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Abstract

The Internet of Things (IoT) interconnects billions of sensors and other devices (i.e., things)

via the internet, enabling novel services and products that are becoming increasingly

important for industry, government, education and society in general. It is estimated that

by 2025, the number of IoT devices will exceed 50 billion, which is seven times the estimated

human population at that time. With such a tremendous increase in the number of IoT

devices, the data they generate is also increasing exponentially and needs to be analysed

and secured more efficiently. This gives rise to what is appearing to be the most significant

challenge for the IoT: Novel, scalable solutions are required to analyse and secure the

extraordinary amount of data generated by tens of billions of IoT devices. Currently, no

solutions exist in the literature that provide scalable and secure IoT scale data processing.

In this thesis, a novel scalable approach is proposed for processing and securing IoT scale

data, which we refer to as contextualisation. The contextualisation solution aims to exclude

irrelevant IoT data from processing and address data analysis and security considerations

via the use of contextual information. More specifically, contextualisation can effectively

reduce the volume, velocity and variety of data that needs to be processed and secured in

IoT applications. This contextualisation-based data reduction can subsequently provide IoT

applications with the scalability needed for IoT scale knowledge extraction and information

security. IoT scale applications, such as smart parking or smart healthcare systems, can

benefit from the proposed method, which improves the scalability of data processing as

well as the security and privacy of data.

The main contributions of this thesis are: 1) An introduction to context and contextual-

isation for IoT applications; 2) a contextualisation methodology for IoT-based applications

that is modelled around observation, orientation, decision and action loops; 3) a collection of
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contextualisation techniques and a corresponding software platform for IoT data processing

(referred to as contextualisation-as-a-service or ConTaaS) that enables highly scalable data

analysis, security and privacy solutions; and 4) an evaluation of ConTaaS in several IoT

applications to demonstrate that our contextualisation techniques permit data analysis,

security and privacy solutions to remain linear , even in situations where the number of

IoT data points increases exponentially.
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CHAPTER 1
Introduction

The Internet of Things (IoT) currently incorporates approximately 15 billion IoT devices,

and there are estimates this will grow to 50+ billion by 2020 [1]. IoT devices produce

a tremendous amount of data, which we refer to as IoT data. IoT data underpins the

development of IoT applications that support many novel products and services that aim to

make cities, healthcare, manufacturing (Industry 4.0), energy generation and distribution,

and agriculture more data-driven and, therefore, ‘smarter’.

Many IoT applications typically follow the Observation, Orientation, Decision, and Ac-

tion (OODA) loop paradigm [2]. To explain this further, consider an IoT-based application

for a smart city that, among other services, finds and recommends parking spaces to drivers

who commute to work. At the observation phase this application collects a variety of data

that include (1) streamed IoT data from traffic, parking, roadside, and public transport

sensors, (2) stored data such as schedules from public transport databases, and (3) real-time

IoT data such as location and navigation information from the vehicles and mobile phones

of participating drivers. The orientation phase of the parking recommendation service

involves contextualising all such information to recommend a specific parking spot to each

driver or car. The first step of contextualisation involves filtering out all the IoT data that

do not relate to parking recommendation before any further data processing takes place.

The next step in the parking-finding orientation involves aggregating the destinations
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of the drivers/vehicles and all the remaining IoT parking-related information. The final

orientation step correlates the preferences of the driver, such as parking cost and distance

from their destination, to a recommendation. Each driver selects a recommendation from

those provided, which is set as their destination in their navigation system. Many other IoT

applications and related services have some form of OODA loop in their data processing

logic.

There are many existing research solutions for context management and contextualisa-

tion that can be broadly classified as database techniques, semantic web and rule-based

context management approaches, and machine learning and data science-based contex-

tualisation methods. However, most of the existing contextualisation approaches are

incompatible as they consider different notions of context and propose heterogeneous and

incompatible contextualisation techniques. Furthermore, none of these existing approaches

can support data processing at the scale of the IoT, as most are highly inefficient from

scalability and performance perspectives.

Another related concern in many IoT applications [3] is how to keep the data collected

from the IoT private. Examples of sensitive IoT data include the physiological data

collected by wearable or attached bio-medical sensors, and location data collected by the

Global Positioning System (GPS) and mobile phones. Disclosure of such data creates

opportunities for criminal activity and can result in loss of property, serious harm or

even death. Thus, despite its benefits, the IoT presents significant security and privacy

challenges, which are exacerbated by the unprecedented scale of IoT devices [4] and the

amount of data they generate. Traditionally, such security issues have been addressed

with the aid of encryption and privacy preservation techniques. However, IoT devices

are extremely limited in computational power and memory resources and therefore these

techniques add further data processing challenges [5].

The main aim of this thesis is to propose novel, real-time, IoT contextualisation

techniques that use contextual information to significantly speed up the processing of

IoT data for data analysis purposes. Furthermore, this thesis will also propose a novel

combination of contextualisation and watermarking techniques that provide for both highly
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scalable and lightweight role-based access control and data obfuscation techniques to secure

IoT data and the privacy of users of the IoT ecosystem.

1.1 Research Questions

The Research Question (RQ)s covered in this thesis are of two main categories:

• Category 1: How can contextualisation improve performance and scalability in IoT

data processing?

RQ1 : How can we characterise the performance and scalability of existing techniques

and algorithms that use context in the analysis of IoT scale data?

RQ1 will review the scalability and performance of the techniques and algo-

rithms investigated in Section 2.2.

• Category 2: How can we utilise contextualisation to improve scalability, security, and

privacy in IoT applications?

RQ2 : How can we perform scalable and performance oriented contextualisation of

IoT data?

For RQ2, we propose a scalable and performance oriented contextualisation

technique that can be applied to IoT scale data.

RQ3 : How can we design a sensor cloud solution for contextualisation of IoT data?

We aim to explore how we can design an architecture for the proposed contex-

tualisation technique that will be deployed in the cloud environment.

RQ4 : Can we implement and demonstrate the proposed model by developing a

proof-of-concept implementation, and validate its scalability and performance

through experiments?

We will discuss how we can implement the architecture proposed in RQ3.

Further, we will run several experiments to evaluate the scalability and perfor-

mance of the proposed technique.
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RQ5 : How we can utilise contextualisation to improve the security and privacy of

IoT Scale data?

We will investigate how the proposed contextualisation technique can be

applied to IoT scale data to improve security and privacy.

1.2 Methodology

For RQ1, we develop a Systematic Literature Review (SLR) methodology in Section 2.2

to investigate research papers covering data processing approaches that consider context.

The SLR outcome including the research gaps and challenges identified, is presented in

Section 2.2.4. For RQ2, we propose an IoT data contextualisation technique and describe

relevant definitions and contextual operations in Section 3.1. We have described a scalable

contextualisation architecture (ConTaaS) for IoT data processing in a cloud environment

in Section 3.2 to cover RQ3. Later in Section 4.1, we describe the implementation of

Contextualisation-as-a-Service (ConTaaS) for IoT data processing in a scalable parking

recommender use-case scenario for RQ4. For RQ5, we introduce a novel scalable data

obfuscation technique that combines contextualisation with digital watermarking based

on the disclosure privilege of matching roles in Section 5.1. Finally, in Section 5.2, we

propose a scalable and context-aware granular obfuscation technique for preserving privacy

of spatial-temporal IoT scale data.

1.3 Contributions

The main contributions of this thesis are of three main categories:

1. Contextualisation for Scalable Data Processing and Analysis (Chapter 4)

• Systematic literature review of state-of-the-art research publications related to

IoT contextualisation.

To consider relevant published papers that discuss contextualisation aspects,

we developed a novel systematic literature review methodology that based on

4



the impact of existing publications. The selected studies have been investigated

based on the literature review methodology described in Section 2.2 .

• Design of a scalable contextualisation architecture for IoT data processing

(ConTaaS).

Although contextualisation can be viewed as a subclass of data analytics, many

of the latest high-performance processing techniques for Big Data, such as

MapReduce [6], are not ideal for IoT contextualisation because they fall short

in supporting the incremental data processing requirements of contextualisation,

and the near real-time requirements of many IoT applications. In order to

facilitate IoT scale data contextualisation, a novel and innovative architecture is

designed to support high-performance and scalable contextualisation in real-time

(Chapter 3). This will include formal definitions for IoT contextualisation, de-

sign of the high performance and real-time contextualisation operators utilising

prime factorisation, and implementation of ConTaaS design.

• Cloud-based implementation of ConTaaS that utilises commercially available

cloud infrastructure services.

ConTaaS architecture has been implemented in the Amazon Web Services EC2

cloud infrastructure [7]. This implementation applies the proposed contextuali-

sation and IoT data processing approach proposed in this thesis to a ‘Smart

City’ application referred to as Smart Parking Recommender (Section 4.1). This

implementation is able to represent and contextualise data from IoT devices

and provides an efficient way to for IoT applications to query contextualised

IoT data.

• Experimental evaluation of the proposed contextualisation technique.

The contextualisation technique proposed in this thesis is evaluated in terms

of query processing time in an experimental scenario (Section 4.3). In this

experiment we consider thousands of cars searching for parking spots in Mel-

bourne. We utilise a dataset provided by the City of Melbourne augmented

with a synthetic dataset of parking sizes and descriptions. The contextualisation
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computation remains linear even in situations where the number of IoT data

points (i.e., cars) increases exponentially.

2. Contextualisation for Scalable Security (Chapter 5)

• Introduction of a novel scalable data obfuscation technique that combines con-

textualisation with digital watermarking based on the disclosure privilege of

matching roles.

In this thesis a lightweight yet highly scalable data obfuscation technique is

proposed that combines contextualisation with digital watermarking based on

the disclosure privilege of matching roles to govern access to IoT data. A digital

watermarking technique is used to control perturbation of sensitive data enabling

legitimate users to de-obfuscate perturbed data. The proposed technique utilises

ConTaaS (Section 3.2) to achieve real-time aggregation and filtering of IoT data

for a large number of designated users to enhance the scalability. ConTaaS

contextualises sensitive data to reduce data size prior to data obfuscation. Re-

versibility of the obfuscated data is also provided to users with the appropriate

disclosure privileges. Therefore, only the perturbed versions of the original data

are available to the public as described in Section 5.1.

• Experimental evaluation of the proposed contextualisation for scalable security.

We evaluate the performance of the scalable data obfuscation technique with

over 15 days worth of patient data. In this experiment, we compare the

query processing time in a healthcare-related use-case. The experimental data

presented in Section 5.1.3 demonstrate that the proposed technique is effective

and lightweight and can make data processing 160 times faster, on average, than

not using contextualisation.

3. Contextualisation for Scalable Privacy (Chapter 5)

• Proposing a scalable and context-aware granular obfuscation technique for spatial-

temporal data.

The highly connected and distributed nature of the IoT opens up the possibility
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of compromising privacy before obfuscation takes effect. Therefore, privacy

enforcement should be deployed at earlier stages. Additionally, classical privacy

treatments are too restrictive for the IoT, where coarser or finer data details

may be required by different applications. In this thesis, a framework for privacy

preservation in IoT environments is proposed that is capable of multi-granular

obfuscation by enforcing context-aware disclosure policies (Section 5.2).

• Experimental evaluation of the proposed scalable and context-aware granular

obfuscation technique.

In Section 5.2.6, we evaluate the performance of the proposed context-aware

granular obfuscation technique in a smart vehicle use-case scenario. For this

purpose, a large-scale urban vehicular mobility dataset is used, which contains

car traffic trajectories for the city of Cologne [8]. The performance of the

proposed technique is investigated in terms of the processing time required to

retrieve trajectories. This includes the time required for reversing the privacy

transformations and obfuscation. The proposed technique significantly outper-

forms its encryption counterpart in terms of response time and data protection

at the sensor and database levels. The evaluation presented in Section 5.2.6

shows that our novel technique can preserve privacy nine times faster than the

most common encryption algorithms.
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CHAPTER 2
Background and Related Work

In this chapter, we describe the background and related work information related to this

thesis. Particularly, in Section 2.1 we have explained challenges for IoT contextualisation,

in Section 2.2 we have explained the systematic literature review for IoT contextualisation,

and in Section 2.3 we provide a literature review of IoT security and privacy.

2.1 Challenges for Internet of Things Contextualisation

This section provides a background to IoT contextualisation. More specifically Section 2.1.1

introduces heterogeneity in sensor data and semantic approaches, Section 2.1.2 discusses

current notions for ‘context’ in respect to general contextualisation, while Section 2.1.3

involves the querying of sensor data.

2.1.1 Heterogeneity of Sensor Data and Semantic Approaches

Heterogeneity makes contextualisation more difficult, so homogeneous sensor data can help

with IoT contextualisation. Over the past 10-15 years, sensors have been used in several

different areas, such as environmental monitoring, traffic control and healthcare. Sensors

are typically small devices capable of sensing, storing and transmitting data, as well as being

actuated over wired and wireless networks. One of the main challenges in sensor networks
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is in transforming data from heterogeneous sensing devices manufactured by different

vendors for different applications into homogeneous, discoverable and usable information

presented in human- and machine-readable forms. There have been several recent efforts

to tackle this challenge through metadata tagging or semantic annotation of sensor data

[9, 10, 11]. While metadata can be any sort of informal information attached to data,

semantically annotated data is associated with ontologies [12] that expressively and formally

define and describe the type, properties and interrelationships of the data. Semantically

annotated data is not only more understandable but can also be used for reasoning and

to deduce new knowledge and, subsequently, to increase the expressiveness of the data.

The Sensor Web Enablement (SWE) [13] standard from the Open Geo-spatial Consortium

is an international effort to standardise all types of sensors, transducers and sensor data

repositories that are accessible and discoverable via the internet. SWE consists of the

following: 1) Sensor Model Language, which includes a standard model and an Extensible

Markup Language (XML) Schema [14] for describing sensor characteristics, specifications

and capabilities, such as their location. 2) The Observation and Measurements standard

model and schema for describing observations and measurements from sensors and sensor

networks. 3) The Observation interface for entering queries and retrieving observation

and sensory data. SWE standards and XML schema are able to describe sensor data

and observations with metadata to some extent, but they do not support the semantic

reasoning, abstraction and classification provided by semantic technologies. The Semantic

Sensor Network (SSN) [15] adds semantics describing sensors and sensor networks. The

SSN ontology is compatible with SWE and extends semantic support for SWE. The SSN

ontology expressively represents sensors and observations of the environment.

2.1.2 The Variety of Context Notions

Context, in IoT contextualisation, is shared among different applications. On the other

hand, there should be a clear boundary to distinguish data from context. Much of the

related work has attempted to define and use context in developing a wide range of

intelligent applications ranging from mobile computing to artificial intelligence [16, 17, 18].
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Context has been introduced in the literature by several researchers. The most common

definition in the literature is by Dey et al. [16], who define context as “any information that

can be used to characterise the situation of an entity”, where “an entity is a person, place,

or object that is considered relevant to the interaction between a user and an application,

including the user and applications themselves.” While this definition is sufficient for some

of the related work, it does not necessarily capture context from the perspective of the

IoT or other large-scale and multi-application environments. Moreover, there is no clear

separation between data and context in this definition. Context in the IoT is closely aligned

with the notion of context in context-aware computing, due to the fact that context-aware

computing and the IoT have similarities in terms of data. However, they do not have the

same scales and processing demands.

2.1.3 Querying Sensor Data

Contextualisation often requires the querying of context and sensor data that is maintained

in a specific data model. For example, if sensor and context data are managed by a

relational database, the relational database model and Structured Query Language (SQL)

[19] constrain the contextualisation that can be achieved. Relational databases require

sophisticated resources to deal with complex queries. Moreover, relational databases cannot

easily adapt their schema to accommodate contextual changes. Non-relational databases

(also referred to as noSQL or nonSQL) provide data models that are more suitable for

Big Data and distributed and scalable data storage [20]]; however, the data models and

query processing capabilities they provide are heterogeneous/nonstandard. The Resource

Description Framework (RDF) [21] provides a more powerful and standardised data model

than SQL and noSQL databases, but query processing is complex and limited in scalability.

Therefore, the management of contextual data (often referred to as contextual information)

is a challenge.
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2.2 Contextualisation in the Literature

In this section we provide a SLR of existing context and contextualisation techniques. SLR

is a well-defined and established methodology for identifying, analysing, and interpreting all

the available evidence that is (to a reasonable degree) related to a specific research question,

and doing so in a way that is unbiased. SLR contrasts with expert review based on an

ad-hoc selection of literature related to a specific subject [22, 23].The research contributions

that presented in this thesis include the SLR presented in this chapter, which is based on a

specific sequence of tasks adapted from [22].

2.2.1 Identification of Related Work

To find and review existing publications that discuss contextualisation, we searched Google

Scholar (scholar.google.com) for relevant publications, of which we found over 3000 1. In

particular, we organised our searches into four sets according to the search phrases listed

in Table 2.1. This table also shows the total number of publications found by each query,

and the number of such publications per year.

Table 2.1: Publications related to each search phrase.

Query Search Phrases Total 2011 2012 2013 2014 2015 Date are

not specified

‘context reasoning’ 1706 370 386 373 317 195 65

‘context inference’ 1287 267 241 253 284 203 39

‘inference of context’ 101 24 21 19 27 10 0

‘reasoning on context’ 82 22 17 15 13 15 0

Next, we reduced these four set of related publications to the most relevant one via the

following publication selection process:

1. Removal of duplicates

Related publications that included more than one of the search phrases in Table 2.1

1All the queries were conducted at the same time in November 2015
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were included in more than one of the four result sets. Such duplicates were removed.

2. Removal of articles by publishers lacking an excellent reputation

Therefore, we only considered publications from well-known publishers, including

Elsevier 2, IEEE 3, ACM 4, and Springer 5.

3. Removal of articles based on secondary and tertiary studies (surveys)

Publications can be classified as primary, secondary or tertiary studies. Primary

studies are normal research publications that include research contributions. A

study that reviews primary studies on a specific research topic is a secondary study

[22]. Tertiary studies review other reviews. Therefore, in this step, we removed all

publications that were secondary or tertiary studies (e.g., with the word ‘survey’ in

the title).

4. Removal of articles that had never been cited

This step allowed us to consider citations as a metric of the research impact of a

publication. Therefore, we did not consider papers without any citations.

5. Focus on articles with the highest research impact

To select the highest impact publications we utilised the µj value [Equation 2.1]

proposed for primary studies. In this equation, αi is the number of citations of each

paper i published in year j, and nj is the total number of related papers published

in that particular year. To select the highest impact research papers we set nj to be

our set of publications after step 4, and j for the past five years.

µj =

⌈∑nj

i=1 αi
nj

⌉
(2.1)

6. Manual filtering of the remaining papers

Finally, the last selection phase was to exclude papers that were not relevant to this

2www.elsevier.com
3www.ieee.org
4www.acm.org
5www.springer.com
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thesis, such as papers from disciplines other than computer science and engineering

(e.g., context in social science).

Figure 2.1 shows the number of papers remaining after each step of the selection process.

Figure 2.1: Literature selection process.

2.2.2 Primary Studies

In this section, we summarise the contributions of related publications (mainly highly-

relevant primary studies with high research impacts, as discussed in Section 2.1).

• Baladron et al. [24], presented a converged framework for context management as a

driver for service adaptation in the future internet. It allows integration, monitoring

and control of heterogeneous sensors and devices under a single context-aware service

manager (i.e., a service manager that utilises contextual information and provides

contextualisation techniques). This module can use clustering algorithms to take

advantage of user histories for inference and prediction of missing contexts.

• Roussaki et al. [25], presented a context management architecture suitable for

pervasive services combined with social networking and explored its value to users

all over the world. They presented the first results from their work in SOCIETIES

, a European Information and Communications Technology (ICT) research project

that aims to bring together pervasive computing and social networking paradigms.

• Lee et al. [26], presented the implementation of MobiCon: a practical context-

monitoring middleware for context-aware application development. This middleware

mediates context-aware applications (i.e., an application that can utilise contextual
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information to deliver services) and personal sensor networks, offering Application

Programming Interface (API)s as well as run-time environments for applications. The

system guarantees accurate context recognition (i.e., a process that identifies user

and application contextual information from sensor data) by means of five modules,

namely, context processor, sensor manager, resource coordinator, application broker

and sensor broker. Some requirements for the system are high-rate data acquisition

from multiple sensors, feature extraction and context recognition with large amounts

of context data, along with intermediate transmission of results. MobiCon supports

multiple applications and can adapt to sensor availability.

• Okeyo et al. [27], described an integrated architecture that combines ontological

and temporal knowledge representation formalism for composite activity recognition.

They also presented models, methods and algorithms that are capable of supporting

the recognition of simple and composite activities. In this paper, contextual user

data was analysed to recognise users’ ongoing activities. They claimed that the paper

presents the first effort to use a purely knowledge-driven approach that addresses

temporal representation as well as reasoning requirements to recognise both simple

and composite activities.

• Yndurain et al. [28], presented an architecture that enables search engines to take

into account contextual information to enhance the search results. They proposed a

technique to adapt the queries to deal with signals and produce intermediate context

states. They experimented with the use of heuristic rules for contextual reasoning.

They propose that, in the future, search engines must become more context-aware.

• Rodriguez et al. [29], presented a fuzzy ontology that aims to solve the limitations

of other ontology-based activity recognition techniques in dealing with imprecision

and uncertainty, as well as vague or incomplete data. The proposed approach is

incremental and allows different levels of granularity that, as they state, allows

behavioural abstraction and more accurate recognition. In their fuzzy ontology, rules
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can be established to recognise human behaviour using a sequence of observations, a

behaviour specification structure and handling of uncertainty.

• Roy et al. [30], proposed a framework for sensor networks that fuses data from

multiple sensors and uses the context state to support context-aware services that

handle ambiguity by reasoning efficiently about the state. The focus is on considering

the computational aspects of data related to sensors and providing context-aware

services. The main goals of the work are to construct a framework that can deal

with information redundancy and guarantees an application’s quality in terms of

contextual bounds. They proposed a system that includes dynamic Bayesian net-

work techniques and uses sensor data to derive context states via a fusion process.

They also used reasoning techniques from information theory to determine optimal

contextual attribute values and minimise state ambiguity. They proposed an indica-

tor, the Quality of Context (QoC), to evaluate the framework and used Sun Small

Programmable Object Technology (SunSPOT) to build a system and validate their

proposal.

propose a framework for sensor networks that fuses data from sensors and uses the

context state to support context-aware services that handle ambiguity by reasoning

efficiently about the state. Focus is set on considering the computational aspects

of data related to sensors and providing context-aware services. The main goals of

the work are to construct a framework that can deal with information redundancy

and guarantees an application’s quality in terms of context bounds. They propose a

system that includes dynamic Bayesian Network techniques and uses the data from

sensors to derive context states by means of a fusion process. They also use reasoning

techniques from information theory to select context attributes’ optimal values and

minimise state ambiguity. They proposed an indicator, the QoC, to evaluate the

framework and used Sun Small Programmable Object Technology to build a system

and validate their proposal.

• Song et al. [31], proposed an interactive middleware architecture for lifelog-based
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context awareness (which is a technology that automatically provides a service based

on the contextual information) in distributed and ubiquitous environments. The

middleware is a system that can distribute and manage situational information in

mobile nodes using mobile devices in distributed and ubiquitous environments. The

system shares service contents through interactive middleware through publication.

Their proposal aims to unify and share multiple middleware modules to lay the

foundation for providing extended functions to applications using services to improving

performance.

• Rahman et al. [32], presented SenseFace, a framework to create a personal social

network that offers personalised and context-specific interaction with different services

and communities of interest. SenseFace provides the following features: 1) It is capable

of extracting the user’s personal social network from the internet; 2) it extracts content

from Body Sensor Network (BSN) and Personal Social Network (PSN); 3) it extracts

context information from the BSN and PSN and creates context primitives; 4) it

combines the generated context primitives that define a user’s context; 5) it employs

a novel ubiquity stack that maps each user’s context to a subset of services and social

ties; and 6) it dynamically assigns a priority to each service so that the visualisation

maintains a layout of each service based on its earned credit.

• Martin et al. [33] explored the use of smartphones for activity recognition. They

studied how to approach the building of an activity recognition system through

continuous background execution in a smartphone. The architecture they proposed

is an embedded, stand-alone, physical activity estimation approach that uses the

sensing, processing and storage capabilities of devices in order to estimate significant

movements or postures (e.g. walking at slow, normal and rushing paces, running,

sitting, standing, etc.). They demonstrated the feasibility of the system by 1)

collecting an activity dataset of 16 individuals, and 2) training a set of classifiers

(Näıve Bayes, decision table and decision tree) working on different selections of sensor

data. They measured the accuracy, computational cost and memory fingerprint of
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their classification system.

• Kabir et al. [34], presented a Social Context Information Management System

(SCIMS) to support the development of applications utilising social information.

They proposed an ontology-based model for representing and storing both people-

and object-centric relationships and used these to compute the status information of

SCIMS users. Based on information acquired from various sources, SCIMS derives a

rich social context. The system uses Facebook, LinkedIn, Twitter and Google Calen-

dar to acquire users’ social context information (i.e., social roles, social relationships

and status) and provides rich semantic support for representing and inferring from

such contexts. They propose a way to preserve privacy by allowing users to adjust

the granularity of information stored.

• Rossi et al. [35], presented a real-time ambient sound recognition system for smart-

phones called AmbientSense. They described the design, implementation and evalua-

tion of the system. The system samples ambient sound data, extracts features from

the data and produces a context recognition result by means of a Support Vector

Machine (SVM) classifier using auditory scene models. There is a training phase

for creating models based on an audio data training set. The recognition stage is

implemented in two modes: autonomous mode and server mode. In server mode,

classification is performed by transmitting features to a server and then receiving

the resulting class. Both modes of operation were evaluated with a set of 23 daily

life ambient sound classes in terms of recognition performance, phone CPU load and

recognition delay.

• Meditskos et al. [36], proposed a hybrid framework (SP-ACT) for complex activity

recognition via a semantics solution that utilises Web Ontology Language (OWL),

SPARQL Protocol and RDF Query Language (SPARQL) for recognition of complex

activities. Ontologies provide a common vocabulary for representing activity-related

contextual information and SPARQL rules derive high-level activity interpretations.

The temporal relations among activities are handled by SPARQL functions and the
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derivation of new composite activities exploits the native capabilities of SPARQL to

update the underlying activity model.

• Papadopoulou et al. [37], proposed the idea of a Personal Smart Space (PSS),

which is a set of devices connected using peer-to-peer connections, and described

the interactions that may occur among them. They presented an architecture for

the PSS that includes several layers and blocks that structure the management of

information from the device level to actions at the environment level. They claim

that the PSS approach easily separates the personalisation needs of the user from

the control of the devices.

• Okeyo et al. [38], presented an approach to dynamic sensor data segmentation, which

is where sensor data streams are segmented into fragments, each of which can be

mapped to an activity description. They used this approach for knowledge-driven

activity recognition that is capable of continuous real-time operation. The main

contributions of this work are: 1) A sensor data segmentation model was proposed

based on time windows that is applicable to a wide range of activity recognition

scenarios; 2) description of mechanisms for the dynamic manipulation of model

parameters, such as the setting, shrinking and expansion of the time window; 3)

incorporation of the data segmentation method into an ontology-based technique for

activity recognition; 4) evaluation of the performance of the proposal in real-time

activity recognition; 5) implementation of a prototype system to evaluate the above

that consists of a synthetic Activities of Daily Living (ADL) data generator, an ADL

ontology, a sensor data simulator for ADL data playback and a real-time activity

recognition system. This evaluation method utilised accuracy as its main metric and

the results demonstrated the feasibility of this approach.

• Wei et al. [39], explored an approach that uses a middleware system, called CAMPUS,

to automatically perform context-aware adaptation of decisions at run time. CAMPUS

utilises semantic technologies to dynamically make adaptation decisions based on

contextual information. They also proposed a new programming model based on
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compositional adaptation for constructing context-aware applications and facilitating

adaptation decisions. CAMPUS formulates a comprehensive ontology-based model

that allows the capture of important concepts and relationships between entities,

which are necessary for automated context-aware adaptation decisions. Based on

these ontologies, the CAMPUS employs Description Logic (DL) and First-order

Logic (FOL) to infer and make context-aware adaptation decisions automatically.

• Boytsov and Zaslavsky [40], proposed, developed and evaluated a technique for

formal verification of context models and situations. Situations, in this context

model, include dependencies among situations as well as situation definitions in terms

of context features . The paper demonstrated that the definitions complied with the

expected properties and provided a complete set of counterexamples that illustrated

situation inconsistency.

• Carreira et al. [41], proposed a prototype system that uses context information to

automatically detect and solve conflict situations in Home and Building Automation

System (HBAS). The contributions of this work include the following: 1) a conflict

taxonomy that includes a formal representation of intelligent environment conditions

and components, and 2) a foundation for systems capable of automatic conflict

detection and resolution. The research also included an investigation of the nature of

classification of conflicts in home automation, a model that allows specification of the

intelligent environment components that can cause conflicts, and a prototype system

that can analyse the environment, detect the existence of conflicts and determine

whether they can be resolved.

• Yuan and Herbert [42], presented a fuzzy-based context modelling and reasoning

framework for a proposed pervasive healthcare architecture referred to as CARA. The

reasoning component of CARA fuses physiological, behavioural and environmental

information to support home healthcare monitoring. CARA also provides more

accurate emergency situation detection via incorporation of real-world environmental

data to supplement medical sensor data. The paper also presented some details of
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the CARA architecture, including its remote monitoring, data and video review, and

healthcare reasoning components.

• Lee et al. [43], presents Cooperative Context Monitoring System (CoMon) for

addressing the high-energy usage problem in mobile content management that occurs

when context information is shared among mobile users. Their solution includes

techniques for continuity-aware co-operator detection and benefit-aware negotiation.

According to their estimations and tests, the monitoring system enables mobile

applications to monitor the environment with much lower energy consumption than

other techniques.

• Nath [44], presents a middleware system for efficient and continuous sensing of the

contexts of mobile phone users. The proposed middleware dynamically learns rules

about the relationships among various context attributes using a novel technique

for association rule mining. The rules learned are exploited for optimising inference

caching and speculative sensing. Inference caching allows the middleware to infer one

context attribute from another already-known attribute without requiring any sensor

data. Speculative sensing enables the middleware to occasionally infer the value of

an expensive attribute by sensing cheaper attributes.

• Ha et al. [45], described an assistive system based on Google Glass devices for users in

cognitive decline (e.g., those with Alzheimer’s disease or mild cognitive impairment)

and survivors of stroke. They described the architecture of the system, which is

called Gabriel, and presented a prototype implementation. Google Glass devices are

used to perform first-person image capture, sensing, processing and communication.

The main system architecture characteristics include being multi-tiered, offering low

end-to-end latency bounds on computing-intensive actions, taking into account the

limited battery capacities and processing capabilities of these devices, support for

Vector Machine (VM)-based extensibility for customisation, and graceful degradation

of offload services in case of network failure and unavailability.
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• Mehrotra et al. [46], proposed a middleware system solution called SenSocial that

builds and binds social and physical context data streams for applications. SenSocial

performs remote management of streams and filters their data to refine contextual

(physical and social) data streams. Next, it separates and delivers relevant parts of

such context data to various apps as they require. SenSocial offers privacy manage-

ment functionality that allows the developer to manage the type and granularity

of sensed contextual data that is stored and shared. It is also able to manage the

sampling of users’ physical contexts once an online social network action is detected

and pairs the sensed physical context with the social network information.

• Motik et al. [47], described a knowledge management system that supports context-

aware applications called Delta-Reasoner. This system uses RDF as the data model

and OWL for semantically representing background knowledge. It uses incremental

reasoning for dealing with changes in reading calculations from the sensors. Delta-

Reasoner is part of the Intelligent Mobile Platform, a system that exploits semantic

technologies to represent different situations and related applications.

• Maia et al. [48], presented a context management middleware system for the An-

droid platform called Loosely Coupled Context Acquisition Middleware (LoCCAM).

LoCCAM provides self-adaptive gathering of contextual information from nearby

devices. The context management component of LoCCAM is built as an extension

of the Open Service Gateway Initiative (OSGi) framework [49], with the feature

of dynamic reconfiguration of the acquisition layer during application execution.

LoCCAM employs a model for publication and notification of contextual information

based on tuple spaces.

• Xu et al. [50], explored the feasibility of inferring a user’s inputs on the touchscreen

of a smartphone using the data collected from motion sensors. They show that there

are unique patterns of tap events (in terms of changes in acceleration) and that

statistical approaches can be used to detect the occurrence of tapping. Similarly, they

showed that there is a correlation between the tap position and the gesture change
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(as detected by the orientation sensor) during a tap event. They also designed what

they called a TapLogger, which is a Trojan horse application that utilises observed

sensor data to secretly log users’ touchscreen inputs.

• Wei and Jin [51], presented a context-aware service discovery architecture for the IoT

that aimed to provide an efficient infrastructure to support smart service provisioning.

An ontology-based model that utilises Dynamic Bayesian Network (DBN) was pro-

posed to handle uncertain and temporal contexts. They also examined the function

of context and relations with entities in the IoT. To achieve this, they used DBN to

obtain high-level contexts from low-level time-series data streams by reasoning about

these contexts.

• Liu et al. [52], ] presented an ontology learning model called Domain Ontology

Graph (DOG). This model 1) supports the definition of ontology graphs that provide

knowledge conceptualisation, and 2) supports the ontology learning process that

guides semiautomatic domain ontology learning and generates corresponding ontology

graphs. Two kinds of ontological operations are introduced in this paper: document

ontology graph generation and ontology-graph-based text classification.

• Chon et al. [53], proposed a method for the autonomous construction of a Point of

Interest (POI) map called LifeMap, which includes a service that provides information

about various locations without needing a centralised server. LifeMap exploits

onboard accelerometers and electronic compasses to track the locations of mobile

device users. It incorporates a room-level, fingerprint-based, place-learning technique

that generates logical locations from the properties of Wi-Fi radio signals. The paper

also presented an implementation of the system on Android phones and validated its

practical usage in everyday life.

• Zhu et al. [54], proposed an authorable (able to generate Augmented Reality (AR)

content) and context-aware system for assisting maintenance technicians. This

system, called ACARS, enables AR developers to create contextual information for

maintenance purposes via a 2D desktop user interface. Existing authoring tools
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for maintenance tasks are unidirectional but are not context-aware, so proving this

combination is a significant contribution. ACARS consists of context management,

AR visualisation, database, offline authoring and on-site authoring components. The

context management module collects contexts from user inputs and sensors, infers

new contexts and transmits all the contexts to an AR-based visualisation module.

• Choi et al. [55], proposed a dynamic access control model they called Onto-ACM.

Onto-ACM provides ontology reasoning and semantic analysis for managing the

security level required to access resources. Onto-ACM offers a mechanism that can

prevent misuse of access rights by dynamically changing the permissions of any user

role based on context information.

• Zhang et al. [56], proposed a scheme of Decentralised Checking of Context Inconsis-

tency (DCCI) in pervasive computing environments. They claimed that DCCI is the

first scheme in pervasive computing environments that is capable of checking context

inconsistency in a fully distributed manner. Their solution for doing this builds a

shortcut structure that aims to reduce the communication overhead and improve the

checking accuracy by exploiting a preference-based locality.

• Okeyo et al. [57], presented a hybrid knowledge-driven approach to composite activity

modelling that combines ontological and temporal modelling. This approach enhances

ontology-based activity models with qualitative temporal information based on

Allen’s temporal logic [58]. The paper proposed 1) ontological modelling constructors

describing composite activities, and 2) temporal modelling operators. These provide

for the modelling of both static and dynamic characteristics of activities. The paper

used these modelling approaches to demonstrate several composite activity models.

Finally, a set of inference rules was proposed to achieve composite activity recognition.

• Coradeschi et al. [59], presented a system called GiraffPlus, consisting of a network

of home sensors that collects vital sign measurements such as weight, blood pressure,

blood glucose, environmental signals from smoke sensors, temperature sensors, fall

sensors, etc. This information is then processed by a context recognition system
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that recognises activities, monitors health and assesses wellbeing. GiraffPlus can

subsequently trigger alarms or reminders to its users or their caregivers. A telepresence

robot, the Giraff robot, is part of the proposed solution. This robot can be moved

around the home by somebody else controlling it over the internet. It is equipped

with a video camera, display, microphone, speakers and touchscreen, and can be used

for information collection and communication.

• Ju et al. [60], proposed a coordinated sensing flow execution engine, referred to

as Symphoney, for concurrent sensing applications. Symphoney supports frame

externalisation that identifies semantic structures embedded in sensor data streams.

Symphoney also provides a data flow programming model via an XML interface. It

supports developers by giving them tools to flexibly compose customised sensing

flows. This allows rapid prototyping of complex sensing flows, reducing the time and

effort needed.

• Nguyen et al. [61], proposed a framework for discovering latent patterns that employs

Hierarchical Dirichlet Processes (HDP). Latent patterns are relations amongst

contexts that are hidden inside the data and that are not easily inferred. HDP is a

hierarchical Bayesian non-parametric model mainly used for the purpose of modelling

grouped data. The paper includes results of an experiment with users from the

authors’ lab. These experiments show that data can be represented and learned with

HDP and these can find parameter clusters that are similar to those yielded by other

methods that search for latent patterns.

• Zaslavsky et al. [62],presented CAROMM, a mobile data stream mining system that

aims to provide improved scalability of mobile data collection and run-time analytics

(on-the-move mining). The paper shows that CAROMM is capable of collecting and

processing data from a large number of mobile devices. The key component of this

work is CAROMM’s data analysis-cluster engine, which provides the mobile data

analytics functionality and related scalability.
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• Sudhana et al. [63], proposed an ontology for a context-aware adaptive e-learning

application that delivers learning material by taking into account the context of

the e-learner. In this work, context is modelled as ontological profiles. The paper

describes alternative categorisation approaches for contextual information in the

e-learning domain based on learner perspective-based context acquisition. The paper

also proposed an architecture model for a context-aware e-learning application.

• Liu et al. [64], presented an Incremental and Distributed Inference Method (IDIM)

for large-scale ontologies (incremental RDF datasets) that utilise MapReduce [6].

This solution works by constructing a Transfer Inference Forest (TIF) and Effective

Assertional Triple (EAT). These help reduce the required storage and simplify the

reasoning process required. These, in turn, allow users to execute their query more

efficiently (other related work requires computing and searching over the entire RDF

closure).

• McNaull et al. [65], proposed an Ambient Assisted Living Flexible Interface (AALFI)

that is controlled by a Multi-Agent System (MAS). This solution aims to provide

help to older people so they can continue living in their own home for longer.

This research provides such support via an adaptive multi-modal interface that is

driven and updated by a MAS and complements the current support offered by the

NOCTURNAL project [66] by providing interaction through visual and auditory

modalities. The users are provided with advice that is based on criteria such as

the quality of sleep during the night and possible breaches of safety during the day.

These help its user to carry out corrective measures and/or seek further assistance.

Interactions are personalised to support each user’s needs and are either visual or

auditory.

2.2.3 Definitions of Terms for the Review of Related Work

The following terms are used in the review of related publication in Section 2.2.2:
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• Contextual Operations - These are the operations that utilise context information

and perform IoT data contextualisation. They include the following:

– Filter : Operations that only allow certain information to pass through them;

– Aggregate: Operations that compute a single value from a collection of values

by using mathematical operations such as averaging or summarising;

– Infer : Operations that deduce new information by reasoning on the data.

• Techniques - This includes any algorithms for the above and other contextual

information.

• System - This includes the implementation, architecture and APIs:

– API and Software tools: Any external data communication with other services

or applications;

– Implementation and architecture: Include the architecture and implementations

described in the papers.

• Semantics - This includes the use of semantic-based models and techniques for

defining and utilising content and performing contextualisation:

– Ontology : Specified ontologies that have been used in the paper;

– Context : The definition or description of the context used in the paper;

– Context Attributes: Context attributes described in the paper;

– Context Reasoning : Deduction of context based on available information;

– Context Model : Describes how the context data is structured.

• Evaluation - This includes evaluations of techniques and systems for contextualisa-

tion:

– Evaluation Definition: Evaluation of the contribution of the paper;

– Evaluation Parameters: Parameter used for evaluation of the paper’s contribu-

tion.
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• Big Data and IoT - This includes specific references and solutions for Big Data

and the IoT:

– Big Data: Any reference to Big Data and its definitions;

– Big Data Parameters (3V): Investigation of main Big Data parameters including

volume, variety, and velocity;

– Internet of Things: discussion or contribution related to the IoT.

2.2.4 Systematic Literature Review Outcome

This section presents the conclusion of the SLR.

To assess the related work summarised in Section 2.2.2, we consider the contextualisation

operations in the literature review. The majority of the related work proposes reasoning and

inferring operations for context and contextualisation. Filtering operations are encountered

in a few publications [54, 46, 32, 26]. However, they do not necessarily describe if or

how context is utilised in the filtering operation. Furthermore, we could not find any

systematic description of filtering and aggregating operations or a comprehensive description

of contextualisation operations in any of the related works.

Related work that explores the semantic aspect of context and contextualisation lacks

any clear definition of context and provides no clear boundaries between sensor data,

application data and context (or contextual information). In addition, definitions of context

are typically application specific. Similarly, the majority of related work defines ontology

by themselves or they are not using any formally defined ontologies. Furthermore, there

are no common methods of using ontologies.

Related work does not provide a common evaluation methodology, and there is no

common framework for the performance evaluation of the provided contextualisation

solutions. Furthermore, the scalability of such contextualisation solutions is not considered

in most of the papers. Finally, no related work has demonstrated scalable and/or near

real-time IoT data processing in applications involving context and contextualisation.
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No related work has investigated and provided solutions for dealing with high-volume,

-velocity and -variety sensor data, which remain a challenge in IoT and related Big Data

applications. In fact, most related work does not consider the IoT at all. There were a few

papers that mention applications and services using sensors but these are not involved any

internet-related issues and, hence, are not necessarily IoT applications.

Finally, there is no generic cloud solution for using context and contextualisation in

the IoT and related Big Data applications.

2.3 Scalable Security and Privacy in Internet of Things

Typical security threats that can compromise IoT applications include eavesdropping,

impersonation, modification and data breaches. Moreover, to protect the privacy-sensitive

data of individual IoT devices, e.g. in the case of healthcare applications, it is important

to provide privacy-aware access to data without exposing the actual data. The IoT is an

important new internet technology with great potential for developing smart buildings and

cities, assisted living and healthcare, precision agriculture and environmental monitoring,

manufacturing, and security and defence. IoT systems and their applications must deal

with malicious disclosure and attacks and provide mechanisms that protect sensitive data

such as patients’ physiological data, energy consumption data from smart meters, and the

locations of mobile users. Existing techniques for protecting privacy-sensitive data in the

IoT include the following.

There are several aspects of the IoT that present security and privacy problems,

including IoT device communications, constrained resources (e.g., limited battery life),

variety (e.g., different types of devices made by multiple manufacturers), and scale (billions

of devices) [67]. Among the plethora of recent research solutions [68, 69, 70, 71, 72] for

protecting sensitive IoT data, some related research (e.g., [73, 68, 70]) focuses on security

and privacy preservation policies while others (e.g., [68, 69, 71, 72]) focus on encryption

and the design of privacy preserved frameworks for the IoT [74]. Although most proposed

techniques can ensure security and privacy, their ability to scale up to support millions of

IoT devices and their data has not been validated.
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Ensuring the scalability of privacy-preservation solutions for millions of IoT devices is

a significant problem. The solution proposed in this section couples watermarking with

contextualisation to protect the privacy of a virtually unlimited number of IoT data points.

As noted earlier, there are clear parallels between the disclosure technique proposed in

this thesis and access control, and there has been a considerable volume of research on

developing both access and disclosure control methods.

The most common access control mechanisms are Discretionary Access Control (DAC),

Lattice-Based Access Control (LBAC), and Role-Based Access Control (RBAC) [75]. DAC

is discretionary in the sense that the owner of the requested resource controls the access to

that resource. Each access request is checked against the specified authorisations. If there

exists an authorisation stating that the user can access the resource in a specific mode

(read or write), access is granted, otherwise it is denied. LBAC enforces unidirectional

information flow via a predefined lattice of security labels that are associated with every

resource and user in the system. RBAC determines the access level via the role abstraction,

rather than simply by the identity or clearance of the requester. In this model, a role is a

semantic construct, which is often a representation of a job in an organisation.

In an IoT setting where both data and access control policies can change rapidly, the

above access models cannot deal with such frequent changes. To deal with such changes,

another trend in research enriches access polices with contextual information. For instance,

several extensions to the basic RBAC model have been proposed to incorporate context

variables such as the Generalised Role-based Access Control (GRBAC) model [76]. GRBAC

introduces environmental information such as temperature or location to activate roles

based on the value of conditions in the environment where the request was made. A similar

context-aware RBAC model has been proposed for health-care applications [77], where

the contextual information invokes the relevant access policies for a specific role. A major

deficiency of these approaches is that data access is either granted or denied.

In order to provide flexibility for situations where different data granularities are needed,

disclosure control methods are advantageous. Existing disclosure control techniques are

divided into identity and data disclosure control. Identity-based disclosure techniques, such
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as k-anonymity and l-diversity or pseudonymity, attempt to detach or replace identifiers

from data, whereas the latter techniques protect the data itself. In this section, we discuss

only data disclosure control techniques. A comprehensive review of identity disclosure

control techniques was conducted by Aggarwal and Philip [78].

Common techniques for data disclosure control include generalisation and suppression,

data swapping and noise addition. Data generalisation attempts to prevent data linkages

for the privacy preservation of published datasets. An example would be replacing an exact

date of birth with only the year. Suppression techniques can be viewed as the ultimate

form of generalisation since no information is released. Unfortunately, these techniques

cause information loss and, also, are not appropriate for real-time applications because of

the complexity of the required calculations.

The watermarking aspect of the technique we propose in Section 5.1 is similar to a

noise addition technique, as digital watermarking techniques are used to obfuscate sensitive

data. In contrast to noise addition techniques, this technique is reversible which enables

tuning of the obfuscation parameters based on the access privilege of the users.

Achieving multi-granular disclosure requires the use of obfuscation techniques. Data

obfuscation, in this case, involves generalising or degrading sensitive data to establish the

desired level of granularity for disclosure. Existing obfuscation techniques include data

randomisation, data anonymisation, random sampling, or data swapping [5]. For instance,

Mivule [79] investigated techniques for adding noise to sensitive data, including additive

noise, multiplicative noise, logarithmic multiplicative noise and differential privacy, with

respect to the statistical preservation of a published dataset. Preserving privacy in an IoT

setting only at the time of data dissemination may not be effective and the whole data

life-cycle needs to be considered to ensure end-to-end data privacy.

2.3.1 Existing Techniques for Protecting Privacy-sensitive Data in

Internet of Things

In this section we will describe existing techniques for protecting privacy-sensitive data in

IoT.
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• Key Agreement Protocols

To secure communication in the IoT, it is important to encrypt the data sent between

sensor nodes, gateways and other devices due to the public nature of the internet.

Keys for encryption must be agreed upon by communicating nodes [80]. Due to

resource constraints, key agreement in IoT is non-trivial. Many key agreement

schemes used in general networks, such as Kerberos [81] and RSA [82], may not be

suitable for the IoT because it usually has no trusted infrastructure. Pre-distribution

of secret keys to all pairs of nodes is not viable due to the large amount of memory

used when the network size is large. To overcome this problem, a random key

pre-distribution scheme [83] has been proposed, where each sensor node receives a

random subset of keys from a large key pool before deployment. Any two nodes can

find a common key within their subsets and use it to secure their communication.

Without requiring any key pre-distribution, data sensed within the IoT has been

used to establish the common secret key. For example, in [84], two sensors, in a BSN,

used the common electrocardiogram signals of a patient to establish a secret key.

Roman et. al [85], Du et.al. [86] and Camtepe et. al. [87] analysed the applicability

of several link-layer oriented Key Management System (KMS), which establish keys

for sensor nodes within the same WSN using techniques such as linear algebra,

combinatorics and algebraic geometry. However, the authors mention that not all

mathematical-based KMS protocols can fulfil the IoT context. According to their

analysis result, only [86] and [88] might be suitable for some IoT scenarios.

• Identity Protection Protocols Hu et.al [89] proposed an identity-based system that,

protects the location information of IoT devices during emergency situations. In this

approach, each user communicates with others using Virtual Identity (VID), which

does not contain any real information about the user. Under this architecture, users’

privacy can be protected well because they only send VID(s) to communicate, and

VID is anonymous and unlinkable to users. The location information will finally be

sent to the user making a request only after verification of their identity. In the
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IoT, verifying the identities of “things” is crucial to preventing unauthorised access

to users’ private data, and granting access to legitimate users only. Liu et.al. [90]

propose an authentication protocol for IoT systems. Under the proposed protocol,

“things” and objects are end nodes, and each node has a unique global address for

connecting over the internet. To establish a session key, both secret-key Secret Key

Cryptosystem (SKC) and Public Key Cryptography (PKC) have been considered for

IoT environments, but they all suffer several problems. For example, SKC requires

large amount of memory to store key chains and PKC suffers from high energy

consumption. Kalra et.al. [80] proposed an Elliptic Curve Cryptography (ECC)

based key establishment method suitable for IoT environments. Their analysis

indicates that the proposed protocol can prevent eavesdropping, man-in-the middle

attacks, key control attacks, and replay attacks.

• Attribute-Based Encryption Schemes As a large amount of sensed data is stored in

sensor nodes or databases, it is important to control access to it. Attribute Based

Encryption (ABE) [91] was used to control access to sensor data in [92], [93]. In

traditional public-key cryptography, a message is encrypted for a specific receiver

using the receiver’s public-key. Identity Based Encryption (IBE) [94] changed the

traditional understanding of public-key encryption by allowing the public-key to be

an arbitrary string, e.g., the email address of the receiver. ABE goes one step further

and defines the identity not atomic but as a set of attributes, e.g., roles, and messages

can be encrypted with respect to subsets of attributes (key-policy ABE - KP-ABE) or

policies defined over a set of attributes (ciphertext-policy ABE - CP-ABE). The key

issue is, that someone should only be able to decrypt a ciphertext if the person holds

a key for “matching attributes”. User keys are issued by a trusted party. In CP-ABE,

a user’s private-key is associated with a set of attributes and a ciphertext specifies

an access policy over a defined universe of attributes within the system. A user will

be able to decrypt a ciphertext, if and only if their attributes satisfy the policy of

the respective ciphertext. Policies may be defined over attributes using conjunctions,

disjunctions. For instance, let us assume that the universe of attributes is defined

32



to be {A=General, B=Nurse, C=Doctor, and D=Specialist} and User 1 receives a

key to attributes {A,B} while User 2 to attribute {D}. If a ciphertext is encrypted

with respect to the policy (A ∧ C) ∨D, then User 2 will be able to decrypt, while

User 1 will not be able to decrypt. In KP-ABE, an access policy is encoded into the

users secret key, e.g., (A ∧ C) ∨D, and a ciphertext is computed with respect to a

set of attributes, e.g., {A,B}. In this example the user would not be able to decrypt

the ciphertext but would for instance be able to decrypt a ciphertext with respect to

{A,C}. Based on KP-ABE, Fine-grained Distributed Access Control (FDAC) was

proposed for IoT in [92]. FDAC is resistant against user collusion, i.e., cooperation

by colluding users will not lead to the disclosure of additional sensor data. Based on

CP-ABE, another fine-grained access control scheme for IoT was proposed in [93]

which allows AND-based policies only.

• k-Anonymity Techniques IoT data are valuable for knowledge discovery. Given that

the IoT is regarded as the next generation worldwide network that connects every

necessary object to facilitate our daily lives, privacy is a major concern and challenge.

Current solutions to this problem include the [95] use k-anonymity techniques to

anonymise sensor data before releasing it for analysis. The concept of k-anonymity

was first formulated by Latanya Sweeney in [96] as an attempt to solve the following

problem: “Given person-specific field-structured data, produce a release of the data

with scientific guarantees that the individuals who are the subjects of the data cannot

be re-identified while the data remain practically useful.” A release of data is said

to have the k-anonymity property if the information for each person contained in

the release cannot be distinguished from at least k-1 individuals whose information

also appears in the release. For example, if k = 5 and the potentially identifying

variables are age and gender, then a k-anonymised data set has at least five records

for each combination of age and gender. The most common implementations of

k-anonymity use transformation techniques such as generalisation, global recoding,

and suppression.
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CHAPTER 3
Contextualisation

Contextualisation is defined as the process of filtering, aggregating, and inferring IoT data

by using relevant information to the applications using the data. Contextualisation of IoT

scale data requires techniques that can process large volumes of heterogeneous data arriving

at very high velocity. Due to the increasing number of devices in the IoT, scalability is an

important challenge to be overcome. Therefore, contextualisation of IoT data should be

scalable in such a way that the IoT data input velocity, scale, and variety can be handled

by the available computing resources. The contextualisation techniques proposed in this

thesis are designed and developed for generic, scalable IoT ecosystems with consideration

that the data will be used by multiple applications in real-time.

3.1 Internet of Things Data Contextualisation

In this section we present the main aspect of contextualisation that we used to provide

our solution and also help deal with the challenges identified in Chapter 2. In particular,

in Section 3.1.1 we provide working definitions for IoT contextualisation, while Section

3.1.2 presents contextual operations. A conceptual architecture for contextualisation is

presented in Section 3.1.3.
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3.1.1 Definitions

In this section we define the main components of the contextualisation approach we propose

in this thesis:

• Triples: A triple is a statement describing a data item in the form of the fol-

lowing three parts: < Subject, Predicate,Object >. Subject is the identifier of

the entity that the data is describing/is an attribute of. Object is the descrip-

tion of the Subject in terms of the relation described in Predicate. For example,

< RMITUniversity, hasEmail, info@rmit.edu.au >, describes that RMIT Uni-

versity (Subject) has an email address (Predicate) which is “info@rmit.edu.au”

(Object).

• RDF Triples: An RDF triple is a formal triple in such a way that the Subject can

be a blank-node or Internationalised Resource Identifier (IRI) [97]. The Predicates

are only IRI and the Object can be IRI, literals or blank-nodes. A blank-node in an

RDF is a node that does not contain any data, but groups data as a parent node

[Figure 3.1].

Figure 3.1: Blank Node

• Context : Context represented as triples, where the Subject is a specific application,

Predicates describe the relevancy of the entity with the information and the Object

is the information. For example, the context (triple): <App1, RestaurantType,

vegetarian> represents that App1 is interested in vegetarian restaurants. Subse-

quently, context is defined as any combinations of the Predicates and Objects that

is relevant to a given application.

• Contextualised IoT Data: Contextualised data for a particular application is a subset
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of RDF triples that is filtered, aggregated and inferred according to the context

relevant to the given application.

• Context ID (CID): CID is a label assigned to each particular context to uniquely

identify it. In this thesis, a unique prime number is exclusively assigned to each

context triple (i.e., to each combination of a particular predicate and a particular

object).

• Contextual Preference: Contextual preference is a set of contexts that are relevant to

a given application as defined by the application itself or by the user of it.

• Application Context ID (ACI): ACI is a label that represents all the contextual

preferences of a given application. ACI may not be unique for each particular

application and can dynamically change based on the changing contextual preference

of each application. In this thesis, the ACI number computed and assigned to each

application by multiplying the CIDs is relevant (i.e., in the conceptual preference) to

that particular application. For example, assuming that App1 is an application that

has two contexts as:

< App1, Location,Melbourne >,CID = 7

and

< App1, RestaurantType, V egetarian >,CID = 29

the ACI number of these two contexts will be 203, i.e., the multiplication of 7 and

29. The ACI numbers identify:

1. The contexts of a given application

2. Applications with similar contextual preferences

For any application A with an ACI number n:

n =

w(n)∏
i=1

pi (3.1)
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where w(n) identifies the number of contexts relevant to application A, and each

distinct prime factor pi of n is one of the CIDs relevant to that Subject. For example,

in order to derive contexts of an application with ACI = 77, by prime factorisation

of 77 we will obtain 7 and 11 as relevant CIDs. If the ACI number for an application

is a prime number, it indicates that the Subject has only one context.

• Contextual Query : Contextual Query is a query that considers CIDs or ACIs as a

part of the query.

3.1.2 Contextual Operations

Contextualisation is often dynamic and is always achieved by performing operations on

IoT data based on the contexts that are relevant to each application. In this thesis, we

propose three main classes of contextual operations, namely: filter, aggregate, and infer.

The filter operation applies to IoT data input and its output is a subset of the input

IoT data that satisfies a contextualisation condition. This condition specifies which IoT

data has contextual relevancy with one or more applications. Filtering does not modify

the data. It only determines if the data should be considered in queries issued by the

application.

The aggregate operation receives several IoT data inputs and mathematically or statisti-

cally processes them to compute the IoT data output. For example, in a room with multiple

temperature sensors, an aggregate operation can calculate the average as an approximation

of the room’s temperature. Aggregation in contextualisation is any mathematical operation

that can combine two or more input triples into a single output triple.

The infer operation is used to deduce new knowledge from the input IoT data and

output it as data. For example, if RMIT University is in Melbourne and Melbourne is in

Australia, infer can deduce that RMIT University is in Australia The contextual filtering,

aggregation, and inference operations and their scalability properties are defined in more

detail next.

• Contextual Filter : Processing IoT data generated by potentially millions of sensors

37



may not be possible due to the limited scalability of available computing resources.

The contextual filtering operation labels triples in such a way that only triples relevant

to at least one application will be considered. Contextual filtering converts triples

to quads by adding the CID to the output triples. In this way, any triples that are

not contextually relevant to any particular application can be excluded from the

contextual queries. A contextual filter can use any labels as long as are uniquely

defined and, as noted earlier, here we will use prime numbers for labelling. The CID

calculated for triples indicates:

– Triples that satisfy the contextual preferences of one or more applications, and

– Triples that identically satisfy the same contextual preferences.

• Contextual Aggregation: This operation aggregates two or more context triples based

on the similarity of applications context references. For example, considering the

following triples:

< App3, Location,Melbourne, 7 >

< App3, Symptom, “Headache”, 3 >

< App3, Symptom, “Pain”, 5 >

< App2, Symptom, “Headache”, 3 >

< App2, Symptom, “Pain”, 5 >

< App1, Food, “V egetarian”, 2 >

In this set of triples there is no particular application interested in “Headache”

or “Pain” individually. However, if there are applications that are interested in

both “Headache” and “Pain” simultaneously additional triples with blank-nodes are

generated [Figure 3.1] with the new CIDs as follows:

< App3, Location,Melbourne, 7 >

< App2, Aggregated, : b, 11 >
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< App3, Aggregated, : b, 11 >

<: b, Symptom, “Pain”, 3 >

<: b, Symptom, “Headache”, 5 >

< App1, Food, “V egetarian”, 2 >

Next, the CIDs of the triples that satisfy all the aggregated contexts are updated

with the appropriate blank-node.

• Contextual Inference: Inference is the process of deducing new knowledge. Contextual

inference takes contexts as input to deduce new knowledge. For example, suppose

that application App1 has ACI number 210 and application App2 has ACI number

30. It can be inferred that all the contextual data relevant to App2 are also relevant

to App1. Furthermore, by dividing 210 by 30 and conducting prime factorisation of

the result it can be inferred that all the data relevant to App1 can be relevant to

App2 if CID = 7 becomes a new contextual preference for App2.

3.1.3 Architecture (Contextualisation-as-a-Service)

Figure 3.2, presents the proposed ConTaaS architecture. Contextualisation using the

depicted ConTaaS Architecture is performed in a sequence of steps. In step I, the raw data

from IoT devices are annotated using semantic representations such as the SSN ontology

[15]. Please note that such semantic annotations can be compliant with any other semantic

data annotation framework, e.g., SensorML [98].

Semantically annotated IoT data is then converted to RDF triples and may be stored

for further processing. Step II involves: 1) The application context that is specified and

represented in the system as the domain context (this may also include user context such

as user preferences), and 2) the contextual filter, aggregate, and infer operations described

in Section 3.1.2. In Step III, the output of Step II (which is the contextualised data) will

be presented to the IoT applications.
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Figure 3.2: Cloud Solution Design of the ConTaaS.

The architecture proposed is general-purpose and can be used to realise IoT contextu-

alisation in any domain. However, in this thesis we only give examples from the health

and transportation domains.

To provide a specific ConTaaS example from the health domain consider the outbreak of

the Ebola virus that occurred in March 2014 in Western Africa. This was an international

public health emergency that according to the World Health Organisation resulted in more

than 4500 deaths. To stop viral transmission via physical contact in such a public health

emergency, it is vital to do the following as soon as possible:

1. Diagnose the virus as soon as possible. The most common symptoms of the Ebola

virus are fever, fatigue, loss of appetite, vomiting, diarrhoea and headache [99].

2. Isolate patients by limiting contact with other people.

3. Start infection control and treatment.

Speeding up diagnosis by identifying persons with all or most of these symptoms and

determining whether they travelled in a high-risk area during a specific time period can
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be lifesaving. More specifically, to deal with Ebola, medical authorities must solve the

following problems:

• Check all residents and travellers to determine whether they had been in Africa

during the first few months of 2014 and whether they have Ebola symptoms.

• Determine whether those identified in (1) had any physical contact with anybody

known to be infected.

• Transfer those identified in (2) to a hospital.

Just like Ebola, the World Health Organisation has also identified Zika as an interna-

tional public health emergency. Zika is mainly transferred through the bites of infected

Aedes mosquitoes and causes symptoms such as fever, conjunctivitis, joint pain and skin

rash. Zika was originally considered to be a mild virus [100]. However, recent scientific

research shows that Zika virus can cause microcephaly in the unborn babies of mothers

who are infected by the virus during their pregnancy. The first step in mitigating Zika

is similar to that for Ebola, as it is important to know if anyone visited Brazil or other

high-Zika-risk areas at the same time they manifested Zika symptoms. However, as Zika

is a mild virus and does not have any particular treatment, the only advice for infected

people is to rest and avoid pregnancy until the virus disappears completely from the body,

which takes approximately six months.

With current advances in mobile smartphone and wearable technology, it is now

feasible to collect the data that are needed to mitigate such infectious diseases in people.

Furthermore, records of the symptoms exhibited by individuals can also be obtained from

hospitals, medical checks and wearable devices such as smartwatches. Such data streams

collected from citizens are potentially massive and medical authorities need to frequently

repeat their analyses of such evolving datasets. Managing and analysing such datasets

requires sophisticated computing resources. ConTaaS has the potential to solve such

problems by reducing the complexity of the data analysis query and extracting valuable

knowledge from such data in near real-time. To illustrate these capabilities, we introduce
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two data analysis applications for Ebola and Zika, namely, namely EbolaApp, and ZikaApp.

EbolaApp processes context triples that are described as follows:

< EbolaApp, Location,Australia >

< EbolaApp, Symptom,′ fever′ >

< EbolaApp, Symptom,′ fatigue′ >

< EbolaApp, Symptom,′ lossofappetite′ >

< EbolaApp, Symptom,′ vomiting′ >

< EbolaApp, Symptom,′ diarrhoea′ >

< EbolaApp, Symptom,′ headache′ >

< EbolaApp, V isited,Africa >

Examples of ZikaApp context triples include:

< ZikaApp, Location,Australia >

< ZikaApp, Symptom,′ fever′ >

< ZikaApp, Symptom,′ conjunctivitis′ >

< ZikaApp, Symptom,′ jointpain′ >

< ZikaApp, Symptom,′ skinrash′ >

< ZikaApp, V isited,Brazil >

Table 3.1 shows sample data records from five persons. The CIDs of the data records in

Figure 3.3 have been assigned by the contextual filter. The person named Ava does not have

any CIDs. Lack of any CIDs indicates that this person is not relevant to either EbolaApp

and ZikaApp. The next step of contextualisation involves contextual aggregation and

generates the aggregated CIDs shown in Figure 3.4. The lack of an aggregated CID for

42



Table 3.1: Example symptoms of people screened by EbolaApp and ZikaApp (top) and
corresponding CIDs (bottom).

Name Symptom Visited Location

John fever, fatigue, loss of appetite , diarrhoea Africa, Sweden Australia
Sophia diarrhoea, vomiting, headache France Germany
Ava sore throat, cough Germany Canada
Jacob conjunctivitis, skin rash, fever, joint pain, headache Brazil, Italy Australia
Emily conjunctivitis , joint pain, skin rash, fever Brazil, Australia Japan

Name CID Aggregate CIDs

John 13,7,5,37,31,11 13, 11
Sophia 37, 2, 17
Ava
Jacob 19, 3, 29, 13, 23, 17, 11 47,13,11
Emily 19, 23, 29, 3, 13 47,13

Sophia determines that she does not need to be considered further as she is not relevant to

EbolaApp or ZikaApp.

Figure 3.3: Context IDs.

Finally, the ACI numbers for these apps are calculated as EbolaApp = 5863 and

ZikaApp = 6721. The ACI numbers for the remaining persons are computed (i.e., John =

143, Jacob = 6721 and Emily = 611), and based on this, ConTaaS can determine that
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Figure 3.4: Aggregated context IDs.

Jacob is the only person that satisfies the ZikaApp context and no one satisfies the

EbolaApp context. Contextual Inference can determine that Emily is at risk of Zika

infection. However, her current location is not Australia. Subsequently, a list of triples

with ACI = 611 can be used within Australia’s borders to detect high-risk passengers.
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CHAPTER 4
Contextualisation for Scalable

Data Processing in the Internet of

Things

In Chapter 3 we defined contextualisation as a process of identifying data relevant to an

entity based on the entity’s contextual information. For example, in a smart city setting,

an entity may be a driver, a passenger, a vehicle, an area of the city or the entire city; while

in a smart farming setting, entities may be crops, farmers and farms. In this chapter, we

show that contextualisation drastically reduces the time and resources required to process

(e.g., analyse) IoT data, provides unprecedented scalability and reduces the response time

required to distil valuable information from massive amounts of IoT data (in the rest of

this thesis, we use the term IoT scale data to refer to data generated by millions of IoT

sensors).

In particular, contextualisation-based scalability of IoT scale data is achieved by the

IoT contextual filter, aggregate and infer operations introduced in Section 3.1.2. These

operations output drastically fewer data than what was input by eliminating IoT data

from entities that are irrelevant to the IoT application at hand.
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This chapter mainly focuses on IoT applications that can be represented as OODA

loops [2]. Such IoT applications consist of the following four phases: Observation involves

collecting IoT data; Orientation includes contextualising such IoT data to reduce the

dataset to a subset that is relevant to the aims of the application; Decision pertains to

making appropriate decisions; and Action consists of an actuation that is based on the

decisions made [Figure 4.1]. Each OODA phase may be comprised of an additional OODA

loop, so OODA-based IoT applications can be nested. Given that there is no shortage of

IoT applications that can be modelled as OODA loops (a few examples include finding

parking in a smart city, deciding what crop to plant in a farm, monitoring and improving

productivity in a manufacturing plant, preventing refuelling and driving away without

paying, deciding what to display on an advertising board based on the past purchases of

those in close proximity, and detecting environmental pollution and raising alerts), we

believe that focusing on OODA-based IoT applications does not limit the importance of

our contribution. Therefore, in this chapter, we focus on how contextualisation can be

applied to an OODA-based IoT application (we use a smart city application as a case

study) and the show the scalability benefits of contextualisation by benchmarking and

comparing data analyses made with and without contextualisation.

We selected smart cities as a case study for illustrating contextualisation benefits

because they include millions of sensors. However, existing solutions for capturing data

from all these sensors, analysing them and providing recommendations in near real-time

are currently unavailable. Furthermore, IoT sensors and data sources are added every day,

while others are replaced or taken offline. This IoT environment volatility makes the IoT

data processing problem harder.

Contextualisation in our smart city case study includes the following steps: (1) con-

sideration of multiple contexts originating from drivers, vehicles and the smart city, (2)

continuously computing relevant contexts, and (3) providing an instant response to common

parking queries. Contextualisation-based scalability is achieved by finding shared contexts

among multiple users and processing them only once to efficiently answer all user queries.

A greater number of users and queries typically results in more scalability.
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As noted earlier, contextualisation can achieve similar scalability benefits in any OODA-

based application. This will involve contextualisation and benchmarking processes that are

similar to those described for the smart city case study presented in the following section.

Chapter 5 illustrates the benefits of contextualisation in maintaining privacy and security.

This chapter also include IoT application studies that are not OODA-based and illustrate

the generality of contextualisation and its outcomes.

Figure 4.1: The observation, orientation, decision, and action loop.

4.1 Development of a Scalable Parking Recommender

There are many existing parking recommendation solutions that direct drivers to empty

parking spaces. Some even provide an estimated average waiting time. Unlike existing

solutions, which only consider parking information (e.g., available parking spaces and their

locations), the contextualisation approach we propose in this chapter takes into account

each driver’s context, which may include their preferences (e.g., covered parking), driving

experience (e.g., avoid narrow parking spaces), their car’s location (e.g., collected from the

driver’s smartphone), the vehicle’s properties (e.g., type, length, height, etc.), and other

parking properties (e.g., shaded, covered, etc.). The principal challenge in delivering such

contextualised services lies in the ability to contextualise IoT scale data (based on available

contextual information) and to do this efficiently and in near real-time.
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Parking is becoming an expensive resource in any major city and finding the most

appropriate parking space is always regarded as a challenge. Existing solutions (Section

4.4) follow the following approaches to make parking recommendations:

• Use IoT data from parking facilities (e.g., from their parking sensors).

• Utilise vehicle-provided data (e.g., from onboard accelerometers) to compute empty

parking spots based on each vehicle’s kinetic state (i.e., moving, stopped, etc.) and

location (such information is typically crowd-sourced [101]).

• Employing machine learning models to predict queue lengths for parking in shopping

centres.

Most of these approaches do not scale up to process more context(s) in real-time. Unlike

such existing approaches, the solution proposed in this thesis provides the following:

• Allows IoT services to take into consideration multiple contexts originating from

each driver, their car and a smart city section of interest (e.g., parking in a shopping

centre),

• Permits instant responses to common parking queries by continuously contextualising,

and

• Combines the contexts of multiple drivers to efficiently answer parking queries.

The architecture of the smart parking recommendation application that incorporates

the proposed contextualisation and processing of IoT data is illustrated in Figure 4.2. The

data will be collected from parking sensors as well as drivers. The collected data will be

stored in a database. Then, the contextualisation server will contextualise the data and

store it in the contextualised data database. Car ontology will be used to describe the

specifications of the cars (e.g., size). The smart parking recommender exemplifies the need

to contextualise IoT data and the advantages it provides.

Contextualisation of IoT data involves the following:
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Figure 4.2: Architecture of the smart parking recommender.

1. Context Collection (and deduction): User context information collected from user’s

smart-phones, wearable devices, or manually provided by the user. Moreover, cloud

services can help to deduce new context information from the collected context. For

example, a service equipped with car ontology and related data can deduce the user’s

car size by knowing the car manufacturer and model.

2. IoT Contextualisation: The contextualisation of IoT data in this chapter is based

on two main operations including contextual filter and contextual aggregation that

were introduced in Section 3.1.2. Contextual filter filters the data originating from

IoT devices and services based on any given context. For example, data received

from a parking sensor located in a particular location (e.g., a parking space in a

Melbourne suburb) can be excluded from further data processing and related queries

whenever there is no particular user looking for parking in that particular location.

Contextual Aggregation combines potentially filtered data based on contextual

similarities and relevance. For example, if all the current users searching for parking

spots in Melbourne have SUV vehicles we can then aggregate the SUV and Melbourne

contexts and treat it as a new context.
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3. Delivery of the contextualised data.

To develop the smart parking recommender we utilised ConTaaS described in Section

3.2. To perform a Contextual Filter operation (Section 3.1.2), a set of available contexts

from drivers in each particular city area is initially created. Next, a unique context identifier

(a prime number in this thesis) is assigned to each context. Finally, all available parking

spots in the selected city area are searched, and the resulting triples are converted from

N-triples to N-quads by adding the unique context identifier to the N-triples. If the triple

is already N-quad (indicating that the triple is already contextualised for other contexts),

the context identifier is updated by multiplying the prime number of the context identifier

with the number the triple already has. For instance, if a secure parking space Parking1

has a context with identifier 11, the triple of Parking1 is converted as follows:

< Parking1, hasType, closed > to < Parking1, hasType, closed, 11 >

Similarly, if Parking2 already has another context with identifier 7, its triple is converted

as follows:

< Parking1, hasType, closed, 7 > to < Parking1, hasType, closed, 77 >

After performing the contextual filter operation, all of the triples that remain in the form

of N-triples are not relevant and can be eliminated from further processing. To perform

contextual aggregation, multiple contexts are merged and a new prime number is assigned.

For example, if in one particular location all the drivers are searching for parking spots

with one context followed by another (e.g., large size and secure), then these two contexts

are aggregable.

The above contextualisation system was implemented in the Java programming language.

It uses Apache Jena [102] for the semantic triple store and the ARQ Query Engine [103]

for SPARQL to query the contextualised data. For evaluation, the system was deployed

on an Amazon EC2 [7] “M3 General Purpose” instance with 30 GB ram and 8 ‘vCPU’.
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4.2 Evaluation Dataset for the Scalable Parking

Recommender

Consider 50,000 users (i.e., drivers) searching for parking spots in the Central Business

District (CBD) and surrounding suburbs [Figure 4.3] that are provided by the City of

Melbourne 1 [Figure 4.4]. To evaluate the scalable parking recommender outlined in Section

4.1, we use this dataset and augment it with a synthetic dataset of parking sizes and

descriptions.

Figure 4.3: Melbourne central business district and surrounding suburbs.

The information considered in the dataset is as following:

• Driver information

– Licence type (Full = experienced, Green P = drivers with one year experience,

Red P = beginners).

– Car Model Specification (e.g., BMW X5 2015)

– Preferences (e.g., secure car park, car park with shade, etc.)

1http://data.melbourne.vic.gov.au
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• Parking information

– Location (suburbs)

– Type (closed, open-air)

– Space (number of available spots)

– Acceptable car body types (SUV, hatch, sedan, etc.)

– Weather conditions (sunny, rainy, snowy, etc.)

Figure 4.4: Parking spots dataset.

4.3 Performance and Scalability Evaluation of the Scalable

Parking Recommender

The objective of this evaluation is to validate the following hypothesis: Contextualisation

helps process driver queries faster and can handle IoT scale IoT datasets. Since we keep
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track of shared contexts among multiple users, each individual query is independent (please

note that this is different from typical query caching mechanisms). For instance, a user

may share their contextual preference (e.g., shaded parking spots) with a second user while

another contextual preference (e.g., acceptable car type) is shared with a third user.

Figure 4.5: Percentage of shared contexts according to the number of users.

Figure 4.5 presents the percentages of shared contexts among 85 random users. As in

many real-world situations, the shared context (and related context data) among users

increases rapidly as the number of users increases. This result also illustrates the fact that

the number of shared contexts among users of IoT services (as illustrated in the smart

parking recommender), is typically much larger than the number of unique contexts.

Figure 4.6 shows the the percentage of active users’ contexts relevant to the parking

data at any given moment. For example, with 85 driver contexts in the system and 3368

parking data triples, the total number of users whose contexts match the parking data

triples (e.g., finding enclosed parking in Melbourne CBD) is 27.5%.

In Figure 4.7, the total query processing times with and without the contextualisation
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Figure 4.6: Percentage of the relevant data according to the number of users.

process are presented. Please note that as the similarity among the context preferences

of drivers increases (as in Figure 4.5), contextualisation can greatly help by significantly

reducing the total query processing time. This is due to the fact that the proposed

contextualisation solution has already resolved the queries of users with similar contexts.

Hence, to satisfy a request from a new user whose contexts match those of existing users

in the system, contextualisation simply maps the responses of existing user queries by

matching the relevant contexts to the new requests.

Finally, in Figure 6, the total time for the contextualisation process is presented, which

includes converting driver and location (smart city) information to relevant N-Quads and

resolving driver queries. As the result indicates, after 10,000 users, the process does not

continue to improve significantly due to the fact that the shared contexts are the major

contexts of all the users. This result validates the hypothesis, i.e., that contextualisation

performs much better when the amount of data is of the IoT scale.
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Figure 4.7: Query Time Comparison

4.4 Parking Recommenders in the Literature

In [104, 105], the authors describe the infrastructure currently embedded in smart cities

that allows the development of smart parking solutions. Parking is considered a major

problem in developing and developed cities. With the advent of technologies such as

the IoT, cloud computing, and Big Data analytics tools, there have been a number of

recent works focusing on smart parking management approaches. Most of these approaches

focus on the following two dimensions for estimating parking availability: (1) Development

of new IoT devices for different parking situations (e.g. garages, shopping centres, etc.)

[106, 107, 108, 109, 110, 111], and (2) developing algorithms and methodologies in particular

machine learning and queuing theory approaches [112, 113, 114, 115, 116, 117, 118].

In [107], the authors propose a Vehicular Ad-hoc Network (VANET) based smart

parking scheme using vehicular communications through road-based infrastructure (road

side units). It provides real-time parking navigation in large spaces and ensures user
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Figure 4.8: Contextualisation processing time according to number of users.

privacy. In [113, 110], the authors described a smartphone-based crowd-sensing approach

providing parking place recommendations. They built statistical models of sensor data

obtained from smart-phones to detect events such as arrival and departure from a parking

spot (e.g., using accelerometer data). In [108], the authors proposed a parking estimation

system using Arduino-based ultrasound sensors. In [111], the authors made use of existing

IoT infrastructure deployed in parking spaces to provide a cloud-based parking space

finder service. The focus of this work was on the middleware required to deliver the

parking recommendation service. Similarly, in [106] the authors presented an architecture

for parking management in smart cities. This system makes use of custom-developed

IoT hardware, in particular, retractable bollards, magnetic loops to detect occupancy,

Radio-Frequency Identification (RFID) readers, and ZigBee-based wireless transceivers.

In [118], the authors proposed a vision sensor (camera)-based approach for estimating

and recommending empty parking spots. In [109], the authors proposed a technique to

predict parking space availability. Their approach was to identify the key features that
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best describe parking availability and to use various machine learning algorithms such as

regression trees and support vector regression to determine the strength and accuracy of

these algorithms. In [114], the authors used anomaly detection and clustering to detect

interesting patterns, such as the distribution of heavily-used parking spots, and to compare

pricing versus security. In [117], the authors employ mixed-integer linear programming

to solve the same problem. Their solution reduces the overall time required to find a

parking spot. The solution proposed in [116] uses an online demand management model to

provide parking spot recommendations to electric vehicles, while [115] proposed the use of

contextual information from users and smart parking infrastructure to make more precise

recommendations. This work concisely describes how context is represented and used.

Most of the above solutions focus on using IoT data to provide recommendations, with

either very little or no consideration of context information obtainable from drivers or the

smart city. Moreover, most of these approaches are tailor-made to work for closed garages

or specific shopping malls. There is no consistent way of representing parking and driver

data and all current approaches use different architectures. On the contrary, the proposed

approach provides a unified solution for representing IoT data obtained from devices such

as sensors, cars, wearables and smartphones, and also to efficiently query all such data.
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CHAPTER 5
Contextualisation for Scalable

Security and Privacy in Internet

of Things

In Chapter 4, we described how the contextualisation of IoT data can improve the scalability

of IoT applications. Moreover, we showed that contextualisation can also provide better

security and privacy in the IoT. More specifically, Section 5.1 and Section 5.2, describe

how contextualisation also improves the scalability of the security and access control in

IoT via contextual access control and granular disclosure control.

5.1 Contextualisation-based Scalable Access Control for

the Internet of Things

In this section, we introduce a novel obfuscation technique for IoT data that uses a

combination of lightweight digital watermarking and scalable contextualisation [Chapter

3]. Digital watermarking is the practice of embedding extra information within digital

content itself, which is also called host data, in a matter that does not interfere with the

normal usage of host data [119]. Such techniques have been mainly used for the digital

58



rights management of multimedia content. The watermarking technique proposed in this

section affects the sensitive data more or less depending on the disclosure privileges of the

data requester. In particular, the proposed watermarking technique provides more effective

obfuscation for the most sensitive data by increasing the intensity of the watermark. In

the literature, little research, if any, has been conducted for perturbing sensitive IoT data

using digital watermarking. In contrast to many other data obfuscation techniques, such

as those described in [120] and [121], the proposed obfuscation technique is reversible

only by authenticated users with the appropriate disclosure privilege(s). Since there is no

information loss, in the proposed approach, data can be freely modified and retrieved by

repeatedly having the right obfuscating parameters. In this regard, the technique presented

in this section is reminiscent of role-based access control in which only users with matching

roles can access the target data [120].

Embedding watermarks introduces a tuneable distortion in the target data. This

enables masking any data for any application where privacy is of great importance.

Figure 5.1: Conceptual architecture of the contextualisation-based scalable access control
for the IoT.

The main innovation in the proposed IoT data obfuscation technique is in combining

watermarking with a variation of our highly scalable contextualisation technique (i.e.,

ConTaaS; Chapter 3). As discussed in Section 3.1.3, ConTaaS excludes irrelevant data

from consideration and reduces the volume of IoT data that needs to be managed and
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analysed by IoT applications. This contextualisation-driven data reduction approach also

improves the scalability and performance of security and privacy-preservation mechanisms

implemented in the IoT. Moreover, it reduces the amount of computation (often referred

to as reasoning) required to understand and measure the corresponding privilege level for

accessing each specific data point.

5.1.1 Contextualised Role-based Data Disclosure Control

This section describes a novel IoT security service that utilises watermarking to provide

confidentiality, controlled disclosure, authentication, and authorisation. More specifically,

Section 5.1.1.1 describes control of IoT data disclosure, Section 5.1.1.2 presents a nested,

role-based, disclosure model, Section 5.1.1.3 describes the conceptual architecture, Section

5.1.1.4 presents the data model, Section 5.1.1.6 describes the Watermarking as a Service

model, Section 5.1.1.7 describes the obfuscation technique, and Section 5.1.1.8 presents the

delivery of the obfuscated data utilised for role-based disclosure control.

5.1.1.1 Controlling IoT Data Disclosure

For contextual role-based disclosure, context is any information that can describe or

impact the disclosure privilege of the IoT data for the relevant roles. In this Section we

propose an IoT security service that provides aspects of confidentiality, controlled disclosure,

authentication, and authorisation. Implementation of this service involves using cloud

computing infrastructure and service-oriented computing principles to enable usage by

anybody. In this section, the focus is only on a contextualised authentication and data

disclosure control for IoT data. However, the proposed service is also capable of performing

other IoT security services.

5.1.1.2 Role-based Disclosure Privilege Model

To explain the IoT security service, consider a nested role-based model of security privileges

[Figure 5.2], where the lowest privilege is granted to individuals located in the inner-most

region and the highest privilege is granted to individuals in the outer-most region. This
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means that an individual in a particular region will also have all the privileges of users

in regions contained within it. The number of privilege regions (PR) is denoted by d,

where d is the number of predefined roles in the system. Moreover, each PR has a unique

identifier assigned to it, denoted as rid. Therefore, a user with ridk has all the disclosure

privileges granted to all other users within regions rid1 to ridk−1. Please note that the

region identifiers are only known to the security service. These notations and others used

to describe role-base disclosure are listed in Table 5.1.

Figure 5.2: Role-based privilege model for the health-care scenario.

To grant access to data, the proposed IoT security service exploits knowledge of the

existing roles of authenticating users (who interact with the service by issuing queries).

Therefore, every user belongs to a specific PR and the security service verifies this mem-

bership via a key that is assigned to every user. If the user’s key is valid, the associated

region Identification (ID), i.e., rid, is retrieved to de-obfuscate the query result later.

To further explain the proposed role-based model, the following notation is used: Every

region rk is associated with a pair (keyk, ridk), where keyk is the secret key for all users

belonging to that region and rid is as defined above. Secret keys and the corresponding

region identifiers are generated by taking advantage of a known ensemble construction, such

as Kasami. More specifically, the binding key to a region is a PN code and the associated
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Table 5.1: Notation used to describe role-base disclosure.

Symbol Meaning

d Number of disclosure privilege regions

rk k − th region index (1 ≤ k ≤ d )

ridk k − th region identifier

keyk Binding key for region ridk

skeyi Session key for user i

Ξ An ensemble of Pseudo Noise (PN) sequences with desired correlation properties

l Length of the PN sequence/code

σ Composite template key

rindexo Region index attached to data object O

ui i-th user/data-requestor

Hash Hash functions, example SHA-1 or MD5

hk,1, hk,2 first half and the second half of the calculated hash for the region rk

αk Scale factor (watermark amolitude) corresponding to region rk

puKeyDS Public key of the data delivery service
prKeyDS Private key of the data delivery service

rid is the spatial shift value that can be used to generate other orthogonal PN codes as

described in Section 5.1.1.5. Next, these notations are used to describe in detail how these

values are generated and how the security service can retrieve the associated rids without

having access to the individual keys (i.e., the PN codes).

5.1.1.3 Conceptual Architecture for Role-based Disclosure

IoT data are typically captured from various internet-connected devices such as smartphones,

wearable devices and sensors. Such data is often not protected. Applying traditional

security techniques such as encryption is not feasible due to the resource limitations of

IoT devices. In this section, the aim is to protect IoT device data with a lightweight and

scalable technique by using contextualisation and watermarking. Data disclosure control is

achieved by a role-based privilege model, as described earlier.

Figure. 5.1 illustrates the conceptual architecture of the proposed novel role-based data

disclosure control. The primary components of this architecture are the contextualisation,

(IoT) security, and data delivery services. ConTaaS (introduced in Section 3.2) is used to

contextually filter and contextually aggregate triples based on the their relevancy to the

available roles. The contextualisation service deduces the associated access privileges (which
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are represented by the label rinedxO as described in Section 5.1.1.7) for each individual

data point based on the privilege ontology 1 and the policies defined by a security manager.

The security service is comprised of disclosure privilege, data obfuscation and watermarking

functions and is responsible for providing defined policies to the contextualisation service,

watermarking data, and providing role-based authentication using watermarks. Finally,

the data delivery service is provides privacy-preserving delivery of the query results to the

users. This conceptual architecture will be explained via an example presented in Section

5.1.2.

5.1.1.4 Modelling and Querying Data for Role-based Disclosure

Data modelling and querying are based on existing semantic web standards, such as RDF

and SPARQL. More specifically RDF-based N -triples [122] are utilised to describe IoT

data in the form of < Subject, Predicate,Object >. Subject is the identifier of the entity

that the data is describing; Object is the description of the Subject in terms of the relation

described in Predicate. For example, a triple such as < Patient1, hasHeartrate, 85 >

indicates that Patient1 heart rate was 80 betas per minute. Data queries are formulated

using SPARQL.

5.1.1.5 Digital Watermarking

Digital watermarking is currently used in the multimedia domain to provide copyright

protection [119]. The watermark constitutes a piece of secret information which is blended

within the digital content in such a way that it is invisible to the consumer. Recently,

digital watermarking is also has been used for authenticate non-media data, such as time-

series, biological sequences, graphs, spatial, spatio-temporal, and streaming data [123]. In

such applications, watermark invisibility to human perception is no longer ensured, but

interference with such data is detectable. Given that the IoT typically generates IoT data

streams, digital watermarking in the IoT focuses on streaming IoT device data.

1Ontology is a formal way of describing taxonomies and defining the structure of knowledge. The
privilege ontology is a knowledge repository describing the relationship between the privacy-sensitivity and
the roles of data.
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Figure 5.3: Main components of a spread spectrum digital watermarking system.

Spread Spectrum (SS) is a popular approach for the digital watermarking of IoT data.

A watermark is constructed as a random sequence that is imperceptibly inserted in a

spread-spectrum-like fashion into the IoT data values. Such sequences are often near-

orthogonal codes of +1 and -1 symbols (i.e., streams of +1 and -1), and can be decoded

through correlation between code pairs [Section 5.1.1.6]. The data security provided by

the SS watermarking technique is highly dependent on the spreading sequences. Using

truly random sequences is ideal so that no one other than the encoder can predict the

watermark. Unfortunately, appropriate hardware for generating such codes is not generally

available [124]. Besides, the decoder must generate the same random code to retrieve the

watermarked IoT data, which is impossible as they are totally random. Instead, a PN

sequence [Section 5.1.1.6] is used to resemble the random behaviour.

Randomness is an ensemble property and cannot be achieved in a single sequence [125].

To encode an ensemble of PN codes in the same data stream (either one data stream or an

aggregated data stream such as a moving average [126]]), two other properties are needed:

high auto-correlation of a PN code and low cross-correlation between any two PN codes

in the same code family or set. Auto-correlation refers to the degree of correspondence

between a code and a phase-shifted replica of itself. Cross-correlation is defined the degrees

of agreement and disagreement between two codes.

An ensemble of periodic PN sequences with low off-peak auto-correlation and cross-

correlation can be generated using maximal length sequences or m-sequences [125].
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Table 5.2: Comparison of PN family sets.

Type Length (l) Maximum correlation bound Family size Normalised linear complexity

Gold 2n − 1 2(n+1)/2 − 1 or 2(n+2)/2 − 1 l + 2
2n

2n−1
∼= 0

Small-Kasami 22n − 1
√
l

√
l

1.5n
22n−1

∼= 0

Large Kasami 24n+2 − 1 2
√
l l ×

√
l

2n
22n−1

∼= 0

For example, in [127], an ensemble of l PN codes are shifted versions of a primitive

m-sequence. Nearly n bits can be encoded through the phase, i.e., the number of spatial

shifts (with a cyclic wrap-around), of a l = 2n − 1. To increase the number of possible

PN codes, more primitive PN codes with low cross-correlation can be used. Two of the

known ensembles of such are Gold and Kasami [126]. Gold is a set of 2n + 1 sequences of

length l = 2n − 1, (n 6= 4) whose cross-correlation is three valued. For n odd, the values

are optimal and bounded by 2(n+1)/2 − 1. Kasami codes of length l = 2n − 1 only exist for

even values of n. There are two classes of Kasami sequences, namely small sets, and large

sets. The small sets has better correlation properties compared to the gold and large sets.

The summary of the described PN codes is listed in Table 5.2. Linear complexity in this

table refers to the security level of PN codes in terms of unauthorised detection.

5.1.1.6 Watermark as a Service

Watermark generation and exchange are delivered ‘as a service’ to users in order to satisfy

disclosure privilege requirements. This requires a trusted third party that only knows the

summation of all shifted keys associated with all defined roles and maintains the rid of the

data requester. In contrast, the contextualisation service is not trusted and therefore, only

the obfuscated versions of data are stored in its database [Section 5.1.1.7].

Suppose there is an ensemble of PN sequences of length l (with low off-peak auto-

correlation and cross-correlation), denoted as Ξ = PN1, PN2, ..., PN|Ξ| . Examples of such

ensembles are the gold and Kasami sets. From this set, a unique sequence PNj(1 ≤ j ≤ |Ξ|)

is chosen as the key for all users in region rk . On the server side, the received key is used
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to retrieve the associated ridk. Please note that this number is an integer value for shifting

the chosen PNj and should be less than the PN length i.e. ridk < l; otherwise, the shifted

PN codes will not be unique (because of cyclic wrap-around). This value must be retrieved

before granting data access to the user.

Apart from the PN codes which are identical for all users in the same region, every user

obtains a session key that makes the de-obfuscation process dependent on their unique

credentials and therefore enhances the security of the proposed technique. This session key

is generated by security service and is exchanged using a secure exchange protocol such as

Secure Sockets Layer (SSL)/Transport Layer Security (TLS). The session key for user i is

denoted as skeyi.

The process for retrieving region IDs (rids) is equivalent to the de-spreading of the

secret PN code (keys). This is done by a correlation operation between the template PN

sequence and the received PN code from the user. The underlying principle behind the

decoding process is based on the observation that if in a cross-correlation between an

embedded PN sequence and a template, the two differ only by a shift, then the correlation

peak will be shifted by that amount. More detailed information about the decoding process

can be found in [126].

The template sequence, σ is a composite PN sequence obtained from the summation

of several shifted versions of the original PN codes that are assigned to different regions,

i.e. σ =
∑d

i=1 shift(PNi, ridi) , where shift() represent a spatial shift with cyclic wrap

around. Then, the periodic correlation is expressed as ρ(τ) =
∑l−1

j=1 σ(j)PNi(j + τ). If

PNi is the correct key, the correlation values (ρ) reveal a significant peak at the position

corresponding to ridi. This value is passed to the data delivery service to de-obfuscate the

data prior to sending it back to the user. If the key is not valid, then the retrieved rid will

be incorrect which means the original information cannot be retrieved successfully.

The above disclosure control has three main advantages:

• First, the PN codes can be generated on the fly in the most compact Linear Feedback

Shift Registers using Field-Programmable Gate Array (FPGA) which is a lightweight

and cost-effective approach.

66



• Second, storing one composite key instead of individual keys eases the key management

burden at the server end and makes the proposed scheme more scalable compared to

storing different keys for different users. This additionally increases the security of

the proposed scheme if the security service is compromised.

• Third, session keys are used to afford the ability to have a fine-grained disclosure

privilege for authenticated users.

5.1.1.7 Data Obfuscation

Before we explain the obfuscation process, recall that after contextualisation, a hierarchy

of data is constructed for all required privileges. This is based on set of privilege policies

provided by an administrator, such as “The ECG data can only be accessed by doctors”, or

“The blood pressure data can be accessed by nurses and doctors”. Based on these policies

and the role-based privilege model, the contextualisation service attaches a related tag to

the IoT data, i.e., for every data object O, the region index rindexO is attached.

If the IoT data storage is located outside the trust enclave, the original data values are

modified using an Obfuscation Function (OF), This is done in a way that only authenticated

users with the right privileges can de-obfuscate the data and retrieve their original values.

In the literature, there are many OFs for this purpose. As discussed in Section 2.3, random

noise addition generated from a probabilistic distribution (such as Laplacian) can be used

for OF. However, the use of truly random numbers makes the de-obfuscation process

non-reversible. If highly sensitive data is involved (e.g., medical data), a reversible OF is

desired. In this case, a deterministic OF by means of digital watermarking techniques can

be used to provide a reversible obfuscation transformation.

If an additive watermarking approach is utilised for this the obfuscated data is simply

constructed by adding a scaled watermark to the data. Following the notations, the

watermarked data is obtained as Ow = O + scale(w). Traditionally, scale() updates the

amplitude of the watermark w to make it imperceptible from the host data. If better

obfuscation is desired, watermarks with larger scale values are embedded.
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Our data obfuscation solution adds two more amendments to the above watermark

encoding scheme to make the obfuscation technique dependent on the users’ privileges.

First, the embedded watermark is a keyed hashed value of the retrieved rid with the

composite key σ. This makes the data obfuscation dependent on the security service and

prevents calculation of the hash if an adversary intercepts the rid. Second, the watermark

amplitude is tuned in such a way that for data with higher sensitivity, the scale factor is

larger. The rationale for the latter is that more sensitive data require stronger privacy

preservation than data that can be accessed with the lower disclosure privilege. Since the

proposed de-obfuscation technique is reversible, it can add a large amplitude of watermark

to the original data and, subsequently, subtract the added value to retrieve the original

data. Again, these values should be selected a priori, based on the desired privilege policies.

In summary, the obfuscated or watermarked data object is generated as Ow = O +

αk × decimal(Hash(ridk, σ)), where αk is the associated scale factor for the region rk and

decimal() returns the decimal hash value. Once a query is issued, the security service

retrieves the parameters for that user and passes it to the data delivery service to de-

obfuscate the data. However, one issue remains. For IoT data that can be accessed from

multiple regions, the data delivery server cannot distinguish the obfuscating parameters.

Consequently, invalid values will be reported.

A solution to this problem involves changing the watermark value and maintaining an

extra table (such as Table 5.3) in the security service. This achieves the following: The

hash value, Hash(ridk, σ) is split in half, say hk,1 and hk,2. The data is then obfuscated

by the scaled version of the first half i.e., Ow = O + αk × decimal(hk,1), while the second

half hk,2 replaces the original region index indexO that is used to find out the disclosure

privilege of that data. Therefore, the obfuscated data can be represented by the quadruplet

< S,P,Ow, hk,2 >. This means that for data de-obfuscation, the associated values including

rid, α, h1, and h2 must be stored.
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Table 5.3: Obfuscation Parameter Table

region roles region id scaling first half second half
index of hash of hash

1 role 1 rid1 α1 h1,1 h1,2

2 role 2 rid2 α1 h1,1 h1,2

. . . . . .

k-1 role k-1 ridk−1 αk−1 hk−1,1 hk−1,2

k role k ridk αk hk,1 hk,2

k+1 role k+1 ridk+1 αk+1 hk+1,1 hk+1,2

. . . . . .

. . . . . .

d role d ridd αd hd,1 hd,2

Figure 5.4: Sequence diagram of data delivery

5.1.1.8 Data Delivery

The data delivery service includes a query server that de-obfuscates the data based on

the parameters received from the security service. The data delivery service re-obfuscates

the data using the session key before sending the result to the user. From a technical

standpoint, this not only limits data disclosure at rest, but also while it is being transmitted

to the data requester.

Consider a user ui belonging to the region rk. The entire process is described step-by-
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step as follows:

1. Users ui sends their query for data object O (i.e., < S,P, ?O >), along with its secret

(PN code) to the security service,

2. If the key is correct, the security service retrieves the associated ridk and creates a

session key, say skeyi, and sends back a copy of the session key to the user. Also

another copy of the session key is created using the public key of the data delivery

service (i.e., enc(skeyi, puKeyDS), where enc() is an encryption function) and is sent

along with the query to the Data Delivery Service,

3. The data delivery service sends the corresponding rindexO for the requested Object

O to the security service, which is effectively hk,2.

4. The security service searches the obfuscation parameter table for the equivalent

hash value and retrieves the corresponding hj,1, αj values. These values are again

encrypted with the public key of the data delivery service and sent to the data

delivery service,

5. The data delivery service consequently decrypts the received information using its

private key prKeyDS to extract the scaling factor and the watermark and subtracts

the multiplication of the two values from the obfuscated data,

6. The data delivery service re-obfuscates the data using the session key before sending

it to the user. For this purpose, the hash value of the session key is calculated and

its decimal value is added to the original data,

7. Finally, user ui de-obfuscates the data by subtracting the hash value of the session

key and obtains the original data.

The aforementioned steps are illustrated in Figure. 5.4.
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5.1.2 Use Case

Wireless sensor networks and cloud computing are currently utilised in IoT applications to

deliver smart health care services to citizens [128]. These services require access to sensitive

patient data. However, protecting privacy is challenging due to the limited processing

capabilities of the IoT devices utilised and the enormous amount of data that needs to be

collected and analysed.

The scenario we describe in the next paragraph is an extension of the scenario described

in Chapter 3. Consider again the outbreak of an epidemic disease such as Ebola. In order

to control the disease, it is necessary to check and monitor the symptoms of all citizens

continuously and as quickly as possible. Consider now that in addition to the medical staff

who monitor citizens for symptoms, IoT devices (e.g., smart watches, smart phones) are

also used to collect symptom data. To provide privacy in such an environment, consider

now the four roles that are defined with different access privileges as shown in Figure. 5.2.

The contextual filter will exclude irrelevant data for all queries involving symptoms. For

example, if there is no contextual preference for heart rate, people with heart rate-related

symptoms will be filtered out and will not be considered. Next, contextual aggregation

will generate aggregated nodes as described in [129]; for example, for all queries that are

interested in heart rates greater than a particular value and are also interested in blood

pressures less than a particular value.

Figure 5.5: Query response times over time.

71



5.1.2.1 Evaluation Test-bed and Dataset

To evaluate the scalability of the proposed watermarking solution we developed a test-bed.

The test-bed was developed on an Amazon EC2, “M4 General Purpose” instance, with

32 GB Random-Access Memory (RAM) and an 8 ‘vCentral Processing Unit (CPU)’. In

the evaluation we utilised an synthesised RDF dataset consisting of IoT data such as the

blood pressure, heart rate, and location of 500 users recorded every 10 minutes for 15 days.

Data relating to the patients’ insurance and citizenship were assumed to be entered into

the dataset by medical or administration staff.

5.1.3 Evaluation

Figure. 5.5 shows the results of a performance evaluation conducted using 15 days worth

of data collected from patients. The collected data were stored in the form of triplets

represented on the horizontal axis of the graph. Some 7200 samples were collected on the

first day. Performance of contextual filtering took 66 ms, while contextual aggregation took

only 11 ms. Similarly, watermark insertion took 1996 ms, watermarking combined with

contextual filtering took 80 ms, and watermarking combined with contextual aggregation

took only 18 ms. This experiment clearly reveals just how lightweight the proposed

watermarking technique is, as well as the effectiveness of the contextualisation technique

and the superiority of their combination (taking only 284 ms to process 1,152,000 data

points).

From a security standpoint, the proposed method suffers from two potential issues.

First, the usage of an ensemble of PN sequences as authentication keys resolves the problem

of generating keys for computationally-limited IoT devices, but it opens up the possibility

of a brute force attack for guessing the secret rid values. Here, Small Kasami is used which

provides 22n − 1 possible values for region IDs - a relatively small pool of values. However,

this problem can be solved by using a more secure PN codes with a larger set size, such as

Moreno-Tirkel sequences [130], without changing the proposed technique.

The second issue is related to the watermark amplitudes for data obfuscation process,

i.e., the α values. Here, a constant value is used to amplify the embedded watermark,
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which makes the proposed scheme vulnerable to a Wiener attack in which an attacker can

remove the watermark by using statistical estimation. In order to combat this type of

attack, the power spectrum of watermark must resembles that of the data (referred to as

the power-spectrum condition [131]). This feature can be easily added to the proposed

model during the contextualisation process and makes the proposed watermarks robust

against this type of attack.

5.2 Contextualisation-based Scalable Privacy Preservation

for the Internet of Things

In Section 5.1, we proposed a novel solution for contextualisation-based scalable access

control. IoT data obfuscation can also be used for privacy preservation and several solutions

that use an obfuscation function to reduce the granularity of information currently exist

(such as data generalisation and suppression, data masking and perturbation techniques

such as random noise addition and data swapping) currently exist. These methods are

useful for privacy preservation of a published dataset where the data is distilled based on

the trust level of the data consumer, preferably in an irreversible manner to maximise

data protection [5]. Applying these obfuscation techniques for IoT data is more difficult

and requires an understanding of the privacy requirements of such collected data for the

following reasons:

First, in IoT the environments, data is collected from highly distributed resources. This

distributed nature of the IoT increases the possibilities for privacy breaches compared to a

traditional data store model where the data is stored before it is used or transferred to a

third party [132]. In the IoT, even the strongest privacy preservation method may not be

effective at the time of data storage. Therefore, it is imperative to protect the privacy of

IoT data during IoT data streaming and data collection. The essence of a comprehensive

solution to protect the privacy of IoT data through the whole data life-cycle was also

addressed recently by Bertino [133].

Second, the management and protection of large volumes of data generated by IoT
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devices is a very complex task [132]. The generated data might be used by many different

applications for different purposes; even unknown applications and/or without data owner

consent. Hence, the data owners need to personally control the disclosure privileges of

their data. Traditional authorisation models provide only two options to data owners:

granting or denying access. However, having additional disclosure flexibility in addition to

granting/denying access may be more appropriate in certain situations. For instance, a

taxi driver may be willing to reveal their precise whereabouts to their taxi company (e.g.,

for logistics and to satisfy company policy). In contrast, the same taxi driver may prefer to

send only their cloaked location (e.g., street name) to potential customers (e.g., for safety

reasons). Furthermore, the data owners may not only need to be able to control whom to

share data with, but also how much data to share.

Third, the above granular disclosure approach is not possible unless the data owners are

provided with sufficient flexibility to specify situations in which they grant/deny access to

their data. For example, the taxi driver from the previous example might restrict the taxi

company’s access to their exact whereabouts while on a break. Similarly, a patient might

allow a doctor to access their health record only during an examination. Therefore, with

the aid of some extra information such as location and time (for the taxi example) and

physical co-location (for the healthcare scenario), granular data disclosure can be achieved.

In the IoT literature, such information is called context and is often used to make more

flexible and intelligent decisions.

The aim of this section is to propose a conceptual framework for privacy preservation of

IoT data using contextual information to achieve flexible privacy. The general idea behind

this research is depicted in Figure 5.6. Assume O is a privacy conscious object that could

be either a person (such as a driver or a patient) or a resource (such as a sensor, RFID,

etc). The object O has four sensitive data items that are shown here as different shapes

(a square, circle, triangle, and pentagon). Depending on the contextual information, the

goal is to deliver varying granularity to the data requester. Granularity, in this context,

refers to the precision of the data which is access-, application-, user- or usage-dependent.

This is distinct from precision itself, which is an absolute measure. For this purpose, an
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Figure 5.6: Multi-stage privacy protection scheme, where colour intensity represents noise
granularity.

obfuscation function is used that returns an obfuscated version of O, i.e., of : O → O
′

depending on the desired granularity level gl. Also, in order to protect the privacy of

sensitive data, multiple privacy preservation functions f are applied to the data before

data dissemination. One could consider these as sample and spatial-temporal precision

variation, respectively. In Section 5.2.1.1, the requirements for these functions are looked

at in detail.

Central to the proposed design is the notion of flexible privacy – the data owner should

not only be able to control data access but also the accuracy of the data made accessible

(to whom, how much). This control can be achieved based on the contextual information of

either the data owner (such as location, time, and emergency situations) or data consumer

(such as their role, physical co-location, or time of access). As information becomes more

contextual, the disclosure granularity that can be achieved becomes finer. Apart from
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that, in the suggested framework, the privacy protection is advocated at multiple phases

of the data life-cycle to afford maximum data protection (which is different from data

transmission security schemes). Previous data obfuscation methods are inferior to the

proposed method for IoT settings where dynamic obfuscation is required (i.e., where the

context information and contextual preferences change rapidly), but data should always

be protected at multiple stages before its actual delivery. In this section, we propose

a novel, lightweight, multi-tier privacy scheme suitable for tight-resource-constraint IoT

environments, which makes the following contributions:

• A conceptual framework for privacy preservation of IoT data through the whole

life-cycle, emphasising end-to-end protection;

• A context-aware granular obfuscation technique for spatial-temporal data; and

• A smart vehicle use case that implements and evaluates this conceptual framework

and technique.

5.2.1 Multi-stage Privacy Preservation Framework

In this section, the conceptual privacy preservation framework is described as having two

main parts: multi-stage privacy protection and dynamic obfuscation. These are further

discussed in the rest of this thesis using the notation provided in Table 5.4.

5.2.1.1 Multi-stage Privacy Protection

To explain multi-privacy protection, recall that in the IoT environment, we aim to protect

IoT data before storage and dissemination. In Section 5.2 we defined O as a privacy seeking

object with k sensitive data items. To achieve privacy preservation of O, we enrich such

sensitive data with a set of pseudo-sensitive context (i.e., a context where the privacy of

the contextual information does not need to be preserved but the disclosure of sensitive

data is affected). To explain this, consider a smart vehicle that periodically reports its

vehicle ID and GPS coordinates. Suppose that it also provides some contextual information

that includes the current local time and its speed. The vehicle ID and GPS coordinates
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Table 5.4: Notation used in the multi-stage privacy preservation framework.

Symbol Meaning

f Privacy preservation function

of Obfuscation function

k Number of privacy preservation functions

d Number of granularity level

gl Granularity level for disclosure control

Capp, Cdata Application context and data context

CSapp, CSdata Application context set and data context set for a given query

n ,m Sizes of CSapp and CSdata

cidapp, ciddata Atomic Context Identifier of Applications and Data exists in disclosure rules

CIDapp, CIDdata Compound Context Identifier of Application and Data for a given query

TrMO Trajectory of a moving object

< pi, ti > Position coordinates of the form (xi, yi) with time stamp ti

(αx, αy) Scale factor or watermark amplitude for (xi, yi)

DLFSR Dynamic Linear Feedback Shift Register

(l1, iv1, poly1) Number of registers, initial value, and polynomial of the primary LFSR in the DLFSR generator

(l2, iv2, poly2) Number of registers, initial value, and polynomial of the secondary LFSR in the DLFSR generator

π Secure permutation function

Hash Hash functions, for example SHA-1 or MD5

l, b Hash output size and buffer length, respectively

are sensitive IoT data, whereas the contextual information (local time and vehicle speed)

can always be revealed. Next, consider a case where the driver of the vehicle shares its

exact GPS coordinates during the day but not at night. Even though time is not sensitive

information here, it is used to determine the disclosure of sensitive data.

Table 5.4 defines k as the number of privacy preservation functions that protect the

privacy of k sensitive data items. Each of these privacy preservation functions is denoted by

fi and protects the privacy of the corresponding sensitive data di. For our vehicle example,

k was 2 (vehicle ID, and GPS coordinates) and therefore two functions are needed. The

main requirements for such functions include:

• Must guarantee the privacy of the protected data,

• Must be reversible, in a sense that the original data can be recreated from obfuscated

data during run time access, and

• Must be lightweight enough to meet IoT device constraints
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The first requirement necessitates the existence of some trapdoor information held

by a legitimate entity, such as a private key, or seed value. The second requirement

ensures reversible privacy which is actually needed to achieve the dynamic obfuscation goal.

Therefore, techniques such as generalisation and suppression or Gaussian random noise

additions are not acceptable as they transform data into another form in an irreversible

manner. Finally, any functions f relying on heavyweight cryptographic mechanisms such

as homomorphic encryption [134] to obtain privacy guarantees are too demanding for IoT

devices with tight resource constraints.

Please also note that the privacy preservation functions can be applied at different

stages of the data life-cycle based on the security requirements. For example, in Figure

5.6, f1 occurs at the collection point, while f2 and f3 are applied at data dissemination

stages. Ideally, a successful security solution should provide end-to-end data protection,

i.e., from data acquisition to the final destination. However, the real-time processing

and computational capacity constraints of IoT devices make the end-to-end protection an

ambitious goal. Therefore, a trade-off must be made to provide sufficient security in IoT.

Some existing work, e.g., [133], recommends privacy protection at data collection and data

dissemination stages.

Based on the stage at which the privacy function is applied, one can decide about the

security aspect of the function. For instance, if function f resides on sensors (data collection

stage), it should have low computational complexity. In contrast, if the protection is

applied by a powerful computer at the storage stage, a more complex function is acceptable.

Apart from stage considerations, the ‘3V’ features of big data, namely, volume, variety and

velocity, should be accommodated in the design of privacy functions. For instance, if the

variety of sensitive data is low (such as vehicle ID), an RSA with a 256-bit key length can

be used for such data. In cases where multiple sensitive data must be protected, even an

encryption method with a relatively small key and cipher-text will decrease the efficiency

of any IoT application (in terms of query response time).

For the rest of this chapter, the terms data and context are used to mean only the

sensitive data and pseudo-sensitive context respectively, unless otherwise specified.
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5.2.1.2 Dynamic Obfuscation

In the proposed multi-stage privacy preservation framework, an obfuscation method is

used that offers coarser or finer granularity disclosure based on the contextual information

considered in each query. The rationale behind this solution is that data that is obfuscated

at stages earlier than the dissemination stage may require a static disclosure control model,

which may not be suitable for IoT environments where a wide range of applications uses

the data. Even when considering a single application, the disclosure granularity might

be different for different users based on their contextual information, such as their role,

location or time.

Before describing the proposed dynamic obfuscation method it is necessary to distinguish

between two types of context: IoT data and IoT application context.

Definition 1: The IoT Data Context (Cdata) refers to the context associated with the

collected data (such as time and speed for the smart vehicle example). The IoT Application

Context (Capp) includes the contextual information in which the queries are issued, such

as the role of the data requester (e.g., physician, nurse, police, etc.) or physical co-location

(e.g., of a physician with a patient).2

The Cdata and Capp information have direct impact on data obfuscation. To this end,

an obfuscation function of is introduced, with the goal to provide a varying degree content

information (i.e., granularity) to the application (data consumer) based on both Cdata and

Capp values. In other words, of(d) is a version of the original data with a less information

precision depending on the allowed disclosure rules. This necessitates the existence of

disclosure rules to determine the level of data obfuscation, which will be explained later.

Following is the description of the challenges in achieving dynamic obfuscation in an IoT

setting.

2Remember the term Context is used instead of Pseudo-sensitive context. This type of context is
privacy-relevant information that affects the disclosure granularities of the data.
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5.2.2 IoT Data Challenge

The question that arises here is whether flexible privacy can be accommodated with respect

to IoT data characteristics?

Example 1. Assume Alice wants to find the current location of Bob. Some of the

following disclosure policies may apply

• If Alice is a paramedic currently located in Melbourne, and Bob has an incident in

Melbourne, the precise location of Bob is shared with Alice.

• If Alice is an employee of the Melbourne branch of 13CABS (Taxi Company), and

Bob has a trip to Footscray suburb overnight, he only shares his street name with

Alice.

• If Alice is an employee for VicRoads (roads authority), and Bob is driving in Heidelberg

Road, Chandler Highway, or Malvern Road (streets of Melbourne) during weekdays,

he shares his suburb name with Alice only during her working hours.

Given policies such as the above, it is clear that searching every data and application

context (Cdata, Capp) for every request is prohibitively expensive.

In the above scenario, one data requester (e.g., Alice) and one thing (e.g., Bob’s GPS

device) are considered. In IoT, millions of things are connected to the internet, and will

generate big data at unprecedented scale. In such an IoT ecosystem, only a subset of

things are typically queried by any application at the same time. Furthermore, contextual

information, such as time and location, can be frequently updated and therefore the

response latency can be extremely high.

To address the above two issues and making the proposed obfuscation scheme scalable,

two aspects are considered in the design of our framework. First, making privacy flexible

via policies, or so called disclosure rules, to dramatically reduce the need to search all

individual contexts. In other words, once a query is issued and the existing rules are

scanned to find a match, if a match is found, the data is obfuscated based on the stated

granular rules; otherwise, the data is not revealed at all. This way the complexity is relative

80



to the number of existing rules, not the number of all possible combination of multiple

contexts (i.e both Cdataand Capp). Second, a rule indexing model is proposed to further

speed up finding the corresponding rules. This model is based on prime factorisation to

scales up the framework described in Chapter 3.

5.2.3 Disclosure Rules

In the proposed framework, a disclosure rule has two main parts in the form of conditions→

gl. The conditions are the contextual information, possibly for both the data and the

application. The gl is the disclosure granularity, the value of which depends on the

characteristic of data. For instance, for GPS coordinates, location precision can be

expressed in terms of logical locations such as the building name, street name, suburb

name, city, etc. Also, one may decide to control discourse in terms of data precision by

considering metrics such as metres, kilometres, feet, or other units [135], or apply precision

rules to other numeric data, such as date/time, age, height, etc. This framework does not

put any limitation for expressing gl values. d is considered as possible granularity levels

gl1, gl2, ..., gld for a particular data.

Additionally, a consensus on defining the disclosure rules is needed. Generally, regular

expressions can facilitate rule representations to support even complex rules. There are

also more specific options such as Platform for privacy preferences [136] or Semantic

Web Rule Language (SWRL) [137] that can be used. In this section, SWRL is used to

express disclosure rules, but other languages can be used interchangeably. For instance,

the first rule of Example 1 can be expressed using SWRL as: (paramedic(?requester)

∧ hasCurrentLocation(?requester, ?Melbourne) ∧ hasIncident(”Bob”) → shareLocation

(?maximumPrecison).

These rules need to be defined by security managers or whoever is in charge of preserving

privacy of things (in association with people). Once the disclosure rules are defined, the

next step is indexing those rules as explained below.
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5.2.4 Rule Indexing Model

At this step, for every context that is present in the existing disclosure rules, an identifier

is assigned which is the next available prime number. The identifiers for application

contexts and data contexts are shown with cidapp and ciddata, respectively. For the first

rule of Example 1, if we assume Bob’s vehicle ID is ’car1234’, then we will have <

Alice,Role, Paramedic >, cid1
app = 5 and < Alice, Location,Melbourne >, cid2

app = 11

and for the data identifiers, we have < car1234, Location,Melbourne >, cid1
data = 7 and

< car1234, incident, yes >, cid1
data = 11. It is important to note that cidapp is not unique

for each particular application and can dynamically change based on the applications and

their changing contextual preferences. The same is true for the data context identifiers.

These assigned identifiers are then stored in two separate tables, namely ACI and Data

Context Identifier (DCI) tables.

The next step is rule indexing, the idea of which is borrowed from [129, 138]. First, the

atomic and compound context identifiers are defined as follows.

Definition 2: An atomic context identifier is a prime number that is assigned to every

present context in the disclosure rules. A Compound Context identifier is constructed by

multiplying several context identifiers. In fact, the described cidapp and ciddata are atomic.

If we form cidapp1 × cidapp2 = 5× 11 for example 1, the 55 is a called a compound context

identifier. This type of context is denoted by capital letters, i.e. CIDapp and CIDdata.

The rule indexing method essentially translates a disclosure rule into two compound

identifiers. In other words, the rule indexes are calculated from atomic identifiers to

compound identifiers, then compound IDs for data and application are associated with

each other according to the rules. For instance, the first rule of Example 1 will be mapped

to (CIDapp = 55, CIDdata = 77, gl = full). These rules are stored in a table which is

referred to as a Mapped Rule Index (MRI) table. Once a query is issued, the corresponding

context identifiers are found and multiplied together and then searched through the MRI

table. This way, the rules can be stored in a more compact way and the query efficiency

will therefore be improved.

Next, the main components of the proposed architecture are reviewed.
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5.2.4.1 Security Service

In the proposed framework, the dynamic obfuscation is done by a Security Service that

follows the principles of the Security-as-a-Service model [139]. However, the goal is to

achieve content security as opposed to transport security to govern disclosure control. For

a convincing explanation, several tasks of this service have decoupled into three main

components of Application Context Engine (ACE), Data Context Engine, and Disclosure

Decision Point. However, this does not mean there are three different components; in fact,

they are all part of one entity, i.e., the security service.

Application Context Engine

The main task of the ACE is finding contextual information of the incoming data request.

Upon receiving a query, ACE first authenticates the data requester. If the authentication

is successful, then the next step is forming the context set, i.e., CSapp and CSdata. The

ACE delegates the formation of the latter set to the Data Context Engine (DCE) and is

itself responsible for forming the CSapp.

At this step, it can be assumed that the contextual information for the application is

either stated in the query (in case the framework utilises contextual queries [Chapter 3], or

the ACE extracts them. For instance, the provided credential could reveal the role of the

data requester or the IP address can be used to find the location of the requester. Apart

from that, some of the contextual information such as time might need to be translated to

other high level context (such as “working hours” or “night”) and therefore the application

context engine should interpret this context.

Data Context Engine

DCE has two main tasks: forming the context set for the queried data, i.e., (CSdata), and

obfuscating the data before its dissemination to the data requester.

For both tasks, the DCE might need to decode some of the information (either context

or data) using the relevant privacy preservation function. A prior example was the use

of the multi-stage privacy protection that is achieved by applying k different functions to
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protect sensitive information. For instance, if a physician wants to have access to heartbeat

data of patients who have a family history with cardiovascular disease, this information

might be stored in the patient’s health-record that is already encrypted (say by function

f1). Therefore, the DCE needs to reverse the transformation process prior to retrieving

contextual information. Additionally, once the granularity rule for the data requester is

found, the data itself might be protected in a database, if it has been defined as sensitive

data (say by function f2 for heartbeat data). Therefore, the data is first decoded and then

obfuscated prior to its dissemination to the destination; this is emphasised on the low

complexity and reversible privacy requirements of function f .

Disclosure Decision Point

Disclosure Decision Point (DDP) is where the tables ACI, DCI, and MRI have been stored.

Once the CSapp and CSdata are obtained from the application and data context engine,

the DDP translates each individual context to the prime identifier using table ACI for

application context and DCI for data context. Then, the compound identifiers CIDapp

and CIDdata are calculated by multiplying the relevant identifiers. Finally, the MRI table

is scanned for a match. If a match is found, the corresponding granularity level (gl) is

given to the data context Engine that obfuscates the data accordingly, and is then sent

back to the data requester. Otherwise, the access disclosure is denied.

5.2.5 Case Study: Smart Vehicles

In this section, the proposed framework is customised for a smart city scenario. Smart cities

rely on advanced technologies, such as the IoT, networking, data analytics, recommendations

and decision support to deliver a better quality of life to citizens [129, 140]. The main

building blocks of a smart city are smart healthcare, smart vehicles, smart grids, and so

on. Although a general-purpose framework is proposed, for this case study we focus on

smart vehicle deployment. Such connected vehicles are already on the market and it is

estimated that by 2020, 75% of all cars shipped will be built with internet-connection

hardware [141], which obviously raises privacy issues. The reason why smart vehicles were
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Figure 5.7: An overview of a smart vehicle system.

chosen as a focal point is that the types of data they generate include spatio-temporal

streams that are changing frequently (i.e., trajectory data) and, therefore, context-aware

privacy preservation can become a difficult task.

5.2.5.1 System Overview

The proposed smart vehicle system is shown in Figure 5.7. At the bottom of this figure,

there are smart vehicles that, with the aid of sensors and RFIDs, periodically transmit

their data to cloud storage. Five main services/applications are considered in the system:

paramedics, road safety, a parking locator, a fuel station locator and a diagnostic health

service. The paramedic service is an emergency service that is available to smart vehicles

in the case of accidents. The road safety service provides traffic information such as road

congestion, recommended paths and driving offences. The parking locator and fuel station

locator are essentially location-based services for finding available parking spaces and

nearby fuel stations, respectively. Finally, the diagnostic health service gathers information
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about people who might be in the presence of contagious diseases. In Section 5.2.5.3, these

services are related to trajectory data.

5.2.5.2 Data Model

A smart vehicle is a moving object that is equipped with one or more sensors. In the pro-

posed data model, streaming trajectories obtained by these sensors are treated as sensitive

information that need to be protected. For a moving object MO, a trajectory data stream is

presented TrMO as a sequence of pairs TrMO = {< p1, t1 >,< p2, t2 >, ..., < pnow, tnow >},

where position pi is a Cartesian point coordinates shown as xi and yi with ordered times-

tamps ti. The (xi, yi) values could be easily obtained by mapping GPS coordinates i.e.

longitude and latitude using a Universal Transverse Mercator (UTM) transformation.

Apart from the trajectory stream, every individual data point is enriched with a set

of contextual information that is denoted by CSdata. For the particular dataset that is

used for the implementation, the context set includes vehicle ID (vid), and current speed

spi. Therefore, the information for the object MO at time ti includes (< pi, ti >, vid, spi).

As the dynamic data obfuscation approach depends on contextual information of queried

data and data requester, it is also needed to define the application context (CSapp)for the

system as described in the following section.

5.2.5.3 Spatio-temporal Granularities and Disclosure Rules

As discussed in Section 5.2.1.2, there are several ways to define granularities. Without loss

of generality, for spatial granularity (glspatial), location precision (in terms of kilometres,

meters, feet, etc) is considered and for the temporal granularity (gltemporal), a binary

granularity meaning the time information should be revealed or not is considered.

To clarify, let’s review some of the discourse rules for different services. If a vehicle

involves an incident, the precise location and time is shared with the Paramedic service.

The Diagnostic Health service only has access to the spatial data with granularity of 1m,

i.e (glspatial = 1m and gltemporal= 0). This disclosure rule for the proposed case study has

been motivated by a scenario where a driver is suspected for a super-contagious diseases
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such as Ebola, and therefore the Diagnostic Health needs to know the places that the

driver has been visited in order to stop the spread of the disease. However, the order of

visiting places does not matter to this service and thus does not need to be revealed. For a

general scenario, having d granularity levels, the (d− 1) least significant bits of location

coordinates to zero for the worst case (applications with the least discourse granularity) is

set in order to mask the precise coordinates.

It is important to note that for a particular service, the granularity could change based

on the contextual information. For instance, the road safety service might be authorised to

have access the location information with (glspatial = 100feet and gltemporal=0), but if the

vehicle is travelling beyond the street limit, the exact location and time might be revealed

to this service.

Figure 5.8: Spatio-temporal privacy preservation. (a) Original trajectory: Parliament
House → Royal Melbourne Hospital → University of Melbourne → RMIT University, (b)
modified trajectory: cloaked(RMIT University) → cloaked(Royal Melbourne Hospital) →
cloaked(University of Melbourne) → cloaked(Parliament House).

.
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5.2.5.4 Privacy Protection at a Glance

The trajectory stream is considered as sensitive data, the privacy of which needs to be

protected. Therefore, there are two types of data in this example, spatial and temporal. In

this regard, the system resembles the privacy protection against location-based services.

Duckham [142] proposed a few rules as the key principles of research on location privacy,

which make it different from other privacy preserving research. The author suggested

to consider the predictable mobility of humans, the constraints of the area within which

people move, and the importance of a formal definition of fundamental terms (such as

the precision and accuracy of information) in the design of protection mechanisms. The

majority of proposed methods for spatio-temporal privacy only focuses on location privacy

by means of techniques such as randomising, discretising, sub-sampling, etc. However,

revealing timeliness of spatial data opens up the possibility of time-and-location attack

[143] and results in breach of privacy. There are only a few privacy methods that do not

disregard the temporal cloaking of trajectory data.

In the proposed system, a two-tier privacy preservation (k=2) is proposed, one for

privacy preservation of spatial data at the data collection stage, and the other for temporal

data that is applied at data storage stage. Therefore, it can achieve spatio-temporal privacy

while data is at rest. Additionally, an obfuscation function of is used that obfuscates data

according to the desired granularity level at the time of data dissemination. Figure 5.8

illustrates an example of the spatio-temporal privacy preservation approach, where the

original trajectory of a moving object is not only replaced with the cloaked locations, but

also the sequence of these locations are perturbed.

In order to respect the low complexity of IoT devices, both suggested privacy preserving

functions f1 and f2 and also the of function are lightweight, while attempting to make them

as secure as possible, given IoT device constraints. For this purpose, digital watermarking

methods and pseudo-random constructions are used because of their hardware-friendly

nature. In fact, f1, f2, and of are pseudo-noise addition, (hashed-based) scrambling, and

data masking (then can be coupled with one-time pad partial encryption, if a more secure

transmission is needed), respectively.
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5.2.5.5 Preliminaries

In this section, some preliminaries are briefly introduced to help understand the rest of

Section 5.2.5.

Digital Watermarking

As we discussed earlier digital watermarking is a technique for copyright protection. The

watermark constitutes a piece of secret information to be hidden within the digital content

in such a way that it is not visible to the consumer. A digital watermark can be either

distortion-based or distortion-free depending on whether the embedded marks introduce

any distortion to the underlying data [144]. For example, adding random numbers to

data samples results in changing the original values (distortion watermarks), whereas

re-arranging data samples according to a secret watermark do not introduce any change

into data values (distortion-free watermarks).

One of the recent driving forces in digital watermarking research is data obfuscation

[145]. Because embedding watermarks introduces a tunable distortion in host data, it is

possible to mask the original data for the applications where privacy is of great concern.

Contrary to conventional watermarking, the visibility constraint can be relaxed; the

reversible distortion introduced by the watermark is used to reduce data precision to below

levels where privacy can be compromised. These levels are tunable to application-dependent

granularity.

In this section, a distortion-based watermark (noise addition) and a distortion-free

watermark (data scrambling) are used. For the former, taking advantage of a so-called

Linear feedback shift registers to construct the noise/watermark will be described briefly in

the following.

Linear Feedback Shift Registers

Generating random numbers has been studied thoroughly for many applications such

as stream cipher design, watermarking codes, spread spectrum communications [146].

Unfortunately, generating Truly Random Number (TRN)s is an expensive task due the
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complexity of required hardware (such as thermal noise of zener diodes or radioactive

decay). In this regard, Linear Feedback Shift Register (LFSR) are favourite primitives due

to their desirable statistical properties and hardware-friendly nature [146].

LFSRs are shift registers, generating new bits using a linear feedback polynomial.

Figure 5.9 shows an example of an LFSR of order 4. In this example, a new bit is generated

for each shift, based on a linear combination of the bit values of (in this case) 3 and 4

previous shifts. Certain feedback combinations produce a pseudo-random pattern of bits

equal to 2order-1. So in the case of Figure 5.9, a pattern of maximal period of 15 is produced

(16-1 as the all-zeros case is excluded). For this reason, the sequence thus produced is

called a maximal - or m-sequence.

Figure 5.9: An LFSR of order 4 with characteristic polynomial x4 + x3 + 1. The red points
show the positions of the taps.

An LFSR can be completely specified by means of its characteristic polynomial or

the positions of the taps. For the previous figure, the characteristic polynomial is g(x) =

x4 + x3 + 1. Once the g(x) and non-zero initial value of registers (1101 for Figure 5.9)

are known, the rest of the sequence is uniquely identified. In fact, for this purpose, the

deterministic behaviour is desirable because of the reversibility requirement of the privacy

preserving operation (function f). On the other hand, the security requirement of the

privacy functions calls for unpredictability of PN sequences that is measured by linear

complexity.

Linear Complexity (LC) is the length of the shortest LFSR that is able to generate a

given sequence. An ideal binary PN sequence of length p, is one whose linear complexity is

also p. In other words, the entire sequence is needed in order to predict future bit values.
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For very long sequences, this is impractical, and thus is sufficiently secure. Unfortunately,

the LC of an LFSR itself is poor (log2 p). In the literature, there are many proposals to

generate PN sequences with higher LC such as: adding a source of a truly random number

generator, combining multiple LFSR, or decimating generators irregularly. For this section,

a method called Dynamic Linear Feedback Shift Register (DLFSR) is used that achieves

high LC by frequently changing initial values and characteristic polynomials.

5.2.5.6 Privacy Preserving Data Collection-Spatial Cloaking

The spatial privacy in this section is achieved by adding PN values (watermarks) to the

location coordinates at the sensors.

Watermark Generation using DLFSR

The binary DLFSR [147] is used that consists of two LFSRs (primary and secondary)

and a counter. The primary LFSR is controlled by the counter, whose value depends on

the internal state of the secondary LFSR and therefore the primary LFSR polynomial is

changed in a round robin fashion. In other words, a secondary LFSR is used that cloaks

regularly, combined with a primary LFSR with irregular cloaking.

The above DLFSR needs three values for both LFSRs in order to generate random

numbers: number of LFSR stages (LFSR order), initial value of the register, and the initial

selected polynomial. These values are denoted by (l1, iv1, poly1) and (l2, iv2, irrpoly2) for

the primary and secondary LFSRs, respectively.

Note that while the examples explained below assume a binary LFSR (ie. alphabet of

2) for simplicity, LFSRs using a larger alphabet can also be considered, A, which is a prime

number, and then balanced by subtracting the floor (A/2). The DLFSR construction

works identically provided both LFSRs use the same alphabet. The sequence values are

then uniformly distributed from −A/2 to +A/2.
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Watermark Insertion

Assume the ith generated random number obtained from the DLFSR is ri. The watermark

is then a scaled version of the ri that is added to the location coordinates to make it

inaccurate. For the location pi = (xi, yi), the watermarked location p
′
i is calculated as

follows:

p
′
i = (x

′
i, y
′
i) = (xi + αx × ri, yi + αy × ri)

where αx and αy are scaling factors or watermark amplitudes.

Clearly, the higher the scale factors, the better the spatial privacy can be achieved as the

accuracy of the data decreases. This way, trajectories can be hidden on the fly at the point

of origin. The Security Service needs to be able to obtain the original values if necessary.

Therefore, for every moving object MO, 8 secret parameters need to be exchanged a-priori

with the Security Service including {(l1, iv1, poly1), (l2, iv2, poly2), (αx, αy)}.

Figure 5.10: Sequence diagram for spatio-temporal privacy preservation. The dashed line
separates the data collection and storage stages from the data dissemination stage (as
explained in Section 5.3.4.1, these three components are part of the one security service
and are only de-coupled here for demonstration purposes).
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5.2.5.7 Privacy Preserving Data Storage-Temporal Cloaking

Temporal privacy can be achieved by scrambling the obfuscated locations. Note that the

temporal cloaking does not change the timestamps. Instead, the coordinates are shuffled

positionally to obscure the timeliness of location information. For instance, if vehicle

”car1234” has been at University of Melbourne at time 5pm, and then RMIT University at

time 8pm, the locations are swapped, but the time values themselves are not changed. At

the time of data dissemination, the Security Service decides whether the correct order of

trajectories needs to be revealed to the application.

In contrast to the spatial cloaking, the temporal cloaking is done by the Security Service.

This means there is more freedom to choose a secure privacy preservation method (compared

to the LFSR) as long as the time complexity is not high. For this purpose, a secure permuta-

tion is described as π : [1..b]→ [1..b] to scramble data in a particular order such that the ith

watermarked point p
′
i is substituted by p

′

π(i) and b is the required buffer size (that is a power

of 2). For example, a trajectory of length 4,
{
< p

′
1, t1 >,< p

′
2, t2 >,< p

′
3, t3 >,< p

′
4, t4 >

}
,

is replaced with
{
< p

′
4, t1 >,< p

′
1, t2 >,< p

′
2, t3 >,< p

′
3, t4 >

}
for a certain permutation

π.

There are many different ways for having a secure permutation such as using block

cipher, hash functions, or congruential random numbers, to name a few. Here, a simple

yet effective secure scrambling method is chosen based on hash functions that is described

below:

Assume Hash() is a one-way keyed hash function with the output size of l bits and a

buffer size of b = 2c. A non-overlapping window of size c is applied to the hash output

and encodes it to a decimal value. The window by c values are then advanced. This leads

to l/c numbers that correspond to the permutation indices. However, it is possible that

some of the numbers collide. In such circumstances, the duplicate values are skipped. The

beauty of this scheme is that hashed value can be customised for individual moving objects

by using a secret key or its combination with other contextual information such as vehicle

id. The security of this permutation lies in the security of the hash function and the buffer

size b. The longer the buffer, the higher the number of possible permutations there are,
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meaning a brute force attack will be less effective. On the contrary, very long buffer results

delay the reverse process and decrease the system efficiency in terms of query response

time.

By coupling temporal scrambling with spatial cloaking, it is ensured that data is

protected at rest.

Figure 5.11: Number of vehicles per time interval (x-axis) over 24 hours (Dataset from [8]).

5.2.5.8 Privacy Preserving Data Dissemination-Dynamic Obfuscation

The data dissemination stage is triggered by receiving a query. At this point, it is assumed

that the query is contextualised and therefore the corresponding granularities i.e glspatial

and gltemporal are retrieved from the Disclosure Decision Point. Before obfuscating data

based on these two values, the Security Service first needs to obtain the exact location

and time and then based on the glspatial, the least significant of the spatial points are

masked. If the query is requesting the trajectory of an object for a time duration such as

range queries (the example uses a range of times between 8am-12am), the Security Service

decides whether the time information of the trajectories should be revealed based on the

gltemporal.

For obtaining original information, the Security Service uses the secret values to

regenerate the random numbers for reversing scrambling and noise addition. For the
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former, the queried data point needs to be retrieved from the permuted index p
′

π(i). Then,

for the latter, the watermark values (αx × ri and αy × ri) need to be subtracted from p
′

π(i).

The last step is obfuscating the original coordinates by masking the least significant bits.

For implementation, a maximum precision of 1 meter is considered well below the

precision of GPS coordinates, and at the same time sufficient for many applications. Then,

consider 4 different granularity levels, such that for the lowest level, the three Least

Significant Bits (LSB)s are set to zero, whereas for the highest level no bit will be masked.

Geocentrically, the obfuscated location of(pi) can be represented by a circle with pi at

centre, and 2gl
spatial

is the radius in meters. The more undefined bits, the larger the circle

area, and thus better privacy can be achieved while the utility of data might also becomes

a concern. The entire privacy preservation process that has described so far is illustrated

in Figure 5.10.

It is mentioned that the Security Service mainly deals with protection of data content

as opposed to the data during transmission. If the data transmission is also required to be

protected, it is recommended that partial encoding is used, such as a one-time pad with a

user session key to protect the unmasked bits (i.e. most significant bits) of the location

data to enforce transmission security as well. This way, there is no intermediate point from

the point of origin to the final destination where data is left unprotected. For sensors with

the capability, the above can be implemented using connections secured by SSL/TLS.

5.2.6 Performance Evaluation

The described smart vehicle system is developed as a proof of concept. For this purpose, a

large-scale urban vehicular mobility dataset [8] is used which contains trajectories of the

car traffic in the city of Cologne. The trajectories covers a region of 400 square kilometres

for a period of 24 hours. The dataset comprises more than 700.000 individual car trips.

Each record of this dataset contains the time (with 1-second granularity), the vehicle

identifier, its position and speed. Figure 5.11 shows the distribution of vehicles over the 24

hours. Also, 5000 disclosure policies are defined as described in Section 5.2.1.2. All the

experiments are performed on a workstation with a Intel i7-4790 3.26GHz CPU and a 8GB
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Figure 5.12: Comparison of the processing times of the proposed system (using DLFSR
and SHA1-based permutation) and the DES-encryption baseline system.

RAM.

Figure 5.13: Running time breakdowns for different parts of the proposed system including
query contextualisation, finding permuted indexes, extracting watermarks, and dynamic
data masking.

The performance of the proposed system is investigated in terms of processing time

for retrieving trajectories. For the system, this includes the time that is required for

reversing the privacy transformations (permutation and watermark extraction) and dynamic

obfuscation (data masking). For simulating queries, the 24 hours are divided into time

intervals of size 7.5 minutes, and each query retrieved the trajectory of vehicles that are

present in that particular interval for different services that are named in Section 5.2.5.1.
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Additionally, the proposed method is compared against a baseline system that encrypts the

trajectories with Data Encryption Standard (DES) using a 56-bit key and generates 64-bit

ciphertexts. In other words, instead of spatio-temporal cloaking, GPS coordinates are

encrypted to measure the security overhead for protecting data at the database. Therefore,

every time data leaves the system, it needs to be decrypted to retrieve original values and

then masked with the desired granularity level that completes the dynamic obfuscation

goal.

The results are shown in Figure 5.12. It is interesting that the processing time of both

systems follows the data distribution behaviour. For instance, during the peak hours (such

as morning and afternoon), the processing time of retrieving trajectories for both systems

is higher as there are more cars in those intervals. As you can see, the processing time

for the proposed method is much better (by approximately 10 times) than the encryption

system. Apart from that, the data cannot be protected by encryption methods at the sensor

level due to high complexity of the operations and therefore the data is protected only

at the database. Therefore, the proposed system significantly outperforms its encryption

counterpart in terms of both response time and data protection, and at sensor level and

database as well.

To better understand the security overhead of different parts of the proposed scheme,

the running time that is taken by the Security Service for query contextualisation, reversing

temporal cloaking (permutation), reversing the spatial cloaking (watermarks), and dynamic

obfuscation (data masking) are further explained in Figure 5.13. According to this figure,

the most time consuming part is related to permutation and query contextualisation,

though this is still an acceptable cost for having multi-granular obfuscation.

5.2.6.1 Discussion

The above results confirm that the cost of security is reasonable in the proposed framework.

This suggests that the proposed method is more efficient and scalable than the encryption

alternative for an IoT setting. In this section, the synchrony between the watermark

encoder (i.e., sensors) and decoder (security service) is considered. In other words, if some
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data is missing during data transmission to the cloud, or if the sensors stop working for

a while, it is possible that the decoding process begins to fail. One possible solution to

this problem is to use synchronisation invariant watermarks, such as the twin watermarks

proposed in [148].

From a security standpoint, two parts influence the proposed privacy preservation:

spatial and temporal cloaking. Firstly, the security of spatial cloaking is based on the

linear complexity of the DLFSR generator. For the implementation, a DLFSR is used with

polynomials of the order 16 and 4, which generates random numbers with period and linear

complexity of p = 7864200 and LC = 1920 [147]. This increases the linear complexity by a

factor of almost 120 compared to a simple LFSR –and, this is achieved without losing the

good statistical properties of the LFSR3. It is also possible to use higher order LFSRs for

the primary and secondary polynomials to further increase the security. Because the linear

complexity of this DLFSR generator is not mathematically investigated for a general case

by the authors [147], this length is chosen to be able to compare it with the basic LFSR.

Apart from the random numbers, the scale factors are part of the secret information that

is only known to the data owner and the Security Service.

Secondly, the security of temporal cloaking is related to the security of the permutation.

For this purpose, a one-way keyed hash function is used to scramble watermarked data

points. A good hash function Hash() must have the two properties:

1. One way transformation: Given a hash value h it should be difficult to find any

message m such that h = Hash(m);

2. Collision resistance: It should be difficult to find two different messages m1 and m2

such that Hash(m1) = Hash(m2). Such a pair is called a hash collision.

Due to the one-way property of hash function, even if given h = Hash(M,K) in the

temporal cloaking, the attacker is unable to obtain the secret key K from the hash

value. In addition, hash functions are often used in the generation of pseudo-random bits

(e.g., NIST special publication [149]). The randomness of hash functions guarantees the

3The period and linear complexity of an LFSR with order 16, is 65535 and log2 216 = 16, respectively
as described in Section 5.2.5.5.
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permutations for scramble temporal cloaking is unpredictable without knowledge of the

secret key K. Additionally, the uniformity of the distribution of hash values guarantees

that all valid permutations can be generated on the basis of hash values.
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CHAPTER 6
Conclusion

In this thesis, we have introduced a novel framework and corresponding architecture for

IoT data contextualisation that supports more efficient IoT data processing, security and

privacy.

These contributions provide scalable contextualisation in real-time and include rigor-

ous definitions of IoT contextualisation concepts, IoT contextualisation operators that

utilise prime factorisation, and a use-case that demonstrates the practical benefits of

contextualisation at the IoT application level.

The IoT contextualisation architecture was then applied to IoT scale data processing,

which illustrated the scalability achieved via IoT contextualisation in a smart parking use-

case and a related performance benchmark. More specifically, the experimental evaluation

conducted using the parking recommender use-case demonstrates that contextualisation

of IoT data can reduce query times for IoT services by more than three times that of a

scenario where no contextualisation is applied to the same query workload.

Another contribution of this thesis is the role-based disclosure control technique, which

ensures data security in any IoT application where the dissemination of IoT data may

violate the privacy of its users (who submit queries or/and provide IoT devices for use

by others). To develop a security technique, we combined our IoT contextualisation

architecture with digital watermarking. The resulting technique achieves a comprehensive
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solution that is lightweight enough to be supported by resource-constrained IoT devices.

To assess the impact of this technique, we studied a healthcare-related use-case. Via

this use-case, we showed that the proposed combination of contextualisation and data

obfuscation significantly reduces the amount of data that needs to be processed while also

permitting reversibility of data obfuscation. Experimental evaluation of this use-case shows

that contextualisation reduces the obfuscation- and de-obfuscation-related data processing

requirements by an average of approximately 160 times.

The final contribution of this thesis is the novel contextualisation-based technique

that enables multi-granular privacy preservation that is suitable for IoT-constrained

environments. For this, we focused on protecting data during the different stages of

the IoT application life-cycle. The proposed technique was studied in a smart vehicle

use-case, whereby the IoT data stream generated by the smart vehicle is protected by

data obfuscation comprised of a combination of digital watermarking and data scrambling.

Contextualisation directs the obfuscation intensity applied to the IoT data generated by

the smart vehicle based on application-specific rules (e.g., the vehicle’s location or driver).

This reduces data obfuscation-related processing for specific aspects of the application

(e.g., when the vehicle is at a specific location or is driven by a specific driver, as the

data generated during these times does not need to be protected). Benchmarking of our

use-case demonstrated that this novel technique achieves privacy preservation nine times

more rapidly than the most common encryption algorithms.

Research Objectives and Questions Revisited

In particular, in this thesis we have revisited the following research objectives with satis-

factory results:

• Studying the performance and scalability of current state-of-the-art in

processing of IoT scale data using contextual information. [RQ1]

In the Section 2.2.4 we presented the results of the SLR based on the methodology

described in Section 2.2. As well as discussing performance and scalability, the inves-
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tigation also provided details of the operations performed by the systems described

in the papers investigated, and whether or not these operations are contextual.

• Proposing a scalable and performance-oriented contextualisation tech-

nique for IoT data [RQ2]

One of the main objectives of this thesis was to provide an IoT contextualisation

architecture that is generic and scalable.

The ConTaaS Architecture presented in Section 3.2 satisfies these stringent require-

ments. It is general-purpose, allows the user to define the contextual information

relevant to their domain, and can be used to realise IoT contextualisation in any

application area because of its inherent adaptability.

Although this architecture is general and can be used in any application area, in this

thesis, we only presented two example application areas: health and transportation.

In addition to this novel, general-purpose, IoT architecture, we looked at the dy-

namic natures of the different contextual operations performed by systems that use

contextualisation. In this thesis, we generalised the types of contextual operations

by asserting that any operation can be categorised as one of three classes: filter,

aggregate or infer.

• Designing a sensor cloud solution for contextualisation of IoT data [RQ3]

Many of the latest high-performance processing techniques for Big Data, such as

MapReduce [6], are not suitable for IoT scale applications as they cannot handle the

real-time constraints of IoT scale data processing.

These latest high-performance processing techniques are designed for batched work,

and ignore the incremental data processing requirements of many IoT applications.

This leads to the batched nature of these big-data processing techniques not supporting

the near real-time requirements of IoT scale applications, as processing data in batches

causes re-computation of work already completed. This re-computation simplifies

the processing model for big-data applications, but the extra latency introduced by

repeating work unnecessarily renders these techniques unsuitable.
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In order to facilitate IoT scale data contextualisation, a novel and innovative architec-

ture was designed to support high-performance and scalable contextualisation in real

time. This architecture is described in Chapter 3, which also includes an example

scenario in which this architecture flourishes.

• Implementing and demonstrating the proposed model by developing a

proof-of-concept implementation, and validating its scalability and per-

formance through experiments [RQ4]

We chose to demonstrate the benefits of the novel ConTaaS architecture by imple-

menting it in a smart parking recommender system. A parking recommender in a

smart city is hard to design, as they can receive data from millions of IoT sensors

(including in the users’ cars and devices) while requiring near real-time latency to be

useful to drivers. However, solutions for capturing data from the myriad of sensors

that could be used, analysing the heterogeneous data produced by these sensors,

and then processing it to provide recommendations in near real-time is currently

unfeasible due to the difficulties inherent in such a large and heterogeneous system.

The ConTaaS architecture was implemented on the Amazon Web Services EC2

cloud infrastructure [7] to tackle this formidable IoT contextualisation task. The

implementation of the ConTaaS architecture created for this thesis is able to represent

and contextualise large amounts of data from IoT devices while providing near real-

time, correct and efficient responses that query the contextualised IoT data and

recommend parking to users.

• Utilising contextualisation to improve the security and privacy of IoT

Scale data [RQ5]

Finally, a lightweight yet highly scalable data obfuscation technique was proposed

that combines contextualisation with digital watermarking. The digital watermarking

technique is reversible and parameterised. This allows the security system to use this

technique to control the perturbation of sensitive data, enabling legitimate users to

de-obfuscate perturbed data with ease.
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The proposed technique utilises ConTaaS to achieve real-time aggregation and filtering

of IoT data for large numbers of designated users, as ConTaaS enhances scalability,

as described in Section 5.1.

Next, we proposed a scalable and context-aware granular obfuscation technique

for spatial-temporal data. This technique is used for privacy preservation in IoT

environments and is capable of multi-granular obfuscation by enforcing context-aware

disclosure policies, as described in Section 5.2.

6.1 Future Research

In this section we will briefly discuss future research relevant to this thesis as following:

• Context Acquisition

The contexts used in this thesis were assumed to be provided by the application

or users. A future research direction could explore the development, mapping and

integration of additional advanced data analytics methods for contextualisation,

such as machine learning and deep learning algorithms, to allow for automated or

semi-automated collection and processing of context information.

• Dynamic Context

The context information considered in this thesis was static. This means we did not

consider changes in context information or the relationships between context data.

Dynamic context changes are common due to mobility, changes of interest or the task

at hand, or changes in the environmental contexts that entities are subject to . One

future research direction would be to define dynamic context within IoT ecosystems

in such a way that it not only captures changes and variation in context but also

assesses the relationships between pieces of context information.

• Context Verification

This thesis assumed that the context provided is always accurate. However, this is not

the case, especially in an IoT ecosystem. Hence, new techniques need to be developed
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that can differentiate between good and bad contexts. A future research direction

could be to develop a verification method that can validate context (e.g., by using

ontologies or formal methods) to improve the effectiveness of contextualisation. These

methods should take into account the real-time and time boundary requirements of

IoT scale applications.

• Incremental Context Processing

The architecture described in this thesis is designed to be incremental, though the

incremental functionalities of the techniques have not yet been addressed. One future

research direction would be to investigate the performance of ConTaaS in advanced

processing environments such as incremental MapReduce [150].

• Complex Reasoning

Investigation of more complex reasoning methods using more complex or even

multiple ontologies is another direction for future work. In this thesis, we investigated

a few ontologies with respect to our application scenarios. However, ConTaaS has

the capability to be extended to take advantage of linked data and more complex

ontologies.
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