70 research outputs found

    Network slicing via function decomposition and flexible network design

    Get PDF
    Proceeding of: IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PMRC 2017)We argue for flexible network design as an architecture prototype for next generation networks. Such flexible design is developed by capitalizing on the concept of network function decomposition in conjunction with with its relation to network slicing. A detailed view of the proposed functional architecture is put forward, where the role of network function blocks for forming network slices with given requirements is underlined. We further highlight the impact of common architecture over multiple tenants and elaborate on the emerging multi-tenancy business models along with the resulting implications on security.This work has been performed in the framework of the H2020-ICT-2014-2 project 5G NORMA

    Model-driven development of data intensive applications over cloud resources

    Get PDF
    The proliferation of sensors over the last years has generated large amounts of raw data, forming data streams that need to be processed. In many cases, cloud resources are used for such processing, exploiting their flexibility, but these sensor streaming applications often need to support operational and control actions that have real-time and low-latency requirements that go beyond the cost effective and flexible solutions supported by existing cloud frameworks, such as Apache Kafka, Apache Spark Streaming, or Map-Reduce Streams. In this paper, we describe a model-driven and stepwise refinement methodological approach for streaming applications executed over clouds. The central role is assigned to a set of Petri Net models for specifying functional and non-functional requirements. They support model reuse, and a way to combine formal analysis, simulation, and approximate computation of minimal and maximal boundaries of non-functional requirements when the problem is either mathematically or computationally intractable. We show how our proposal can assist developers in their design and implementation decisions from a performance perspective. Our methodology allows to conduct performance analysis: The methodology is intended for all the engineering process stages, and we can (i) analyse how it can be mapped onto cloud resources, and (ii) obtain key performance indicators, including throughput or economic cost, so that developers are assisted in their development tasks and in their decision taking. In order to illustrate our approach, we make use of the pipelined wavefront array

    Feedback-control & queueing theory-based resource management for streaming applications

    Get PDF
    Recent advances in sensor technologies and instrumentation have led to an extraordinary growth of data sources and streaming applications. A wide variety of devices, from smart phones to dedicated sensors, have the capability of collecting and streaming large amounts of data at unprecedented rates. A number of distinct streaming data models have been proposed. Typical applications for this include smart cites & built environments for instance, where sensor-based infrastructures continue to increase in scale and variety. Understanding how such streaming content can be processed within some time threshold remains a non-trivial and important research topic. We investigate how a cloud-based computational infrastructure can autonomically respond to such streaming content, offering Quality of Service guarantees. We propose an autonomic controller (based on feedback control and queueing theory) to elastically provision virtual machines to meet performance targets associated with a particular data stream. Evaluation is carried out using a federated Cloud-based infrastructure (implemented using CometCloud) – where the allocation of new resources can be based on: (i) differences between sites, i.e. types of resources supported (e.g. GPU vs. CPU only), (ii) cost of execution; (iii) failure rate and likely resilience, etc. In particular, we demonstrate how Little’s Law –a widely used result in queuing theory– can be adapted to support dynamic control in the context of such resource provisioning

    Parallel Continuous Preference Queries over Out-of-Order and Bursty Data Streams

    Get PDF
    Techniques to handle traffic bursts and out-of-order arrivals are of paramount importance to provide real-time sensor data analytics in domains like traffic surveillance, transportation management, healthcare and security applications. In these systems the amount of raw data coming from sensors must be analyzed by continuous queries that extract value-added information used to make informed decisions in real-time. To perform this task with timing constraints, parallelism must be exploited in the query execution in order to enable the real-time processing on parallel architectures. In this paper we focus on continuous preference queries, a representative class of continuous queries for decision making, and we propose a parallel query model targeting the efficient processing over out-of-order and bursty data streams. We study how to integrate punctuation mechanisms in order to enable out-of-order processing. Then, we present advanced scheduling strategies targeting scenarios with different burstiness levels, parameterized using the index of dispersion quantity. Extensive experiments have been performed using synthetic datasets and real-world data streams obtained from an existing real-time locating system. The experimental evaluation demonstrates the efficiency of our parallel solution and its effectiveness in handling the out-of-orderness degrees and burstiness levels of real-world applications

    Cloudy in guifi.net: Establishing and sustaining a community cloud as open commons

    Get PDF
    Commons are natural or human-made resources that are managed cooperatively. The guifi.net community network is a successful example of a digital infrastructure, a computer network, managed as an open commons. Inspired by the guifi.net case and its commons governance model, we claim that a computing cloud, another digital infrastructure, can also be managed as an open commons if the appropriate tools are put in place. In this paper, we explore the feasibility and sustainability of community clouds as open commons: open user-driven clouds formed by community-managed computing resources. We propose organising the infrastructure as a service (IaaS) and platform as a service (PaaS) cloud service layers as common-pool resources (CPR) for enabling a sustainable cloud service provision. On this basis, we have outlined a governance framework for community clouds, and we have developed Cloudy, a cloud software stack that comprises a set of tools and components to build and operate community cloud services. Cloudy is tailored to the needs of the guifi.net community network, but it can be adopted by other communities. We have validated the feasibility of community clouds in a deployment in guifi.net of some 60 devices running Cloudy for over two years. To gain insight into the capacity of end-user services to generate enough value and utility to sustain the whole cloud ecosystem, we have developed a file storage application and tested it with a group of 10 guifi.net users. The experimental results and the experience from the action research confirm the feasibility and potential sustainability of the community cloud as an open commons.Peer ReviewedPostprint (author's final draft

    Performance modelling and optimization for video-analytic algorithms in a cloud-like environment using machine learning

    Get PDF
    CCTV cameras produce a large amount of video surveillance data per day, and analysing them require the use of significant computing resources that often need to be scalable. The emergence of the Hadoop distributed processing framework has had a significant impact on various data intensive applications as the distributed computed based processing enables an increase of the processing capability of applications it serves. Hadoop is an open source implementation of the MapReduce programming model. It automates the operation of creating tasks for each function, distribute data, parallelize executions and handles machine failures that reliefs users from the complexity of having to manage the underlying processing and only focus on building their application. It is noted that in a practical deployment the challenge of Hadoop based architecture is that it requires several scalable machines for effective processing, which in turn adds hardware investment cost to the infrastructure. Although using a cloud infrastructure offers scalable and elastic utilization of resources where users can scale up or scale down the number of Virtual Machines (VM) upon requirements, a user such as a CCTV system operator intending to use a public cloud would aspire to know what cloud resources (i.e. number of VMs) need to be deployed so that the processing can be done in the fastest (or within a known time constraint) and the most cost effective manner. Often such resources will also have to satisfy practical, procedural and legal requirements. The capability to model a distributed processing architecture where the resource requirements can be effectively and optimally predicted will thus be a useful tool, if available. In literature there is no clear and comprehensive modelling framework that provides proactive resource allocation mechanisms to satisfy a user's target requirements, especially for a processing intensive application such as video analytic. In this thesis, with the hope of closing the above research gap, novel research is first initiated by understanding the current legal practices and requirements of implementing video surveillance system within a distributed processing and data storage environment, since the legal validity of data gathered or processed within such a system is vital for a distributed system's applicability in such domains. Subsequently the thesis presents a comprehensive framework for the performance ii modelling and optimization of resource allocation in deploying a scalable distributed video analytic application in a Hadoop based framework, running on virtualized cluster of machines. The proposed modelling framework investigates the use of several machine learning algorithms such as, decision trees (M5P, RepTree), Linear Regression, Multi Layer Perceptron(MLP) and the Ensemble Classifier Bagging model, to model and predict the execution time of video analytic jobs, based on infrastructure level as well as job level parameters. Further in order to propose a novel framework for the allocate resources under constraints to obtain optimal performance in terms of job execution time, we propose a Genetic Algorithms (GAs) based optimization technique. Experimental results are provided to demonstrate the proposed framework's capability to successfully predict the job execution time of a given video analytic task based on infrastructure and input data related parameters and its ability determine the minimum job execution time, given constraints of these parameters. Given the above, the thesis contributes to the state-of-art in distributed video analytics, design, implementation, performance analysis and optimisation
    corecore