1,482 research outputs found

    Image Restoration Using Joint Statistical Modeling in Space-Transform Domain

    Full text link
    This paper presents a novel strategy for high-fidelity image restoration by characterizing both local smoothness and nonlocal self-similarity of natural images in a unified statistical manner. The main contributions are three-folds. First, from the perspective of image statistics, a joint statistical modeling (JSM) in an adaptive hybrid space-transform domain is established, which offers a powerful mechanism of combining local smoothness and nonlocal self-similarity simultaneously to ensure a more reliable and robust estimation. Second, a new form of minimization functional for solving image inverse problem is formulated using JSM under regularization-based framework. Finally, in order to make JSM tractable and robust, a new Split-Bregman based algorithm is developed to efficiently solve the above severely underdetermined inverse problem associated with theoretical proof of convergence. Extensive experiments on image inpainting, image deblurring and mixed Gaussian plus salt-and-pepper noise removal applications verify the effectiveness of the proposed algorithm.Comment: 14 pages, 18 figures, 7 Tables, to be published in IEEE Transactions on Circuits System and Video Technology (TCSVT). High resolution pdf version and Code can be found at: http://idm.pku.edu.cn/staff/zhangjian/IRJSM

    Low rank prior in single patches for non-pointwise impulse noise removal

    Get PDF

    Adaptive Regularized Low-Rank Tensor Decomposition for Hyperspectral Image Denoising and Destriping

    Full text link
    Hyperspectral images (HSIs) are inevitably degraded by a mixture of various types of noise, such as Gaussian noise, impulse noise, stripe noise, and dead pixels, which greatly limits the subsequent applications. Although various denoising methods have already been developed, accurately recovering the spatial-spectral structure of HSIs remains a challenging problem to be addressed. Furthermore, serious stripe noise, which is common in real HSIs, is still not fully separated by the previous models. In this paper, we propose an adaptive hyperLaplacian regularized low-rank tensor decomposition (LRTDAHL) method for HSI denoising and destriping. On the one hand, the stripe noise is separately modeled by the tensor decomposition, which can effectively encode the spatial-spectral correlation of the stripe noise. On the other hand, adaptive hyper-Laplacian spatial-spectral regularization is introduced to represent the distribution structure of different HSI gradient data by adaptively estimating the optimal hyper-Laplacian parameter, which can reduce the spatial information loss and over-smoothing caused by the previous total variation regularization. The proposed model is solved using the alternating direction method of multipliers (ADMM) algorithm. Extensive simulation and real-data experiments all demonstrate the effectiveness and superiority of the proposed method

    Fuzzy metrics and fuzzy logic for colour image filtering

    Full text link
    El filtrado de imagen es una tarea fundamental para la mayoría de los sistemas de visión por computador cuando las imágenes se usan para análisis automático o, incluso, para inspección humana. De hecho, la presencia de ruido en una imagen puede ser un grave impedimento para las sucesivas tareas de procesamiento de imagen como, por ejemplo, la detección de bordes o el reconocimiento de patrones u objetos y, por lo tanto, el ruido debe ser reducido. En los últimos años el interés por utilizar imágenes en color se ha visto incrementado de forma significativa en una gran variedad de aplicaciones. Es por esto que el filtrado de imagen en color se ha convertido en un área de investigación interesante. Se ha observado ampliamente que las imágenes en color deben ser procesadas teniendo en cuenta la correlación existente entre los distintos canales de color de la imagen. En este sentido, la solución probablemente más conocida y estudiada es el enfoque vectorial. Las primeras soluciones de filtrado vectorial, como por ejemplo el filtro de mediana vectorial (VMF) o el filtro direccional vectorial (VDF), se basan en la teoría de la estadística robusta y, en consecuencia, son capaces de realizar un filtrado robusto. Desafortunadamente, estas técnicas no se adaptan a las características locales de la imagen, lo que implica que usualmente los bordes y detalles de las imágenes se emborronan y pierden calidad. A fin de solventar este problema, varios filtros vectoriales adaptativos se han propuesto recientemente. En la presente Tesis doctoral se han llevado a cabo dos tareas principales: (i) el estudio de la aplicabilidad de métricas difusas en tareas de procesamiento de imagen y (ii) el diseño de nuevos filtros para imagen en color que sacan provecho de las propiedades de las métricas difusas y la lógica difusa. Los resultados experimentales presentados en esta Tesis muestran que las métricas difusas y la lógica difusa son herramientas útiles para diseñar técnicas de filtrado,Morillas Gómez, S. (2007). Fuzzy metrics and fuzzy logic for colour image filtering [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1879Palanci

    Wavelet Integrated CNNs for Noise-Robust Image Classification

    Full text link
    Convolutional Neural Networks (CNNs) are generally prone to noise interruptions, i.e., small image noise can cause drastic changes in the output. To suppress the noise effect to the final predication, we enhance CNNs by replacing max-pooling, strided-convolution, and average-pooling with Discrete Wavelet Transform (DWT). We present general DWT and Inverse DWT (IDWT) layers applicable to various wavelets like Haar, Daubechies, and Cohen, etc., and design wavelet integrated CNNs (WaveCNets) using these layers for image classification. In WaveCNets, feature maps are decomposed into the low-frequency and high-frequency components during the down-sampling. The low-frequency component stores main information including the basic object structures, which is transmitted into the subsequent layers to extract robust high-level features. The high-frequency components, containing most of the data noise, are dropped during inference to improve the noise-robustness of the WaveCNets. Our experimental results on ImageNet and ImageNet-C (the noisy version of ImageNet) show that WaveCNets, the wavelet integrated versions of VGG, ResNets, and DenseNet, achieve higher accuracy and better noise-robustness than their vanilla versions.Comment: CVPR accepted pape

    Multi-scale Adaptive Fusion Network for Hyperspectral Image Denoising

    Full text link
    Removing the noise and improving the visual quality of hyperspectral images (HSIs) is challenging in academia and industry. Great efforts have been made to leverage local, global or spectral context information for HSI denoising. However, existing methods still have limitations in feature interaction exploitation among multiple scales and rich spectral structure preservation. In view of this, we propose a novel solution to investigate the HSI denoising using a Multi-scale Adaptive Fusion Network (MAFNet), which can learn the complex nonlinear mapping between clean and noisy HSI. Two key components contribute to improving the hyperspectral image denoising: A progressively multiscale information aggregation network and a co-attention fusion module. Specifically, we first generate a set of multiscale images and feed them into a coarse-fusion network to exploit the contextual texture correlation. Thereafter, a fine fusion network is followed to exchange the information across the parallel multiscale subnetworks. Furthermore, we design a co-attention fusion module to adaptively emphasize informative features from different scales, and thereby enhance the discriminative learning capability for denoising. Extensive experiments on synthetic and real HSI datasets demonstrate that the proposed MAFNet has achieved better denoising performance than other state-of-the-art techniques. Our codes are available at \verb'https://github.com/summitgao/MAFNet'.Comment: IEEE JSTASRS 2023, code at: https://github.com/summitgao/MAFNe
    corecore