Lagrange multiplier becomes z = [z1 z2 z3]T . We solve
u, w and x similarly to the implementation described in Sec-
tion III-B and x′ is computed using (24), where λ3 = µ′1/ρ,
λ4 = µ′2/ρ and ϑ = uk+1 + zk3/ρ.

x′k+1 = arg min
x′

λ3J(x′)+λ4G(D)+
1

2
||ϑ−CDx′||22. (24)

The sharpened Radon transform domain x′ is solved using
blind deconvolution because D is unknown. In addition, D
is spatially variant, so we process the areas around the local
peaks {PL,ΘL} separately and merge them with a Gaussian
weight. We employ a total variation blind deconvolution [44]
to produce the results in this paper. We investigated several
blind deblurring techniques and found each with slightly
different results. We define a rectangular patch (we use the
size of 300×300 pixels in this paper), ωD is a Gaussian weight
with σ = 1 and η is a normalisation term, then the result of a
blind deconvolution of each patch x̃′ is combined as

x′k+1 =
1

η

∑
∀{r,θ}∈{PL,ΘL}

ωDx̃′{r,θ}. (25)

V. AUTOMATIC B-LINE DETECTION IN LUNG ULTRASOUND
IMAGES

This section presents the proposed scheme for identifying
the pleural line, A-lines, B-lines and Z-lines in the Radon
transform domain after all lines have been detected. The
scheme firstly detects the pleural line in order to locate the
lung space where line artefacts occur. Then, the local peaks
of the Radon transform are detected and line-type classification
is done following clinical definitions, in the spatial image
domain. A block diagram of the proposed automatic B-
line detection method is shown in Fig. 3, including relevant
equations used at each step.



0278-0062 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2017.2715880, IEEE
Transactions on Medical Imaging

6

Pleural-line detectionx, w x, w in lung space

Vertical line detection

B-line identi�cation

LV

A-line identi�cation

LA

Z-line identi�cation
LZ
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Eq. (26),(27)

Eq. (28),(29) Eq. (30),(31)

Eq. (32)Eq. (33)

Fig. 3. Block diagram of the proposed automatic B-line detection method.

A. Pleural-line detection

The pleural line normally appears to be very bright, but it
is not always the brightest line in the image. This depends
on the ultrasound machine settings and the position of the
probe: when the chest wall and intercostal muscles may be
clearly visible as shown in Fig. 4 (right), this leads to incorrect
detection of the pleural line if the brightest line is used. The
pleural line is the border of lung parenchyma area, which
appears darker than the pleural line. We can consequently
exploit this as a constraint to detect the pleural line and limit
ΘP to ΘP ∈ {90◦ ± 20◦} as it is always nearly horizontal.

To reduce the probability of misdetection of the pleural
line, the brightness of the area above the pleural line should
be dimmed. We therefore apply a weight ωp to the Radon
representation x, as follows. Firstly, the areas in x with
possible strong lines are marked using a threshold τp, creating
Bp = 1 where x > τp. τp is defined following the observation
that the length of the pleural line is longer than half the width
of the ultrasound image, as in some cases the rib is present
in the image (Fig. 1 left and right), resulting in the pleural
line not showing across the width of the image (cf Fig. 1
middle). Also, the intensity is always larger than 0.75 (the
intensity of the ultrasound image is scaled from 0 to 1), so
τp = 0.5× 0.75 = 0.375. Then, the smallest radius rτ on Bp
is used as a boundary to apply the weight ωp(r) to each r of
x, according to

ωp(r) =

{
(r − rmax)/(rτ − rmax) if r > rτ
1 if r ≤ rτ ,

(26)

where rmax is the maximum radius, rmax = 1
2

√
h2 + w2.

The values of the area beyond rτ is suppressed by the
weight wp(r). Consequently, the pleural line location Lp is
selected from the point (rp, θp) that has the largest value of
ωp(r)x(r, θ), r ∈ (−rmax, rmax], θ ∈ Θp, which is

{rp, θp} = arg max
r,θ

ωp(r)x(r, θ), (27a)

Lp = Cx(rp, θp). (27b)

Note that with τp = 0.375, the proposed scheme achieves
96% accuracy in detecting the pleural lines in 100 test lung
ultrasound images acquired with various scanners and settings
as detailed in Section VI-B.

B. B-line identification

Vertical line detection: The procedure for B-line identifica-
tion starts with detecting the vertical lines in the image by lim-
iting ΘV ∈ {±20◦}. These detected vertical lines can be either
B-lines or Z-lines. Therefore, the B-line definitions are applied
in order to distinguish between them. The constraints of the
B-lines are i) not being erased by the A-lines, and ii) having
long length. Although the definition of B-lines states that
the comet artefacts continue to the bottom of the ultrasound
image, for in vivo ultrasound images, this condition might
not be always true because of amplitude attenuation, which
is not compensated perfectly. According to these constraints,
we create a binary mask ωB using a threshold τB , which
allows the line brightness in the image domain to attenuate
approximately linearly from 1 at the pleural line to 0 at the
bottom of the image (the distance between the pleural line and
the bottom of the image is hlung). That means, τB = hlung/2
and

ωB(r, θ) =

{
1 if x(r, θ) > τB
0 otherwise. (28)

This threshold is set to account for the case of low-quality
image, where the brightness at the bottom of the image is
lower than that at the top of the image. Then, the vertical
lines LV are detected as follows.

{PV ,ΘV } = L (ωB(r, θ)x(r, θ), τL) , θ ∈ ΘB , (29a)
LV = Cx(PV ,ΘV )Cx. (29b)

where L(•) is a local-maximum operator which gives a list of
positions {X,Y } where local peaks occur within the radius
τL. PV and ΘV are a list of r and a list of θ, respectively.
We employ a grayscale dilation with a flat structuring element
for the function L(•) [45]. τL is defined using the smallest
distance between the blobs on the pleural line, since the
vertical lines originate at the pleural line.

A-line identification: The A-lines – physiological hor-
izontal lines below the pleural line – are detected using
ΘA = ΘP , using the fact that they are equidistant, and
the distance between them is equal to the distance between
skin and pleural line, denoted gA. This distance is defined as
gA = īp, ip ∈ Lp, where ip is a position in the vertical axis
of the image and īp represents mean value. In Fig. 4, the green
dots demonstrate the equidistant reflections at intervals equal
to the gap between the top border of the image (skin) and
the pleural line. These can consequently be used for limiting
the possible A-line occurrences. Fig 4 (right) also shows the
echoic lines of intercostal muscles between the pleural line
and the first A-line. The B-lines delete these echoic lines as
well, hence we also employ them to distinguish between B-
lines and Z-lines. We create a binary map of the possible areas
of the A-lines ωA, defined as

ωA(i, j) =

 1 if i ∈ [h2 − gA,
h
2 − 2gA]

1 if i ∈ [h2 − kgA − τg,
h
2 − kgA + τg]

0 otherwise
(30)
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Fig. 4. Detected Pleural line (Red) with its estimated location Lp (straight
line) and the estimated positions of the A-lines (Green).

where k is a counter, k = {2, 3, . . . ,
⌊
hlung

gA

⌋
} and τg is half

the possible A-line width (we found that τg=3 pixels give the
best result. The variation of τg does not significantly affect
the results as long as the thickness of the A-lines is smaller
than the gap between them). Then, the A-line location LA is
computed as follows:

xA = RωA (31a)
{PA,ΘA} = L (x(r, θ), gA) , r ∈ xA, θ ∈ xA ∩ΘA (31b)

LA = Cx(PA,ΘA)Cx. (31c)

Z-line identification: The A-lines are erased by the B-lines,
so any vertical artefacts in the presence of the A-lines are
defined as Z-lines which have no use for diagnosis. Therefore,
the Z-line position LZ can be identified as

LZ = C{R(LV ∩ LA), θ}Cx, θ ∈ ΘB . (32)

B-line identification: Finally, B-line positions LB can
be obtained by subtracting the Z-lines from the previously
detected vertical lines.

LB = LV − LZ . (33)

VI. RESULTS AND DISCUSSION

A. Simulated ultrasound images

We tested our proposed method on 50 simulated images,
degraded by convolution with a simulated ultrasound PSF as
in [32]. Different size images were generated varying from
250×250 pixels to 600×600 pixels to induce and evaluate
different characteristics in the Radon transform domain. The
simulated images were first created from 6-10 lines with differ-
ent thickness (1-20 pixels), angles (0-90 degrees) and positions
(similar to lines in lung ultrasound images). Then, they were
blurred using a Gaussian low-pass filter with σ = 1. Next, a
random multiplicative noise was added and convolution with
the simulated ultrasound PSF was performed on this speckle
result. An example simulated image is shown in Fig. 5, where
the line structure, the corresponding B-mode image and its
Radon transform representation are shown from left to right,
respectively.

The results of line restoration for the image of Fig 5 are
shown in Fig. 6 with various values of p and q. It is obvious
that small p and q remove most noise thereby producing
sparser results. However, too small values may attenuate peak

Fig. 5. Simulated ultrasound image. (Left) Line image. (Middle) B-mode
image. (Right) Radon transform image with Θ ∈ {±25◦, 90◦ ± 15◦}.

values in the Radon transform domain, causing some weak
lines to go undetected. The precision and recall values for line
detection are shown in Table I. The precision was computed
from the total number of correctly detected B-lines divided by
the number of all detected B-lines. The recall was computed
from the total number of correctly detected B-lines divided
by the total number of true B-lines. High precision means
that lines are rarely misidentified, whilst high recall (or true
positive rate) means most true lines are correctly identified.
The best harmonic mean of precision and recall are obtained
for p = 1 and q = 0.1, followed by slightly lower value at
p = 0.5 and q = 0.5.

B. In vivo ultrasound B-mode images

The ultrasound images used in this work were acquired
at the bedside with a commercially available portable device
(SonoSite S-ICU C60; SonoSite; Bothell, WA) equipped with a
6- to 13-MHz linear probe (L25x; SonoSite) in B-mode. These
images have already been used in two previous clinical studies
[2], [3], were information on the patient cohort was extensively
detailed. The images were acquired from 23 children aged 0.8-
18 (8 patients with acute kidney injury (AKI), 15 patients with
end-stage renal disease (ESRD)). Note that real ultrasound
images are generally acquired with two types of transducers,
either linear or convex. Convex transducers produce a wider
field of view, but can make line detection more difficult.
We therefore transform these curved images to rectangular
ones before applying our proposed method. This can be done
automatically by detecting straight side edges and applying
an affine transform. The blurring kernel is unknown in the
in vivo study, hence we estimate it by adopting a method
originally proposed in [13] for the PSF of the RF data, and
applying it on our actual B-mode ultrasound images. The
maximum magnitudes of the estimated blurring kernel are in
the range 0-0.2 and the shape of its distribution is not isotropic.
Let us note here that we simply estimate a generic blurring
kernel, routinely encountered in any imaging modality and due
to the limited bandwidth of imaging devices. However, our
entire framework can be employed with no alterations on the
RF data, in which case, the estimated blurring kernel would
correspond to the PSF in the standard convolutive ultrasound
image formation model. We believe this to contribute to the
versatility of our proposed framework, making it applicable in
general, of course after minor adaptations, to other types of
imaging modalities where line detection is necessary.
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                       p = 2, q = 1                                                                        p = 2, q = 0.5                                                                         p = 2, q = 0.1

p = 1, q = 1                                                                        p = 1, q = 0.5                                                                         p = 1, q = 0.1

p = 0.5, q = 1                                                                     p = 0.5, q = 0.5                                                                      p = 0.5, q = 0.1

Fig. 6. Results of Cx and x (Θ ∈ {±25◦, 90◦ ± 15◦}) when p = 2 (top row), p = 1 (middle row), p = 0.5 (bottom row), and q = 1 (colume 1-2),
q = 0.5 (colume 3-4), q = 0.1 (colume 5-6)

TABLE I
LINE DETECTION PERFORMANCE (%) AVERAGED FROM 50 SIMULATED ULTRASOUND IMAGES∗

p 0.5 1 2
q 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1

precision 1.00±0.04 0.97±0.08 0.92±0.09 0.99±0.09 0.91±0.10 0.84±0.12 0.94±0.10 0.89±0.09 0.76±0.07
recall 0.81±0.11 0.91±0.09 0.96±0.05 0.90±0.09 0.93±0.06 0.99±0.04 0.89±0.08 0.96±0.05 1.00±0.00
∗mean±standard deviation

Fig. 7 and Fig. 8 show a cropped area under the pleural
line of a lung ultrasound image containing four B-lines, with
and without the enhanced method (described in Section IV),
respectively. Five and four vertical lines were detected in Fig.
7 and Fig. 8, respectively. Four of these vertical lines were
correctly identified as B-lines. One vertical line in Fig. 7 was
discounted because of the detected A-line. The results of the
deblurring enhancement obviously shows better line structures,
but all textures, which might be useful for clinical assessment,
are also removed.

We investigated image enhancement performance, which
was the by-product of the deconvolution process, using a
contrast-to-noise ratio (CNR) as the true tissue reflectiv-
ity function is unknown. The CNR is defined as (|µ1 −
µ2|)/

√
σ2

1 + σ2
2 , where µ1 and µ2 are the mean of pixels

located in two regions, while σ2
1 and σ2

2 are the variances
of these two regions [46]. We selected the first region as the
area where the lines were and the second region as the area
around the first region. We compared our proposed method
with three existing techniques: i) line detection using eight
sticks as a rotating kernel transformation (STICKS) [17], ii)
line detection with log regularised Hough transform (HOUGH)
[21], and iii) despeckling approach with AWBF [14] followed
by Radon transform. The results of the average of 100 B-mode
ultrasound images are shown in Table II. The proposed method

TABLE II
CNR ASSESSMENT FOR IN VIVO DATA∗

original STICKS HOUGH AWBF proposed p=0.5, q=0.5
[17] [21] [14] w/o D w D

1.16±0.51 1.37±0.48 1.42±0.22 1.40±0.32 2.33±0.20 2.47±0.15
∗mean±standard deviation

with deblurring achieves the best CNR and outperforms the
existing methods by up to approximately 80%.

C. B-line identification

We tested our proposed automatic B-line detection method
(described in Section V-B) on 100 in vivo ultrasound B-mode
images of children. The lines in each image were restored
using the method described in Section III and Section IV
and HOUGH [21]. We also applied our B-line identification
method to the results of STICKS [17] and AWBF [14].
We evaluated these techniques using as ground truth lines
identified visually by clinical experts.

We compared our method with two existing approaches for
automatic B-line detection, which are i) summation of angular
features and thresholding (AFT) [8] and ii) alternate sequential
filtering and iterative morphological process (ASF) [9]. Table
III shows the B-line detection performance measured using Fβ
score, where β is a weight. The F -score measures the accuracy
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 observed signal                p = 0.5, q = 0.5                    p = 1, q = 0.1 

Fig. 7. Restored lines of the in vivo aerated lung ultrasound images,
containing four B-lines (left), using p = 0.5, q = 0.5 (middle) and p = 1,
q = 0.1 (right). (Top row) lines in B-mode images. (Bottom row) Radon
transform domains.

 p = 1, q = 0.5                 p = 0.5, q = 0.5                    p = 1, q = 0.1 

Fig. 8. Restored lines when the deblurring is included, using p = 1, q = 0.5
(left), p = 0.5, q = 0.5 (middle), and p = 1, q = 0.1 (right). (Top row) line
positions. (Bottom row) deblurred Radon transform domains.

of binary data retrieval by considering the precision and the
recall:

Fβ = (1 + β2)
precision · recall

β2precision + recall
. (34)

The balanced F1-score is the harmonic mean of precision
and recall. We also included the F0.5-score and F2-score to
demonstrate the performance when the precision was weighted
higher than the recall, and vice versa, respectively. When the
precision and the recall were weighted equally, our method
with the restored lines using p=q=0.5 gave the best result,
achieving up to 35% improvement over the existing methods.

When the precision was weighted higher than the recall –
ensuring that the detected B-lines were actually the true B-
lines, our method applied to our enhanced line restorations
(with D) using p=q=0.5 and using p=1, q=0.1 outperform
the others by up to 50%. The AFT and ASF approaches
overestimate the number of B-lines when it is between 0-
3, since A-lines are not taken into account, resulting in Z-
lines being misclassified. When the recall was weighted higher

than the precision – ensuring that all B-lines are detected,
our method (applied to our enhanced line restoration methods
(without D)) using p=q=0.5 and using p=1, q=0.1 outperforms
the others by up to 33%. AFT and ASF underestimate when
the number of B-lines is more than 2, since the shadow of the
ribs in children cause unclear/fade laser-like artefacts, unlike
those in the adult cases.

The results in Table III reveal that the enhanced line
restoration improves B-line identification performance by up
to 14% when convex optimisation approaches are employed
(p ≥1 and q ≥1). The enhanced method however improves
only the F0.5-score results when non-convex optimisation
approaches are used. This is because when p and q are very
small, applying deblurring (D) could decrease the amplitudes
of the weak lines in the Radon transform domain and causes
false negatives. Table III also shows that when testing the B-
line detection with the enhanced lines in the ultrasound images
by STICK, HOUGH and AWBF, our B-line detection methods
also outperform the AFT and ASF techniques. This confirms
the robustness of our approach.

Fig. 9 shows the line detection results for different ultra-
sound settings, i.e. different frequencies, different acquisition
modes and different time-gain compensations. The detected
pleural lines (red), A-lines (blue), B-lines (yellow) and Z-
lines (green) were drawn on the original speckle ultrasound
B-mode images. The second row of the figure shows the
restored lines x′ using p=q=0.5 with deblurring D. For the
images with high levels of speckle, the detection approach can
possibly give incorrect results if all local-maximum points are
included without clinical insight. For example, the fourth and
seventh images in Fig. 9 exhibit high noise around the bottom
of the images resulting in high values of the Radon transforms
indicating the presence of horizontal lines. However, the
locations of these horizontal lines do not correspond to those
of the possible A-lines, so they are discounted. This is a further
reason why our automatic B-line detection approach performs
better than the state of the art methods.

In Fig 10, we show a receiver operating characteristic curve
(ROC curve), which illustrates the performances of the B-line
identification methods via true positive rates (TPR) and false
positive rates (FPR) by varying thresholds. We considered
the existence of B-lines and the non-existence of B-lines
as positive and negative classes, respectively. For our B-line
identification method, we varied τB in (28) and τL in (29) to
plot the ROC curves of STICK, HOUGH, AWBF, and our
proposed line restoration with p = q = 0.5. For creating
the ROC curves of AFT and AFS, the thresholds used with
angular features and for creating a binary mask were varied,
respectively. The ROC curve shows that our proposed method
significantly outperforms existing ones, particular the AFS,
where the binary mask cannot be used to discriminate B-lines
when the threshold is too low. This also confirms that the
proposed method is robust, because it achieves high sensitivity
regardless of values of the thresholds.

For reproducibility of results, Table IV shows all parameters
and their corresponding values as used in our implementation.
Note that increasing the values of α, β, µ1 and µ2 will
speed up the iterative process, but the results might not be
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TABLE III
B-LINE IDENTIFICATION PERFORMANCE∗

score method STICK HOUGH AWBF proposed p=2, q=1 proposed p=1, q=1 proposed p=0.5, q=0.5 proposed p=1, q=0.1
[17] [21] [14] w/o D w D w/o D w D w/o D w D w/o D w D

F0.5

AFT [8] 0.63±0.22 0.64±0.24 0.64±0.21 0.64±0.22 0.67±0.22 0.66±0.20 0.71±0.21 0.73±0.19 0.81±0.22 0.75±0.20 0.82±0.19
ASF [9] 0.66±0.25 0.62±0.19 0.65±0.24 0.67±0.21 0.68±0.21 0.70±0.20 0.69±0.23 0.70±0.22 0.87±0.18 0.70±0.20 0.87±0.19
proposed 0.68±0.23 0.74±0.20 0.71±0.22 0.74±0.19 0.85±0.19 0.78±0.18 0.87±0.19 0.93±0.16 0.97±0.15 0.89±0.19 0.97±0.16

F1

AFT [8] 0.69±0.23 0.68±0.23 0.69±0.27 0.71±0.22 0.74±0.20 0.73±0.21 0.77±0.19 0.77±0.22 0.76±0.20 0.78±0.21 0.74±0.21
ASF [9] 0.72±0.28 0.67±0.23 0.69±0.24 0.73±0.20 0.74±0.21 0.75±0.19 0.75±0.21 0.75±0.20 0.79±0.21 0.74±0.21 0.81±0.18
proposed 0.74±0.21 0.73±0.20 0.74±0.28 0.80±0.19 0.88±0.17 0.83±0.18 0.89±0.17 0.94±0.17 0.94±0.18 0.91±0.19 0.92±0.17

F2

AFT [8] 0.77±0.27 0.72±0.24 0.74±0.29 0.80±0.22 0.83±0.21 0.82±0.20 0.84±0.18 0.82±0.20 0.71±0.22 0.80±0.22 0.67±0.26
ASF [9] 0.81±0.25 0.73±0.20 0.77±0.24 0.81±0.20 0.83±0.23 0.80±0.19 0.81±0.18 0.81±0.19 0.72±0.21 0.78±0.19 0.75±0.20
proposed 0.81±0.25 0.75±0.20 0.78±0.23 0.88±0.20 0.92±0.17 0.88±0.19 0.91±0.17 0.96±0.14 0.90±0.16 0.93±0.18 0.88±0.19

∗mean±standard deviation

Fig. 9. Original B-mode ultrasound image (top row), detected lines (middle row) and Radon transform domain representation of the restored B-mode images
using p=q=0.5 (bottom row). Red, yellow, blue and green lines represent the pleural lines, B-lines, A-lines and Z-lines, respectively.

optimal because of large step size. We fixed the value of
ρ to 1, which gave good results as shown in Section VI.
However, ρ can be set adaptively for each iteration to improve
the convergence and to reduce the effect of the initialisation
on overall performance [23]. With the parameters in Table
IV, using MATLAB R2016a with 64-bit OS i7-3770S CPU
the computational times per image are approximately 45 and
0.75 seconds for the line restoration and subsequent B-line
identification processes, respectively. This is faster than when
performed by clinical experts, which generally take 3-10 min,
depending on age and compliance of the patient.

VII. CONCLUSIONS

Currently, B-line identification requires specific training and
it is operator dependent. Automating the detection of B-lines
would widen the application of lung ultrasound and benefit

TABLE IV
PARAMETERS USED IN THE PROPOSED LINE RESTORATION AND B-LINE

IDENTIFICATION

parameter process value
p norm for solving w 0.1-1.0 (best at 0.5)
q norm for solving x 0.1-1.0 (best at 0.5)
ρ penalty for ADMM 1
α regularisation term for solving w 0.001 max(|y|)
λ1 = α/ρ 0.001 max(|y|)
β regularisation term for solving x 0.01 max(|y|)
λ2 = β/ρ 0.01 max(|y|)
% TwIST 1.96 (as used in [42])
ν non-convex TwiST q/4

µ1 regularisation term for deblurring 0.1 max(|xk|)
µ2 regularisation term for deblurring 0.1 max(|xk|)
ε stopping criteria for iterations 10−3

τp pleural line detection 0.375
τL vertical line detection smallest distance between blobs
τg A-line identification 3
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Fig. 10. The original B-mode ultrasound image (top row), the detected lines
(middle row) and the restored results x′ using p=q=0.5 (bottom row). Red,
yellow, blue and green lines represent the pleural lines, B-lines, A-lines and
Z-lines, respectively.

dialysis nurses, patients and their families. Improving the ac-
cessibility of the technique will broaden its accessibility, with
anticipated clinical benefits in improved fluid management for
both children and adults on dialysis.

This paper presents a novel line detection procedure for
speckle images. Lines are restored by solving an inverse
problem consisting of joint deconvolution and line detection.
The problem is solved based on `p regularisation and Radon
transform. The method offers a simple and fast implementation
via the alternating direction method of multipliers (ADMM)
which divides a large problem into a series of subproblems. We
offer solutions for both convex and non-convex problems. Ad-
ditionally, we include a blind deconvolution step in the Radon
transform domain to enhance visualisation and improve line
detection performance, particularly when convex optimisation
techniques are employed to restore lines.

Based on accurate line detection results, we are able to
identify B-lines in lung ultrasound images automatically. This
is achieved using local maxima in the Radon transform do-
main with additional constraints based on clinical definitions.
Subjective results show accurately restored lines and objective
results demonstrate that the proposed method outperforms
existing approaches for B-line detection in lung ultrasound im-
ages by up to 50%. With very little adaptation, the techniques
described in this work could be applied to other ultrasound
applications, as well as to other medical imaging modalities
where line detection can help diagnosis.
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