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Low rank prior in single patches for

non-pointwise impulse noise removal

Ruixuan Wang, Markus Pakleppa, Emanuele Trucco

Abstract

This paper introduces a low rank prior in small oriented noise-free image patches: Considering

an oriented patch as a matrix, a low-rank matrix approximation is enough to preserve the texture

details in the optimally oriented patch. Based on this prior, we propose a single-patch method within a

generalized joint low-rank and sparse matrix recovery framework to simultaneously detect and remove

non-pointwise random-valued impulse noise (e.g., very small blobs). A weighting matrix is incorporated

in the framework to encode an initial estimate of the spatial noise distribution. An accelerated proximal

gradient method is adapted to estimate the optimal noise-free image patches. Experiments show the

effectiveness of our framework in detecting and removing non-pointwise random-valued impulse noise.

Index Terms

Low rank prior, random-valued impulse noise detection and removal, joint low-rank and sparse

matrix recovery, accelerated proximal gradient.

I. INTRODUCTION

This paper aims to remove random-valued impulse noise (RVIN) with varying sizes and

irregular shapes (so called ‘non-pointwise’ RVIN, e.g., small particles suspended in water; see

Section VI-F). Based on the observation that almost any optimally oriented (defined later) small,
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noise-free image patch (a matrix) can be approximated by a low-rank patch with texture details

well preserved, we propose a single-patch method to simultaneously detect and remove RVIN

within a generalized joint low-rank and sparse matrix recovery framework. The original matrix

recovery framework has been recently used for image and video denoising [16], but it requires

multiple similar image patches, with each patch vectorized as a column in the matrix. Such a

multi-patch method often limits the size of image patches to be relatively small (e.g., 8×8 pixels)

in order to more likely find multiple similar patches within a single image and to collaboratively

and effectively detect and remove traditional (single-pixel) RVIN. Its performance degrades with

non-pointwise RVIN, as shown in our experiments, even with noisy regions as small as 3 × 3

pixels (Section VI-D). Instead, our single-patch method completely avoids searching for similar

patches, and importantly, uses larger-size patches (e.g., 40×40) to effectively detect and remove

non-ponintwise RVIN.

One motivation of this study is to detect and remove particles suspended in water in hydro-

colonoscopy video images (see Section VI-F), in which the size of particles varies and could be as

large as 15×15 pixels. In this case, traditional methods to detect and remove single-pixel RVINs

are much less effective compared to the proposed method. While image inpainting techniques

[15] have been well explored to fill degraded or damaged (often large) image regions, these

techniques assume that the regions to be inpainted (or filled) are manually provided in advance.

A. Related work

We briefly discuss related work on impulse noise detection and removal and low-rank matrix

recovery; see [4] and [17] for recent, comprehensive reviews on denoising.

There are mainly two types of impulse noise: salt-and-pepper noise (black or white), and RVIN

(any gray value). The median filter and its extensions are often effective to remove salt-and-

pepper noise but can corrupt some textures (see results in Section VI-D). To reduce undesired

corruption, various two-stage methods have been developed mainly to remove RVIN, first de-

tecting the locations of noisy pixels, then recovering intensities only at noisy locations using

certain filtering or variational methods, e.g., adaptive center weighted median filter (ACWMF)

[6], neighboring similarity-based noise detector followed by a triangle-based linear interpolation

for pixel restoration (NS-LI) [7] (see also [3][8]), rank-ordered absolute difference (ROAD) noise

detector followed by a trilateral filtering [13], and a logarithmic version of the ROAD followed
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by edge-preserving regularization (EPR) for pixel restoration (ROLD-EPR) [11]. NS-LI, ROAD-

trilateral, and ROLD-EPR methods can preserve edges better than median-type methods like

ACWMF as they consider local structures during pixel restoration. However, the accuracy of

these two-stage methods depends crucially on the performance of the location stage. If noisy

pixels cannot be detected correctly, e.g., when noise is structured rather than single-pixel, the

overall noisy removal will be limited.

Given the excellent performance of non-local methods [4][9], learned sparse models [12][24],

and the combination of both [10][23] for random Gaussian noise, they were explored for impulse

noise as well [27][29]. Non-local methods use redundant visual information within an image (i.e.,

self-similarity) to group similar image patches together, followed by collaborative filtering [4][9].

Sparse methods also use redundant information by assuming each patch can be well approximated

by a linear combination of a small subset of patches (‘words’) within a large dictionary. Both

types of methods can preserve texture details very well. However, patch size is limited (e.g.,

8 × 8 pixels) as it may become difficult to find multiple similar larger-size patches within an

image for non-local methods, and to represent a larger-size patch by a linear combination of other

patches for sparse methods. Crucially, impulse noise often needs to be detected first to reduce the

effect of noisy pixels on patch matching and dictionary learning. Similar to the above two-stage

methods, the overall accuracy of impulse noise removal is largely limited by the performance

of the initial impulse noise location.

A joint low-rank and sparse matrix recovery framework was recently applied to detect and

remove impulse noise simultaneously [16], using the self-similarity prior as in the non-local

methods. In this approach, multiple similar patches are vectorized as columns in a matrix which

is decomposed into a low-rank matrix, representing denoised similar patches, and a sparse matrix,

representing the sparse set of impulse noise in patches. Gaussian noise is also modeled in the

framework as a regularization term. The framework has proven effective in various applications,

e.g., video denoising and inpainting [16], background removal and removing shadows and

specularity from face images [5]. However, the method is limited by the usage of multiple

similar patches and the small size of patches.

Unlike the above, this paper uses a different type of prior information, the ‘low-rank prior’,

not for the whole image but for each appropriately oriented image patch. It has been observed

that low-rank textures exist in image regions having deterministic regular or periodic patterns
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[20][28]. In contrast, we found that almost any small (e.g., 10 × 10 to 40 × 40) image patch

from images of natural or man-made objects or scenes with resolution of about 300×300 pixels

(within our experiments, see Section 6), if rotated by a characteristic orientation defined later, has

a low-rank approximation with texture details (including edges) well preserved (Section VI-B).

In addition, compared to the closely relevant work [20], which used hard-thresholding to estimate

the corrupted regions and applied a different optimization method to solve a more complicated

optimization problem for different applications (e.g., image completion), our approach uses a

soft-weighting matrix to weight each pixel and tries to denoise with a different but simpler

(fewer constraints and variables) optimization problem. This paper is the extension of our recent

conference publication [26].

II. PROBLEM FORMULATION

When a rectangular gray image patch P contains random Gaussian noise and RVIN, P may

be decomposed as P = L∗ + S∗ +N∗, where L∗ represents the unknown noise-free patch, S∗

represents the unknown impulse noise, and N∗ is a matrix of Gaussian noise [16].

L∗ can be considered a low-rank matrix due to the low-rank prior for single patches (Section

VI-B). Also, since the number of pixels corrupted by impulse noise is generally much smaller

than the total number of pixels, S∗ is a sparse matrix. As a result, the problem of image denoising

can be formulated as an optimization problem [16], i.e., to minimize the following function

E1(L,S) over the matrix variables L and S,

E1(L,S) = ‖L‖∗ + λ ‖S‖1 +
1

2µ
‖P− L− S‖2F , (1)

where ‖ · ‖∗ is the nuclear norm (i.e., sum of singular values) and considered as a convex

relaxation of the function estimating the rank of a matrix; ‖ · ‖1 is the sum of the absolute

values of all matrix entries and considered as a convex relaxation of the sparsity measurement

(i.e., number of non-zero entries) of a matrix; ‖ · ‖F is the Frobenius norm; and λ, µ are two

regularization parameters.

While the above optimization framework has been used for image and video denoising [16],

each image patch has been considered as a column in a matrix. Such a multi-patch method is

subject to the limitations discussed in Section I. Now more specifically, using larger-size patches

in the multi-patch method will generally make multiple patches less similar to each other and
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(a) (b) (c) (d)

Fig. 1: Illustrative example of low-rank matrix recovery. (a) A synthetic clean image patch of

size 40× 40 pixels with rank 20. (b) A synthetic noisy patch by adding a smaller (3× 3 pixels)

non-pointwise RVIN at the top-left corner and a larger (9× 9 pixels) one around the center. (c)

The larger noise has been largely remained by minimizing Equation (1). (d) Both are removed

by minimizing Equation (2).

hence lead to over smoothing of the current patch (Figures 9 and 10). Instead, our method

requires no search as it considers a single patch as the matrix P and the patch size can be larger

(e.g., 41 × 41) without decreasing the efficiency of matrix recovery. More importantly, using

larger-size patches allows us to remove non-pointwise RVIN.

The limited ability of the optimization framework (Equation 1) to remove non-pointwise

impulsive noise is another key limit we address. The minimization of E1(L,S) will generally

lead to relatively small value of the term ‖L̂‖∗ + λ‖Ŝ‖1 (and 1
2µ
‖P − L̂ − Ŝ‖2F as well) at

the estimated optimal solution, L̂ and Ŝ. However, if very different (e.g., with much higher

intensity value than the signal) non-pointwise impulse noise exists, the true solutions S∗ and

L∗ often bring about a much larger λ‖S∗‖1 (due to the set of higher impulse noise values) and

modestly smaller ‖L∗‖∗ than those at the estimated solution Ŝ and L̂. So the minimum may

not correspond to the true solution, i.e., E1(L
∗,S∗) > E1(L̂, Ŝ), and the non-pointwise impulse

noise will remain, to some extent, in the estimated optimal signal L̂ (Figure 1c).

Hence we propose a generalized version of the optimization framework to denoise an image

patch effectively in the presence of non-pointwise (multi-pixel) RVIN:

E2(L,S) = ‖L‖∗ + λ ‖W ◦ S‖1 +
1

2µ
‖W ◦ (P− L− S)‖2F (2)

where W is a soft-weighting matrix with each entry value in [0, 1], and ◦ denotes the Hadamard

(i.e., entry-wise) product of two matrices. When every entry in W is set to 1, E2(L,S) becomes

E1(L,S).

W can encode the initially estimated spatial distribution of impulse noise in the image patch.
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Initial estimates, obtained by any impulse noise detector, correspond to entries in W with values

close to 0. Compared to the original optimization framework, Equation (1), the true solution,

S∗, will more likely correspond to a much smaller λ‖W ◦ S∗‖1, because at least part of the

higher impulse noise values are counterbalanced by the corresponding smaller entry values in

W. From the regularization point of view, smaller entry values at initially estimated impulse

noise locations in W will decrease the regularization effect of the second and the third terms

in E2(L,S), so that the entries at the corresponding locations in the matrix variable L can be

searched in a larger feasible region in order to get a smaller ‖L‖∗. As a result, the minimum of

E2(L,S) will more likely correspond to the ground-truth solution L∗. Therefore, W is expected

to effectively help recover the corrupted signals (Figure 1d).

III. OPTIMIZATION

The target function E2 in Equation (2) can be minimized by accelerated proximal gradient

(APG) [21][25], which was recently developed to solve the original optimization problem,

Equation (1). Noticing that W is a constant matrix, we can extend the original APG method to

minimize E2(L,S). More specifically, substituting S←W ◦ S and P←W ◦P, E2 becomes

E3(L,S) = ‖L‖∗ + λ ‖S‖1 +
1

2µ
‖P−W ◦ L− S‖2F . (3)

The only difference between E3 and E1 is the entry-wise weighting of L in the third term. Since

such a difference does not change the conditions under which APG is applied, i.e., the cost

function consists of a non-smooth convex function g(L,S) = ‖L‖∗+λ ‖S‖1 and a smooth convex

function f(L,S) = 1
2µ
‖P−W ◦ L− S‖2F with its gradient ∇f(L,S) Lipschitz continuous,

the APG algorithm minimizing E1 can be directly extended to minimize E3. For details see

Algorithm 1, where Sτ (Z) is the entry-wise shrinkage operator on a matrix Z, i.e., Sτ (z) =

sgn(z)max(|z| − τ, 0) for any element z of Z and sgn(z) is the sign of z. As in the original

APG [21][25], a continuation technique is applied in Algorithm 1 to reduce the number of

necessary iterations by varying µ, i.e., starting from a large initial value µ0 and then geometrically

decreasing by ρ over iterations until reaching the floor µ.

The main difference between Algorithm 1 and the original APG one is in Steps 2, 6, and 7,

where W plays its role in the recovery of the low-rank matrix L. Note that the output S is the

weighted sparse matrix. The final S can be easily estimated from the difference between the

input P and the output L [29].
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Algorithm 1 APG method to minimize Equation (2)
Input: P,W, λ.

1: L0 = L−1 = 0;S0 = S−1 = 0; t0 = t−1 = 1; 0 < µ < µ0; 0 < ρ < 1;

2: P←W ◦P;

3: while not converged do

4: YL
k = Lk +

tk−1−1

tk
(Lk − Lk−1);

5: YS
k = Sk +

tk−1−1

tk
(Sk − Sk−1);

6: GL
k = YL

k − 1
2
W ◦ (W ◦YL

k + YS
k −P);

7: GS
k = YS

k − 1
2
(W ◦YL

k + YS
k −P);

8: (U,Σ,V) = svd(GL
k ),Lk+1 = USµk/2(Σ)VT;

9: Sk+1 = Sλµk/2(G
S
k );

10: tk+1 =
1+
√

4t2
k
+1

2
;µk+1 = max(ρµk, µ);

11: k ← k + 1;

12: end while

Output: L← Lk,S← Sk.

IV. COMPUTING THE WEIGHTING MATRIX

The soft-weighting matrix W is a required input to the proposed method (see Algorithm 1).

The basic procedure to generate W is as follows. First, the candidate impulse noise locations

in an image patch are estimated by any of the methods suggested below to obtain a binary

weighting matrix W0, in which each entry is set to 1 at the initially estimated impulse noise

pixels and 0 elsewhere. Then W0 is convolved with a un-normalized 2D Gaussian operator

G(i, j) = exp{− 1
2σ2

0
(i2 + j2)}, to generate a soft version W, where entries with higher value

than 1 are set to 1. The final weighting matrix, W, is set to 1−W, where 1 is a matrix with

every entry equal to 1. Consequently, the entries of W at or near the initially estimated impulse

noise locations will have smaller values than elsewhere.

In practice, the binary matrix W0 can be generated by any existing impulse noise detectors

(e.g., ROAD [13] or ROLD [11]), or even by our low-rank matrix recovery framework by

setting W = 1. This is because our framework (when W = 1) also recovers the sparse matrix S

representing the initial spatial distribution of impulse noise. Note that the denosing performance

of the proposed method is robust to occasional errors in the estimated W: If certain noise-free

pixels occasionally have smaller weights in W, such lower-weighted noise-free pixel values

won’t be changed too much in the final denoised low-rank patch because the rank of the patch
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(a) (b) (c)

Fig. 2: Effect of characteristic orientation on low-rank patch approximation. (a) A synthetic

image. (b) A low-rank (rank 15) approximation of a 41 × 41 image patch around the image

center. (c) The low-rank (rank 1) approximation of an oriented image patch around the same

point.

is already small without changing these pixel values, while changing pixel values will probably

increase the value of the second cost term in Equation (2).

V. CHARACTERISTIC ORIENTATION

One potential issue in denoising methods is edge blurring and loss of sharpness. Patch

orientation affects the result of our rank-based method. For example, even a patch with a simple

pattern may have a high rank (Figure 2, patch in blue rectangle). In this case, the low-rank

approximation of the patch will blur the sharp edge (Figure 2b). Instead, if we can find a

low-rank patch (Figure 2, patch in yellow rectangle) by rotating around the target image point,

the low-rank approximation of this patch will more likely preserve the sharpness of the edges

(Figure 2c). Similar observations apply for patches with other texture patterns like corners, and

our experiments (Figure 8) show the importance of characteristic orientation in denoising.

Based on the assumption that the optimally oriented patch is low-rank, we expect that the

difference between the oriented patch and its low-rank approximation will be minimum at the

optimal (‘characteristic’) orientation. To compute the latter, let P(θ) denote an oriented m× n

image patch at a given image position, rotated anticlockwise by an orientation angle θ with

respect to the image row direction, and P̃(θ) the low-rank approximation (to a fixed quality

level) of P(θ). Then the characteristic orientation at the current image position can be estimated

as

θ̂ = arg min
θ∈[0,π]

d(θ) = arg min
θ∈[0,π]

1

mn

∥∥∥P(θ)− P̃(θ)
∥∥∥2 , (4)
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where ‖ · ‖ is a matrix norm (we use Frobenius), and θ is restricted in the range [0, π] because

any pair of θ and θ + π will lead to the same norm value.

In the above, the quality level of the low-rank approximation should be defined and a threshold

introduced. However we found that a basic, efficiently computed rank-1 approximation of P(θ) to

represent P̃(θ), i.e., every column in P̃(θ) is the mean of all columns in P(θ), leads to very good

overall results especially in preserving edges. Such a simple, threshold-free approximation proved

effective enough to find reliably the characteristic orientation for each image patch (Section

VI-C).

VI. EXPERIMENTS

A. Experimental set-up

Our APG algorithm (Algorithm 1) was implemented by modifying the public MATLAB source

code for the original APG [21]. Similar to the parameter settings in [5], µ0 = 0.99‖W◦P‖2 and

µ = 10−9µ0. For an m×n image patch P, λ = 1/
√

max(m,n). The maximum iteration number

is set to 200. To find the characteristic orientation θ̂, a simple uniform sampling method was

adopted with sampling interval π
36

. σ0 and the window size for the un-normalized Gaussian filter

G were set to 1
36
min (m,n) and 1

6
min (m,n) respectively. When using the initially estimated

sparse matrix S to generate W0, the candidate noise locations are the entries where the absolute

value is larger than a threshold, determined adaptively based on the expected sparsity level of

the noise (i.e., number of noisy pixels over total pixel number). We use a sparsity level of 0.05.

All the tests were performed using Matlab R2010a running on an Intel Core i7-2600K 3.40GHz

PC with 8.0GB RAM. For an image with size 640× 480 pixels, and patches with size 41× 41

pixels and 50% overlapped by neighboring patches along both directions, it takes approximately

3 minutes in all to generate the denoised image. Since each image pixel is often covered by

multiple patches, the final denoised value at each pixel in the image is averaged from the

corresponding denoised values in these multiple patches.

B. Low-rank prior in single patches

We illustrate the experimental evidence of the low-rank prior for small noise-free image

patches. In practice, due to noise, an image patch as a matrix is seldom low-rank. However,

if the assumption of low-rank prior is true, the column-wise signal variation in an image patch
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(a) (b)

Fig. 3: Low-rank prior in image patches with size (a) 21×21 (from Caltech256) and (b) 41×41

pixels (from SceneCategory15).

should be mostly preserved in a much lower-dimensional space, and the low-rank approximation

should preserve meaningful textural details. Such predictions are confirmed empirically from our

tests with the public datasets Caltech256 [14] and SceneCategory15 [18], and around 450, 000

oriented (i.e., rotated to their characteristic orientations) patches with sizes 21× 21 and 41× 41

pixels were generated from each dataset by uniform sampling in each image.

The first test explores statistically the order of the low-rank approximation needed to preserve,

at a given level β, the column-wise signal variation in each m× n image patch. Every patch is

first decomposed by SVD and the minimum number l̂ of singular values necessary to preserve

the predefined level of signal variation is determined by formula l̂ = argminJ∈[1,min (m,n)]{β <∑J
j=1 σj/

∑min (m,n)
j=1 σj}, with σj being the j-th largest singular value. Different patches may

have different rank values l̂. A rank histogram can be easily generated recording the frequency

of patches with a particular rank value. The cumulative rank histogram in Figure (3a) (thinner

blue line) shows that when preserving 95% of the column-wise signal variations, about 90%

image patches have low-rank approximations with rank equal or smaller than 11. When β = 0.9,

more than 98% image patches have low-rank approximations with rank equal or smaller than

10. Similar results were obtained for various sizes in both datasets (Figure 3b). This shows that

most oriented patches can be approximated by their low-rank versions which keep most signal

variations.

The second test shows that low-rank patch approximations can preserve textural details. A fast

k-means method [2] was applied to cluster the patches of a fixed size into 200 clusters using the

datasets above. The average l̂ over all patches was computed within each cluster. Figure 4 (solid
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(a) (b)

Fig. 4: Average rank value of each cluster for image patches with size (a) 21 × 21 (from

Caltech256) and (b) 41× 41 pixels (from SceneCategory15).

curves) shows the sorted average rank values for all the clusters. Consistent with the first test,

when β = 0.95, most clusters have average rank values less than 10 for 21×21 patches and less

than 20 for 41× 41 patches. The small subset of clusters with larger average rank values often

corresponds to the patches with more complex visual appearance or patterns. Within each such

cluster, the highest-rank (largest l̂) image patch was chosen to represent the most complex visual

pattern. Figure 5a lists such image patches and the corresponding low-rank approximations. It

can be observed that, even for the patches with most complex texture patterns, the textural details

have all been preserved in the low-rank approximations. Similar observations have been found

for the 41× 41 image patches (Figure 5b). Such observations are not trivially true for (at least

some) un-oriented patches (see Figure 2b).

In addition, when adding RVIN to the image patches by corrupting 5% pixels in each patch,

Figure 4 (dashed curves) also shows that the average rank values increased. This suggests not

only that the noise-free image patches are low-rank, but also that the noisy patches have higher

ranks at a predefined level β. The proposed low-rank matrix recovery framework just makes use

of this observation for removing noise from image patches.

C. Characteristic orientation

The first test here checks whether the determination of characteristic orientation is invariant

to changes in patch sizes. As an example, we use an image patch (Figure 6a top) from a noisy

and low-contrast underwater hydrocolonoscopy image (Figure 9a; see more information about

hydrocolonoscopy images in Section VI-F). Figure 6 shows that for a large range of patch sizes
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(a)

(b)

Fig. 5: Image patches for the 5 clusters with highest average rank values, with patch size (a)

21×21 pixels (top: original; bottom: rank-10 approximation) and (b) 41×41 pixels (top: original;

bottom: rank-20 approximation).

(a) (b)

Fig. 6: Determination of characteristic orientation. (a) An original low-contrast 41 × 41 image

patch (top) and the oriented version (bottom) (better view on monitor). (b) d(θ) over all possible

orientation angles with three patch sizes.

(e.g., 21×21 to 41×41), the estimated characteristic orientations are almost the same (the minima

of all curves occur at the same angle). This invariance to patch sizes is especially beneficial to

denoise images with textures at different scales.

The second test checks whether the orientation determination is robust to noise in patches.
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Fig. 7: Robustness of characteristic orientation determination. Top row (left to right): original

image patch, oriented patches with noise sparsity level at 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, and

0.30. Bottom: estimated characteristic orientation with varying noise sparsity levels, with mean

(solid curve) and standard deviation (dotted curve) values from 10 runs.

Given an image patch (Figure 7 top left), Figure 7 shows that the estimate of the characteristic

orientation is robust to RVIN noise, even if 30% of image pixels have been damaged by RVIN.

Figure 8 further confirms the robustness of the orientation determination to noise even for high-

textured and low-textured image patches. Of course, the robustness would degrade with increasing

level of RVIN particularly for high-textured patches, because pseudo-textures caused by the

increasing RVIN will increase the uncertainty during characteristic orientation determination, as

shown in Figure 8b.

The third test compares the proposed method with the well-known ‘SIFT-orientation’ method

[22], where the dominant gradient direction was determined based on the weighted histogram

of gradient orientations. The image was smoothed twice by a Gaussian with standard deviation

1.6 and window size 6 ∗ 1.6 pixels; the gradient with 4 pixels spacing along both dimensions

was then computed at every location. Different Gaussian and spacing parameters were tried with

results similar to Figure 9b. Compared to the results by the proposed method (Figure 9c), the

characteristic orientations by the SIFT-orientation method are often not precisely orthogonal to

the dominant edge in each image patch, probably due to noise. In the denoised result, based

on the proposed matrix recovery framework, some edges have been blurred when using SIFT-

orientation method (Figure 9e). In comparison, the sharpness of edges has been preserved by

the proposed method (Figure 9f). While sampling error is introduced in the oriented patches

by rotating the original patches, the consequent loss of image quality appears much smaller

compared to the enhancement due to noise removal from the oriented patches. This is supported
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(a)

(b)

(c)

(d)

Fig. 8: Robustness of characteristic orientation determination at high-textured and low-textured

image regions. (a) A real high-textured image (left), a synthetic low-textured image (middle),

and the Lena image (right). (b-d) Orientation determination for a randomly selected image patch

from the high-textured image, the low-textured image, and the Lena image.
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(a) (b) (c)

(d) (e) (f)

Fig. 9: Characteristic orientation and its effect on denoising. (a) The original image. The

orientation (by arrow) determined by (b) the SIFT-orientation method and (c) the proposed

method for 41 × 41 patches. Two cropped denoised image regions (d) without orientation

determination, (e) using the SIFT-orientation method, and (f) using the proposed method.

by Figures 9d-9f, which show that both orientation methods perform better than the one not

using orientation (Figure 9d).

D. Detection and removal of impulse noise

To evaluate our method quantitatively, RVIN with different sizes (e.g., 1× 1 to 4× 4 pixels)

at a particular sparsity level (i.e., 0.1 ) was added to images respectively to generate the noisy

images. For example, for RVIN with size 2×2 pixels, 2.5% (i.e., 0.1/(2×2)) of pixel locations

were randomly selected from a noise-free image, and then at each selected location, a 2 × 2

RVIN was generated, overall making 10% of image regions become noisy. Although results with

only two well-known images (‘Barbara’ and ‘Lena’) are used to demonstrate the performance

due to limited space, similar results have been obtained for other widely-used standard images

(e.g., Baboon, Finger, Bridge, Hill, Man, Boat). The denoising performance was measured by

standard peak signal-to-noise ratio (PSNR).
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Five denoising methods were chosen for comparison: the median filtering as the baseline

method, the NS-LI method [7], the ROLD-EPR method [11], the multi-patch low-rank matrix

recovery method (MPLR) [16], and the proposed method without applying the weighting matrix

W (henceforth ‘Proposed \W’). For median filtering, 20 iterations were run with window size

3×3 pixels. The PSNR was computed after each iteration and the highest PSNR value reported.

Similarly for ROLD-EPR, the maximum iteration was set to 20, the window size to 5× 5 and

all the other parameters were set as suggested in [11]. The highest PSNR over all iterations is

reported. For NS-LI, all the parameters were set as suggested in [7]. Similarly for MPLR, all

the parameters were set as suggested in [16], except that four different patch sizes (i.e., n× n,

n ∈ {4, 8, 16, 32}) were tried and 10 additional similar patches were searched (to generate a

n2 × 11 matrix) across the whole image when denoising each image patch. The highest PSNR

over the different patch sizes is reported. For our method, the patch size was fixed to 31× 31,

the highest PSNR is reported over different λ = s/
√
31, where s ∈ {1.0, 1.3, 1.6, 2.0}. For each

method, 10 runs were performed, with PSNR standard deviation around 0.1.

Table I (last two rows) shows that the proposed method consistently performs comparably

well or better than ‘Proposed \W’ for smaller-size RVIN (26.45 and 26.40 for ‘Barbara’ 3× 3

RVIN are not significantly different). The substantial improvement in PSNR for large-size (i.e.,

4×4) RVIN is due to the effect of the weighting matrix W. Table I also shows that the proposed

method performs better than the other methods with non-pointwise RVIN (i.e., 3× 3 and 4× 4).

This is probably due to the limited ability to detect and remove large-size RVIN by the NS-LI

method and the ROLD-EPR method, and the oversmoothing by median filtering and MPLR, as

demonstrated in Figures 10c and 10d. Note that the parameters of the NS-LI method have not

been exactly optimized in the tests, therefore the performance of NS-LI would be better than

its performance reported here. For the image with more textured regions (i.e., ‘Barbara’), the

proposed method also performs better even when RVIN is smaller (i.e., 1× 1 and 2× 2). Figure

10a and 10b show that noticeable noise still remains after denoising by ROLD-EPR, and the

regular patterns have been blurred by Median and MPLR. Consistent with PSNR assessment,

the proposed method gives the best visual quality.

For the image with less textured regions (i.e., ‘Lena’), ROLD-EPR performs best for RVIN

of size 2× 2 based on the PSNR evaluation. However, detailed quantitative analysis found that

about 20% of the RVIN was still present in the denoised image by ROLD-EPR (Figure 11b). In
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(a)

(b)

(c)

(d)

Fig. 10: Part of denoised images ((a)-(c) from Barbara, and (d) from Lena) from different

methods with noise size (a) 1× 1, (b) 2× 2, and (c) and (d) 3× 3 pixels. From left to right in

column: original clean patch, noisy patch, denoised result by Median, ROLD-EPR, MPLR, and

the proposed method.

comparison, only 8% of the RVIN was present in the denoised image by the proposed method.

This indicates that the higher PSNR by ROLD-EPR is due largely to keeping the non-corrupted

pixels from changing rather than removing more RVIN. We analyzed carefully the noisy spots

remaining in the denoised images after applying our method (e.g., near the nose and the mouth

in Figure 11d). We found that such noise coincidentally appear densely either in a row or a
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TABLE I: PSNR from different methods for different sizes of RVIN.

Barbara Lena

1× 1 2× 2 3× 3 4× 4 1× 1 2× 2 3× 3 4× 4

Noisy image 19.02 19.09 19.00 18.93 19.43 19.52 19.56 19.30

Median 24.90 23.90 23.28 18.94 33.64 30.78 28.65 20.37

NS-LI 28.89 19.09 18.96 18.92 32.24 19.59 19.56 19.32

ROLD-EPR 29.48 26.80 18.99 18.90 35.89 33.58 19.63 19.34

MPLR 28.60 25.95 24.06 23.61 37.18 31.34 27.28 26.58

Proposed \W 29.69 28.13 26.45 23.99 33.32 30.99 28.65 25.15

Proposed 30.69 28.43 26.40 25.34 34.44 31.12 28.90 27.30

column in the oriented patch, and at the same time such row or column of noise is aligned

with the edge structure in direction within the region (e.g., see the noise along the edge of nose

in Figure 11d). In this case, removing the row or column of the noise from the patch would

probably not reduce the cost of the first cost term (i.e., the rank of the oriented patch) but

increase the costs of the last two cost terms in Formula 2. As a result, the proposed method only

modified the row (or column) of noise to make them have similar intensity values rather than

completely removed them. This may also explain why the proposed method could have different

performance in different image regions. Compared to nose and mouse regions, the shoulder

region has no edge-like structures and more homogeneous. If some noise appears densely along

a line in this region, removing such noise from the patch will more likely reduce the cost of

the first cost term, because a homogenous patch often has significantly lower rank than a (even

edge-like) textured patch. In addition, although MPLR and the proposed method have similar

PSNR values (31.34 vs. 31.12) for the 2 × 2 RVIN, MPLR often over-smooth image regions

(Figure 11c). In general, it seems that PSNR alone may not be sufficient to represent the visual

quality of denoised images in the presence of RVIN noise. It remains as future work to explore

novel quantitiave measurement for RVIN noise. Finally, the superior performance by MPLR

when RVIN size is 1 × 1 simply confirms previous results when combining the non-local idea

with low-rank matrix recovery [16].

While the above analysis is based on a specific noise sparsity level (i.e., 0.1), similar results

have been obtained in a large range of sparsity levels. As an example, Table II shows that at the

sparsity levels 0.05 and 0.15, the proposed method outperforms all other methods based on the
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TABLE II: PSNR at different sparsity levels.

Sparsity=0.05 Sparsity=0.15

1× 1 2× 2 3× 3 4× 4 1× 1 2× 2 3× 3 4× 4

Noisy image 21.97 22.01 21.47 21.69 17.40 17.34 17.35 17.49

Median 25.17 24.42 23.74 20.94 24.57 23.46 22.59 17.75

NS-LI 31.90 21.93 21.43 21.62 26.47 17.38 17.32 17.46

ROLD-EPR 32.08 29.16 21.44 21.64 27.94 25.43 17.38 17.48

MPLR 29.02 27.41 26.16 24.19 27.41 25.36 24.30 23.02

Proposed 32.54 30.98 28.56 27.39 29.06 27.53 25.86 24.39

TABLE III: PSNR for mixed sizes (from 1× 1 to 3× 3) of RVIN.

Noisy image Median NS-LI ROLD-EPR MPLR Proposed

Barbara 18.98 23.72 20.39 24.12 25.84 28.42

Lena 19.49 30.22 21.12 28.08 31.48 30.58

image ‘Barbara’, consistent with the results at the sparsity level 0.1 (Table I).

In addition, in real applications, noise with different sizes may appear simultaneously in

images. To test the performance of the proposed method in this scenario, RVIN with three

different sizes (i.e., 1× 1, 2× 2, 3× 3) were mixed together, with each size of RVIN generated

at a sparsity level 0.033 (so overall the noise sparsity level is 0.1). In this case, although the

sizes of most RVIN are small (i.e., 1×1 or 2×2), consistent with the single-size noise detection

and removal, the proposed method outperforms others on ‘Barbara’ and is a very close second

on ‘Lena’ (Table III).

E. Robustness for weighting matrix

As discussed in Section IV, the overall denoising performance is expected to be robust to

possible errors during the generation of the weighting matrix W. To confirm this analysis

experimentally, an initial estimate (i.e., the binary matrix W0) with errors was generated as

follows. First, 10% pixels of each noise-free image were replaced by 2 × 2 RVIN blobs. The

initial estimate W0 without errors can be generated based on the ground-truth RVIN positions

(corresponding to ‘0’ in X-axis in Figure 12). To generate an noisy W0, erroneously estimated

2× 2 RVINs were generated by shifting each ground-truth 2× 2 RVIN randomly to one of four
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(a) Noisy image (19.52) (b) ROLD-EPR (33.58) (c) MPLR (31.34) (d) Proposed (31.12)

Fig. 11: Visual quality comparison between different methods (PSNR value in bracket) for RVIN

of size 2 × 2. Note the visible remaining RVIN especially in smooth regions (e.g., shoulder,

background) in (b) and over-smoothed regions (e.g., hat) in (c).

Fig. 12: Robustness of weighting matrix. See text for details.

directions (left, right, up, down) by one (‘1’ along X-axis in Figure 12) or two (‘2’ along X-axis)

pixels. Considering the size (2×2) of each RVIN, shifting each ground-truth RVIN by one pixel

indicates that half of initial noise positions in the initial estimate W0 are incorrect, and shifting by

two pixels indicates that all initial noise positions are incorrect. Figure 12 shows that there is no

significant change in denoising performance when half of the initial RVIN positions are incorrect,

and a limited decrease even when all initial positions are incorrect, together demonstrating the

robustness of the proposed method to errors in the initial weighting matrix.
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F. Particle removal in hydrocolonoscopy images

Hydrocolonoscopy is considered as a promising replacement of traditional air colonoscopy,

as limiting patient discomfort [19]. We tested our noise removal technique on hydrocolonoscopy

images in the framework of the CODIR research project (Colonic Disease Investigation by Robot

Hydro-Colonoscopy) [1]. A hydrocolonoscopy procedure was simulated with a latex phantom of

a human colon section immersed in water in a tank (Figure 13). The colon phantom (size, shape,

colour and texture on the internal wall) was manufactured by reverse-engineering MRI data of

a human colon. The tank could be darkened completely by a cover to prevent visual artifacts

created by natural light. About 1000 hydrocolonoscopy images of the colon phantom wall were

extracted from a video captured by a state-of-the-art colonoscope (carrying its own illumination)

mounted on a movable rod to simulate the interventional motion. Water turbidity and floating

particles, simulating noisy interventional conditions, were created by diluting controlled amounts

of dispersion paint in the water. Particles with various sizes (maximumly 15× 15 pixels) were

suspended in water to create non-pointwise RVIN.

Fig. 13: Experimental set up for hydrocolonoscopy image acquisition with turbid water. The set

up consists of a (1) tank, (2) the yelowish colon phantom, (3) the white suspension to maintain

a constant position of the colon, (4) an colonoscope and (5) a movable rod to position the

colonoscope.

The proposed denoising method removed effectively particle noise in hydrocolonoscopy im-

ages. Figure 14 displays a representative example: an hydrocolonoscopy image and the denoised

result with the MPLR and the proposed method. The patch size is 41×41 for the proposed method

and 16× 16 for the MPLR method in order to remove large-size particles. MPLR oversmoothed

the image with larger particles partially remaining (Figure 14c and 14d). The ‘Proposed \W’

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2015.2400225

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



22

can preserve sharpness but cannot remove large-size particles effectively (Figure 14e and 14f).

The proposed method can remove the particles effectively while preserving the sharpness of

the edges (Figure 14g and 14h). These results are representative of those obtained with all our

hydrocolonoscopy images.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 14: Removal of particles suspended in a hydrocolonoscopy image. (a) The original noisy

image. (c) Denoised image by MPLR with patch size 16 × 16 pixels. (e) Denoised image by

the proposed method without W (dark boundary regions not denoised). (g) Denoised by the

proposed method. Right column (b,d,f,h): Two image patches cropped from each of the images

in the left column.
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G. Method limitations

Like every other denoising method, the proposed method is limited by its assumptions. First,

although most image patches are low-rank after being appropriately oriented (Section VI-B),

there are still a few patches which do not satisfy the low-rank assumption. For these patches,

denoising with the proposed method will inevitably over-smooth the original patches. Second,

for images or image regions with fine textures, there is a trade-off between removing RVIN

and preserving fine texture details. This trade-off can be realized by tuning the parameter λ,

with smaller λ emphasizing RVIN removal and larger λ emphasizing fine texture preservation.

Figure 15 shows an example of denoising the image ‘Bridge’. Smaller λ results in a smoother but

less detailed denoised image (Figure 15b) than larger λ (Figure 15c). Third, the proposed method

is essentially low-level, and does not consider any high-level (e.g., object level) information. If an

image contains small-scale objects which look like non-pointwise RVIN, they could be removed

as RVIN by the proposed method. For example, the two bright dots in the ‘Bridge’ image were

preserved in the denoised image (circled in Figure 15c) when λ is relatively large, but incorrectly

removed when λ is relatively small (Figure 15b). In addition, the proposed method requires the

rotation of each image patch by an appropriate orientation angle before denoising. Such rotation

may introduce sampling errors. However, if rotating patches help remove noise more effectively

than without rotation, the loss due to sampling error will be smaller than the gain of the better

noise removal. This is supported by the experimental results (e.g., Figure 9d vs. 9f).

VII. CONCLUSIONS

This paper has introduced a low-rank prior for small oriented (rotated by a characteristic

orientation angle) noise-free image patches. The low-rank prior suggests that a single patch

can be effectively denoised within a low-rank matrix recovery framework. Without resorting

to other similar patches, the single-patch method can effectively remove non-pointwise RVIN

within a generalized low-rank matrix recovery framework, and encode the initial estimation of

noise locations effectively. Experimental results show the better performance of the proposed

approach over several methods, especially for non-pointwise RVIN. Removing random Gaussian

noise and video denoising will be explored as future work.
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(a) Noisy image (b) Denoised image (small λ) (c) Denoised image (larger λ)

Fig. 15: Denoised ‘Bridge’ by the proposed method with two different λ. More fine textures

(e.g., top-right region) are preserved with larger λ, and RVINs are more completely removed

with small λ. Small object parts (circled in c) could be incorrectly removed with small λ.
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