6 research outputs found

    A Quality of Context Evaluating Approach in an Ambient Assisted Living e-Health System

    Get PDF
    Abstract-This paper provides an approach to evaluating Quality of Context (QoC) parameters in a ubiquitous Ambient Assisted Living (AAL) environment. Lack of quality can lead assisted systems to respond inappropriately, resulting in errors related to assistance or support, or putting the user at risk. QoC assessments can improve these systems and set them to perform specific actions whenever lapses in quality occur. Initially, the study presents a literature review of QoC, then it introduces the context management architecture used. The proposal is verified with the Siafu simulator in an AAL scenario where the user's health is monitored with information about blood pressure, heart rate and body temperature. Considering some parameters, the proposed QoC assessment allows verifying the extent to which the context information is up-to-date, valid, accurate, complete and significant. The implementation of this proposal might mean a big social impact and a technological innovation applied to AAL, at the disposal and support of a significant number of individuals such as elderly or sick people, and with a more precise technology

    CONTEXT MANAGEMENT: TOWARD ASSESSING QUALITY OF CONTEXT PARAMETERS IN A UBIQUITOUS AMBIENT ASSISTED LIVING ENVIRONMENT

    Get PDF
    This paper provides an approach to assessing Quality of Context (QoC) parameters in a ubiquitous Ambient Assisted Living (AAL) environment. Initially, the study presents a literature review on QoC, generating taxonomy. Then it introduces the context management architecture used. The proposal is verified with the Siafu simulator in an AAL scenario where the user’s health is monitored with information about blood pressure, heart rate and body temperature. Considering some parameters, the proposed QoC assessment allows verifying the extent to which the context information is up-to-date, valid, accurate, complete and significant. The implementation of this proposal might mean a big social impact and a technological innovation applied to AAL, at the disposal and support of a significant number of individuals such as elderly or sick people, and with a more precise technology

    Determining quality- and energy-aware multiple contexts in pervasive computing environments

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier 2; Singapore National Research Foundation under International Research Centres in Singapore Funding Initiativ

    Internet of Things data contextualisation for scalable information processing, security, and privacy

    Get PDF
    The Internet of Things (IoT) interconnects billions of sensors and other devices (i.e., things) via the internet, enabling novel services and products that are becoming increasingly important for industry, government, education and society in general. It is estimated that by 2025, the number of IoT devices will exceed 50 billion, which is seven times the estimated human population at that time. With such a tremendous increase in the number of IoT devices, the data they generate is also increasing exponentially and needs to be analysed and secured more efficiently. This gives rise to what is appearing to be the most significant challenge for the IoT: Novel, scalable solutions are required to analyse and secure the extraordinary amount of data generated by tens of billions of IoT devices. Currently, no solutions exist in the literature that provide scalable and secure IoT scale data processing. In this thesis, a novel scalable approach is proposed for processing and securing IoT scale data, which we refer to as contextualisation. The contextualisation solution aims to exclude irrelevant IoT data from processing and address data analysis and security considerations via the use of contextual information. More specifically, contextualisation can effectively reduce the volume, velocity and variety of data that needs to be processed and secured in IoT applications. This contextualisation-based data reduction can subsequently provide IoT applications with the scalability needed for IoT scale knowledge extraction and information security. IoT scale applications, such as smart parking or smart healthcare systems, can benefit from the proposed method, which  improves the scalability of data processing as well as the security and privacy of data.   The main contributions of this thesis are: 1) An introduction to context and contextualisation for IoT applications; 2) a contextualisation methodology for IoT-based applications that is modelled around observation, orientation, decision and action loops; 3) a collection of contextualisation techniques and a corresponding software platform for IoT data processing (referred to as contextualisation-as-a-service or ConTaaS) that enables highly scalable data analysis, security and privacy solutions; and 4) an evaluation of ConTaaS in several IoT applications to demonstrate that our contextualisation techniques permit data analysis, security and privacy solutions to remain linear, even in situations where the number of IoT data points increases exponentially
    corecore