4 research outputs found

    CloudBench: an integrated evaluation of VM placement algorithms in clouds

    Get PDF
    A complex and important task in the cloud resource management is the efficient allocation of virtual machines (VMs), or containers, in physical machines (PMs). The evaluation of VM placement techniques in real-world clouds can be tedious, complex and time-consuming. This situation has motivated an increasing use of cloud simulators that facilitate this type of evaluations. However, most of the reported VM placement techniques based on simulations have been evaluated taking into account one specific cloud resource (e.g., CPU), whereas values often unrealistic are assumed for other resources (e.g., RAM, awaiting times, application workloads, etc.). This situation generates uncertainty, discouraging their implementations in real-world clouds. This paper introduces CloudBench, a methodology to facilitate the evaluation and deployment of VM placement strategies in private clouds. CloudBench considers the integration of a cloud simulator with a real-world private cloud. Two main tools were developed to support this methodology, a specialized multi-resource cloud simulator (CloudBalanSim), which is in charge of evaluating VM placement techniques, and a distributed resource manager (Balancer), which deploys and tests in a real-world private cloud the best VM placement configurations that satisfied user requirements defined in the simulator. Both tools generate feedback information, from the evaluation scenarios and their obtained results, which is used as a learning asset to carry out intelligent and faster evaluations. The experiments implemented with the CloudBench methodology showed encouraging results as a new strategy to evaluate and deploy VM placement algorithms in the cloud.This work was partially funded by the Spanish Ministry of Economy, Industry and Competitiveness under the Grant TIN2016-79637-P “Towards Unifcation of HPC and Big Data Paradigms” and by the Mexican Council of Science and Technology (CONACYT) through a Ph.D. Grant (No. 212677)

    TRACTOR: Traffic‐aware and power‐efficient virtual machine placement in edge‐cloud data centers using artificial bee colony optimization

    Get PDF
    Technology providers heavily exploit the usage of edge‐cloud data centers (ECDCs) to meet user demand while the ECDCs are large energy consumers. Concerning the decrease of the energy expenditure of ECDCs, task placement is one of the most prominent solutions for effective allocation and consolidation of such tasks onto physical machine (PM). Such allocation must also consider additional optimizations beyond power and must include other objectives, including network‐traffic effectiveness. In this study, we present a multi‐objective virtual machine (VM) placement scheme (considering VMs as fog tasks) for ECDCs called TRACTOR, which utilizes an artificial bee colony optimization algorithm for power and network‐aware assignment of VMs onto PMs. The proposed scheme aims to minimize the network traffic of the interacting VMs and the power dissipation of the data center's switches and PMs. To evaluate the proposed VM placement solution, the Virtual Layer 2 (VL2) and three‐tier network topologies are modeled and integrated into the CloudSim toolkit to justify the effectiveness of the proposed solution in mitigating the network traffic and power consumption of the ECDC. Results indicate that our proposed method is able to reduce power energy consumption by 3.5% while decreasing network traffic and power by 15% and 30%, respectively, without affecting other QoS parameters
    corecore