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Abstract

CCTV cameras produce a large amount of video surveillance data per day, and

analysing them require the use of significant computing resources that often need

to be scalable. The emergence of the Hadoop distributed processing framework

has had a significant impact on various data intensive applications as the distrib-

uted computed based processing enables an increase of the processing capability

of applications it serves. Hadoop is an open source implementation of the MapRe-

duce programming model. It automates the operation of creating tasks for each

function, distribute data, parallelize executions and handles machine failures that

reliefs users from the complexity of having to manage the underlying processing

and only focus on building their application.

It is noted that in a practical deployment the challenge of Hadoop based archi-

tecture is that it requires several scalable machines for effective processing, which

in turn adds hardware investment cost to the infrastructure. Although using a

cloud infrastructure offers scalable and elastic utilization of resources where users

can scale up or scale down the number of Virtual Machines (VM) upon require-

ments, a user such as a CCTV system operator intending to use a public cloud

would aspire to know what cloud resources (i.e. number of VMs) need to be de-

ployed so that the processing can be done in the fastest (or within a known time

constraint) and the most cost effective manner. Often such resources will also

have to satisfy practical, procedural and legal requirements. The capability to

model a distributed processing architecture where the resource requirements can

be effectively and optimally predicted will thus be a useful tool, if available. In

literature there is no clear and comprehensive modelling framework that provides

proactive resource allocation mechanisms to satisfy a user’s target requirements,

especially for a processing intensive application such as video analytic.

In this thesis, with the hope of closing the above research gap, novel research

is first initiated by understanding the current legal practices and requirements of

implementing video surveillance system within a distributed processing and data

storage environment, since the legal validity of data gathered or processed within

such a system is vital for a distributed system’s applicability in such domains.

Subsequently the thesis presents a comprehensive framework for the performance
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modelling and optimization of resource allocation in deploying a scalable distrib-

uted video analytic application in a Hadoop based framework, running on virtu-

alized cluster of machines.

The proposed modelling framework investigates the use of several machine

learning algorithms such as, decision trees (M5P, RepTree), Linear Regression,

Multi Layer Perceptron(MLP) and the Ensemble Classifier Bagging model, to

model and predict the execution time of video analytic jobs, based on infrastruc-

ture level as well as job level parameters. Further in order to propose a novel

framework for the allocate resources under constraints to obtain optimal perform-

ance in terms of job execution time, we propose a Genetic Algorithms (GAs) based

optimization technique.

Experimental results are provided to demonstrate the proposed framework’s

capability to successfully predict the job execution time of a given video analytic

task based on infrastructure and input data related parameters and its ability

determine the minimum job execution time, given constraints of these parameters.

Given the above, the thesis contributes to the state-of-art in distributed video

analytics, design, implementation, performance analysis and optimisation.
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Chapter 1

Introduction

Large-scale distributed systems are required for video surveillance systems (VSS)

in order to analyse large quantities of recorded video data which is a computing

intensive activity. It is important to consider scalability as a factor for future video

surveillance systems [60]. Existing solutions require demand in resources, which

are unsuitable for future increased demands for video data. IBMs system, IBM

Smart Surveillance System, (IBMSSS) [80], deploys a combination of database

partitioning and web application server clustering that allows scalability. How-

ever, such solutions that attempt to resolve the scalability issue are expensive and

increase the cost of hardware and overall investment expenses.

Video surveillance data processing is currently accomplished by techniques such

as parallel computing and distributed computing to reduce costs. Such techniques

provide performance enhancement and reduction in cost; yet suffer from limit-

ations in resources, complex programming, scalable storage and limited support

of fault tolerance. When considering these challenges within the current infra-

structure, a data processing framework that is simple and automatically handles

task scheduling, distribution and storage of data, load balancing, and machine

failure is necessary in order to allow users to focus solely upon creating scalable

applications.

One example of such a framework that has been widely adopted by major

organisations, such as Amazon, Google, Yahoo and Facebook, as well as research-

ers and the community, is Hadoop. Hadoop [162] is an open source MapReduce

implementation for data storage and intensive processing, designed to resolve a

number of large data issues, such as searching, log analysis, indexing, multimedia

analytics and machine learning. Hadoop has attracted researchers and other pub-

licity indicating a move towards enhancing and developing Hadoop architecture,

which has improved the overall stability of Hadoop[129]. These developments have

inspired this research into using Hadoop as a platform to resolve large-scale video

surveillance processing issues.
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Forensic video analysis is a post-event processing, and only processed occasion-

ally when needed. It is therefore both impractical and uneconomic to dedicate

machines for the sole use of Hadoop within such an application. On the other

hand video analytics are real-time alert systems that often require substantial

amount of processing to be done, given the content of video that can change from

time-to-time. Hence dedicating machines for the processing of video analytic data

will be inefficient. Scalable computing and storage resources can be deployed on

demand through cloud computing with minimum initial investment, providing full

virtualisation and distributed computing technologies and can hence support ap-

plications such as video forensics and video analytics (collectively known as video

surveillance).

Cloud computing services provide a range of resources and services to support

video surveillance systems, which have been recently studied in literature[122][137][89].

Overall, this makes a good solution in the provision of scalable dynamic clustering

of video analytic systems. In order to avoid potential risks of security and privacy

breaches of the video data, there is a requirement to balance the benefits of cloud

computing with an understanding of a variety of legal issues involved in deploying

video surveillance. The process of risk-aware computing will assist in the creation

of a more security comprehensive architecture as a protection against potential

threats.

A literature review was undertaken in order to understand the current regula-

tions and guidelines behind establishing a reliable, legal and trustworthy, cloud-

based video surveillance system. The requirements of a legally acceptable video

forensic system are discussed and current security and privacy challenges of cloud

based computing systems are studied in order to recommend the design of a se-

cure and reliable cloud-based video forensic system. The research focuses only

on the performance of distributed video analytic applications using a cloud-based

Hadoop platform after carefully considering the proposed recommendations and

observations.

Preliminary experimental results conducted within the context of the research

presented in this thesis indicates that a cloud-based Hadoop platform will be

successful in speeding up video analytic processing and distribute computing of

computer vision algorithms in a cluster of machines. It was also observed that the

execution time of applications is determined mainly by both the size of the load, as

well as cluster sizing. Hadoop MapReduce architecture is dependent upon the type

of application, as well as upon hardware performance/configuration[162]. How-

ever there was no existing research in attempting to model Hadoop performance

within a distributed computing framework serving data and processing intensive

applications.



3

Video analytics/forensics is computationally intensive task, operating on a

frame-by-frame basis to extract information from its content. Cloud workloads

are characterised by their own resource and performance requirements, as well

as constraints that are specified in service level agreements (SLA). Therefore, in

order to meet performance goals, decisions relating to the correct resource to be

deployed for a video analytic application workload requires careful analysis of its

likely behaviour when applied to a cloud-based Hadoop environment. The ability

to model and thus predict application performance and to subsequently optimise

resource allocation will therefore be a useful contribution to the state-of-art in

video surveillance research.

Identifying the above research gap, the behaviour and performance of a video

analytic application running in a virtualised cluster is first studied in this thesis,

which highlights the most significant factors that influence the execution time of an

application. Based on these factors an experimental study was conducted in order

to develop a prediction model for the application. This was undertaken by com-

paring different machine learning algorithms based on the prediction accuracies

that reveal that decision-based models outperform linear regression models, whilst

the Ensemble Bagging models outperform standard single-based classifiers. This

research fills an existing gap in research relating to video analytic related compre-

hensive performance predictions. Current research maintains a focus upon differ-

ent types of applications that are limited to using standard learning algorithms,

such as Simple Linear Regression, SVM and Multilayer Perceptron (MLP).

To demonstrate the practical use of the prediction models obtained above, the

thesis continues to study the use of Genetic Algorithms (GAs) as an optimisation

method to search for the optimal resource allocations under given constraints

to complete a job within a minimal period of time. The impact of both the

infrastructure level parameters (e.g. number of VMs, number of slots etc.) and

application level parameters (e.g. video input size, frame size etc.) to the above

optimal resource allocations are studied in detail.

1.1 Aim & Objectives

The aim of the research presented within this thesis is to investigate the per-

formance of a scalable video analytic application implemented on a cloud-based

Hadoop environment. The results are used to propose a framework for modelling

the performance and optimising resource allocations. In order to meet this aim, a

number of objectives need to be met:

• Carry out a study and analysis of legal, ethical and security issues surround-
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ing the deployment of video surveillance, within a cloud based environment

and thus use the findings to recommendations for the design of such a system.

• Study the possible use of a selection of different distributed parallel pro-

cessing techniques in the development of a cloud-based video analytics ap-

plication and in particular, design, implement and anlyse a Hadoop based

architecture, Determine the application and architecture specific parameters

that has the most significant impact on performance.

• Based on machine learning algorithms develop models that are capable of

accurately predicting the system’s performance, i.e. the prediction of job

execution time.

• Propose a method to optimise the performance of the proposed scalable

video analytic system under given constraints of the system architecture

and application related parameters.

1.2 Research Questions & Contributions

Table 1.1 provides a summary of the research questions, research method adopted

to answer the research questions and resulting original contributions made by this

thesis.
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1.3 Thesis Structure

The remainder of this thesis is organized as follows:

• Chapter 2: Provides a background knowledge and an overview of the related

research topics, such as video surveillance systems, cloud computing and

Hadoop/YARN.

• Chapter 3: Analyses the legal, ethical, security and performance require-

ments for carrying out video surveillance within a cloud based architecture.

• Chapter 4: Provides the design & the implementation of the virtualized Ha-

doop system and the performance analyis of the execution of the MapReduce-

based video analytic application within this system.

• Chapter 5: Presents the development of machine learning based approaches

to model and predict the total execution time of a video analytic application,

deployed within a Hadoop virtual cluster.

• Chapter 6: Presents the use of a genetic algorithm based optimization ap-

proach to minimise the job execution time of a video analytic applications

deployed on the Hadoop based architecture, subject to given constraints in

resources.

• Chapter 7: Provides a conclusion and future work.



Chapter 2

Background & Literature Review

This chapter intends to present a discussion of the background knowledge required

to undertake this study based on video analytic systems, cloud computing, and

Hadoop MapReduce framework. These technologies are effectively utilised within

the contributory chapters of this thesis, i.e. Chapters 3-6. In addition we describe

related work in our research area.

2.1 Video Analytic Systems

Technological advances to improve security in society generally have included the

installation of closed circuit television (CCTV), and although this technology en-

ables operators to view or search recorded video data to investigate specific events,

these processes of searching and monitoring are shown to be expensive in terms

of labour, as well as being time consuming processes which can result in human

errors. Typically the operator manually performs a visual search in recorded video

footage for a given event to search for specific information, such as date, time peri-

ods, locations, colour of clothing, or gender of individuals from the database[69].

The advanced video surveillance systems use computer vision, machine learning

and pattern recognition algorithms that can automatically track, classify and de-

tect specific objects, and large quantities of visual data can be analysed with

minimal interventions from operators, which is faster and less expensive in terms

of labour. VSS performs either real-time alerts (video analytics) or post event on

recorded and indexed video data stored in a database (video forensics).

2.1.1 Architecture

The review of literature of this topic suggests that the structure or architecture of

these video surveillance systems is varied [80][114] depending on the observation/s

to be carried out. However, in general, a typical video surveillance system consists

7
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of a distributed set of video cameras covering an area/space that requires monit-

oring 24/7 for security purposes. We assume that these cameras are connected to

a Video Database that stores the CCTV video footage for subsequent computer

based processing.

In figure 2.1 a high-level block diagram of a typical video forensic system is

presented. The input video footage is stored in a video database. In the case of

manual inspection for forensic purposes a CCTV operator will play back the stored

video, file-by-file in an attempt to locate the content/objects being searched for.

Figure 2.1: High-level block diagram of a video forensic system

In the case of computer based processing the videos are initially annotated at

the time of storage with high level annotation information such as, the camera

number/location, time of day etc. In addition to this high level annotations, de-

pending on the content of the videos, lower level annotations are generated by

an Annotation Engine (see figure 2.1). The video annotation engine is a collec-

tion of image processing, computer vision, pattern recognition, machine learning

and optimization algorithms that work collectively to identify the presence of

known objects (e.g. humans and vehicles) and are able to articulate their de-

tail/appearance (e.g. shirt colour, vehicle type, number plate details, carrying a

bag etc.). A typical architecture of the annotation engine is detailed in figure 2.1.

It is noted that the annotation engine is the key computing/intelligent component

of the forensic tool and is the location where most extensive computational tasks

are carried out.
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The annotated data, both the high-level (captured from camera input data dir-

ectly at storage) and low-level (generated by the Annotation Engine) are stored in

an annotation database. The availability of all annotation data real-time, would

make the system efficient and hence highly desirable for video forensic analysis,

post event applications. The challenge is the capture of low-level annotation data,

real-time, given the complexity of the video processing algorithm. A typical com-

puter with a single processor running at even the highest available typical clock

speeds, would not enable real-time capture of low-level annotations (this is the

basic research problem analysed in this thesis). Further the accuracy and trust of

the data stored in the annotation database are key to conducting a forensic invest-

igation that has any legal validity. The annotation information (i.e. metadata)

will be used in the search process for the detection and recognition of people (e.g.

man wearing a red jumper, carrying a bag), vehicles (e.g. a red van, speeding)

and activities (e.g. man walking away from a blue car).

In making practical use of the system presented in figure 2.1 above in video

forensics, a forensic search is initiated by a human operator (user) through an

interface and using a search tool. The search tool searches through the An-

notation Database created by the Annotation Engine detailed above. Once the

objects/events with given descriptions are located, going through the Metadata,

this will be used to fetch the data from the stored, original video footage.

A typical video surveillance system will comprise of many video cameras that

are distributed over a public space being monitored. Often the cameras may

have overlapping views. Even the same object that is visible via different views

of cameras and at different times will look different due to changes of object

size, angle of approach, clarity, partial occasions, varying camera specifications

etc. In order to be able to process complicated scenes and still be able to do an

accurate investigation, the computer vision algorithms have to be sophisticated.

This results mostly in the need to use and execute complicated algorithms that

will use a significant compute power. Having to process multiple videos captured

by multiple cameras make the compute power requirements ever more. A solution

to this problem exists in the use of distributing computing facilities where the

tasks can be divided between multiple processors, often executing algorithms in

parallel.

A rather modest number of research investigations have been carried out in the

past to tackle the above problem. Depending on the type of solution adopted these

have been reported in Chapters 3-6. One notable example is the system design

by IBM that uses a collection of web application servers, clustering and database

partitioning thus allowing scalability. The system designed is dedicated to serving

a distributed video analytic task and the designed has been conducted with the
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maximum computing resource needs in mind for a specified application. This

solution attempts to solve scalability issue, but increases hardware investments

cost due to the solution not being elastic, i.e. resources not being flexibility and

effectively utilised dependent on real time usage. In order to address the resource

allocation elasticity related issue, the current trend in video surveillance system

design is to use cloud based architectures. However our literature review has

revealed that this is an area that has not been investigated and reported in detail

in literature[112]. Hence this has been one motivation factor behind the research

presented in this thesis.

Following section provides background knowledge about the cloud computing

paradigm.

2.2 Cloud Computing Paradigm

Cloud Computing is a new model that delivers Information Technology (IT) as a

service to users. The services thus delivered can typically be classified into soft-

ware, platform and infrastructure as a service, delivered on on-demand, with pay-

per-use price model. The cloud offer elasticity and scalability in provisioning of

resources, which can significantly reduce the cost of dedicated hardware/resource

provisioning. This capability of cloud computing is the result of making effective

use of existing technologies such as data centre automation, automatic computing,

system management, utility computing, grids and clusters for distributed comput-

ing, Web 2.0, SOA, web services, and virtualisation[54].

The International Data Corporation (IDC) reports that worldwide spending

on public IT cloud services reached 4 billion dollars in 2013, and is expected to

be more than 107 billion doller in 2017[27]. Various studies report that cloud

computing is a continuing trend for data storage and processing, and specifically

supported in the field of computer science[35], as shown in figure 2.2, and with

a peak of research studies between 2008 and 2009, based on cloud computing

scientific analysis of Gartners Hype Cycle by Heilling and Vob [86][26][86].

Figure 2.2: Scientific analysis of academic disciplines on cloud computing
research[86]
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The following sections introduce cloud computing, its deployment and service

models, and show how the development of cloud computing systems have con-

tributed to commercial development, as well as open source development, which

encourage more developer’s to apply greater solutions and options.

2.2.1 Definition of Cloud Computing

Various academics and institutions have attempted to provide clear definitions

of cloud computing, as this is a new and developing technology, and a recent

attempt at defining cloud computing was suggested in 2011 that was based on an

earlier attempt in 2009 by the National Institute of Standards and Technology

(NIST)[118]. This suggests that the model of cloud computing involves service

provider interaction and minimal management effort for releasing the required data

in understandable formats accessed from services, applications, storage, servers

and networks of computer resources that are configurable, which could be accessed

from a network when required and when convenient to users.

The nature of cloud computing is complex and at present this technological

advance lacks standardisation[37], so perceptions of the characteristics of cloud

computing are varied and often challenged; for example, the management systems

applied by Google do not use virtualisation as a factor, and cloud computing

facilities can be accessed without accessing the Internet, as private clouds are

available based at specific locations, so the Internet is not a characteristic of cloud

computing [105][119][170]. However, the definition by NIST in terms of its key

elements are widely noted in the literature on this topic and by many in the cloud

computing scientific community, so that there are common factors that define

cloud computing, which are described below.

• On-demand self-service: The cloud service provide has no dirct interaction

with users when data is added and released from cloud computing resources,

as this process is automatic.

• Resource pooling: Cloud users can select their requirements dynamically

from pool of resources such as networks, computing and storage facilities.

These resources can be shared by various tenants or consumer. With the

exception of meeting legal requirements, users do not know the location of

the resources that they are accessing[119].

• Broadband network access: Smartphones and laptop computers are part of

a range of devices that can access various cloud services over the network

via standardized interfaces.
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• Rapid Elasticity: Resources of cloud computing assist users to avoid ex-

cessing computer power remaining unused when there is less demand, and

reduced time and costs for procurement when adopting cloud computing

capabilities that are automated. In addition to this elasticity, cloud com-

puting offers faster speeds for users, so that when demand increases, cloud

computing facilities increase rapidly, and when demand decreases, these fa-

cilities are dropped rapidly, so actual demand is matched quickly to cloud

computing facilities that are available.

• Measured Service: Cloud computing provides a pay-per-use measurement

model that enables users to pay when they use these services. For example

in Amazon AWS customers are charged by the hour, and this model also

gives users information about the efficiency of the resources they are using.

2.2.2 Cloud Service Models

Software (SaaS), Platform (PaaS) and Infrastructure (IaaS) services are defined

by NIST as the cloud service models mostly used [118]. Access to cloud computing

services is determined by model differences in terms of control and service types,

and Figure 2.3 shows the layers of IaaS, PaaS and SaaS in models of cloud services.

Figure 2.3: Cloud service models architecture[178]

• Infrastructure-as-a-Service (IaaS): This service is provided by Rack-

space, GoGrid and Amazon AWS, to mention few, and although users can-

not control this virtual resource hardware, they can release resource, update

resources and create resources, and so change the environment with direct

controls. This technology component applies KVM, VMware and Xen to

enable virtualisation technology to be used with virtual resources, load bal-

ancing, networks, computing and data storage within this service[119][37].
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• Platform-as-a-Service (PaaS): This service is provided by Salesforce

Apex language, Microsoft Azure and Google App Engine, and interaction

between the cloud environment and developers environment is enabled with

API, so that developers use libraries, functions and programming tools to

design their own application with this service.

• Software-as-a-Service (SaaS): This service is provided by Dropbox and

Facebook, to mention few, and users are not required to deal with main-

tenance, updates and installations, and do not know about the software

platform or infrastructure, so the cloud online software within this service

includes CRM, email and storage.

Some academics argue that a model for cloud computing should also include

data, infrastructure, platform, hardware and software components, as an

’everything service’ of (XaaS)[110] [134][134].

2.2.3 Cloud Deployment Models

Ownership of the provisioning location and infrastructure determines how cloud

computing services are used, which disregards the model of delivery, and shown

in figure 3.4.

• Public clouds: Upgrading and maintaining these services remains with the

provider of these cloud computing services that maintains ownership of its

resources of IT and the infrastructure, and although third parties would own

public cloud computing services, the cloud environment has public accessib-

ility.

• Private clouds: Organisations access their IT resources according to de-

partments, locations or parts from a central database by the use of services

and technologies provided by cloud computing facilities, which is owned

by individual organisations[152]. Although some organisations use private

cloud computing services located within their buildings, these are managed

by third party companies, but most maintain their own cloud computing

through various software options, such as Eucalyptus, OpenNepula, Cloud-

stack and Openstack. Private cloud computing services also mean that or-

ganisations can manage, process and service their data independently and

avoid restrictions of legal requirements, exposure to security issues and lim-

ited bandwidth of networks of public cloud computing services [79]. Vir-

tual private clouds are available from Amazon, so that organisations have

a virtual environment that they control completely within a defined virtual
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network, which is part of the Amazon AWS cloud services, as a section that

is isolated from other parts[5].

• Community clouds: Management of community cloud computing services

could be the responsibility of members or a third party, but members would

have similar interests, such as policies, mission and requirements for security.

Therefore, community cloud computing services are similar to public cloud

computing services, but with limited access for community members[79].

• Hybrid clouds: The benefits of hybrid cloud computing services include

portability of applications and data, as various models could be used, such

as community, public and private. Advantages include scalability when us-

ing public cloud services, and control of security risks when using private

cloud computing services, and consumers could use public cloud computing

services for data that are not sensitive, and private cloud computing services

for data that are highly sensitive, as these various models are combined by

technology that is proprietary or standardised.

2.2.3.1 Amazon AWS

Cloud computer capacity that can be resized is available from Amazon Elastic

Compute Cloud (Amazon EC2), and this service interface enables users to launch

instances (i.e. virtual machines) with a variety of operating systems to fit different

use case[1]. Each of these instances has different features and resources such as of

CPU, memory, storage and network resources. Selecting any of them depends on

customer’s workload characteristics.

Amazon EC2 offers three purchasing models for renting instances The costs

of these models are determined by the benefits offered by Amazon EC2, so that

potential consumers need to ensure their organisation or company purchases one

of the three models available that best meets their requirements [4] [153].

• On-Demand instances: Consumers make no advance payments or have any

contract commitments in the long term, as cloud computing capacity is

charged by the hour when used, or paid for on demand.

• Reserved instances: Consumers pay a reduced hourly rate by agreeing to a

contract over a three year or one year period with an initial payment at the

beginning of the contract, and no further payments until the contract ends.

• Spot instances: Consumers agree with the provider an hourly price rate that

is determined as the maximum they would pay for these instances, so do not

pay more than this rate, but prices vary according to the principle of supply
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and demand. This could benefit consumers, but if prices fall too low, then

providers can stop offering these services[153].

2.2.4 Enabling Technologies

Cloud computing is not a new concept[74], however, the technology already exists

to control various capabilities of computing, such as distributed grid computing,

distributed cluster computing, Web 2.0, SOA, Internet services and other Internet

technologies, virtualisation and utility computing. The following gives an overview

of some of these technologies that directly relates to our research:

2.2.4.1 Distributed Computing

• Cluster: is networks of computers that share computational workloads for

computing and perform similar computing tasks by working together as com-

modity computers or parallel computers that are defined as a cluster, so that

if one computer stops working, cluster distribution maintains availability and

balance of service to consumers. Individual computers could have specifica-

tions that are different or similar to others, [140].

• Grid Computing: is a platform in which distributed resource are organ-

ised into logical pools and shared across multiple administrative domains

connected by a network[71], which can consist of multiple clusters. The grid

idea was initially developed to support scientific researchers who believed

that computers should be developed to handle their complex data intensive

experiments[73]. Open science Grid and EGEE are two examples of this.

Cloud computing has same vision as Grid, yet the cloud is not limited to

certain community users and provide services on-demand[133].

2.2.4.2 Virtualization

Virtualisation is considered to be a core technology within cloud computing that

enables on-demand resources with elastic provision of resources[121]. Virtualisa-

tion is a process of abstracting physical IT resource such as server (CPU power),

storage and network into software-based virtual resources to be used by multiple

users. Each virtual resource is sharing underlying physical resources and is un-

aware of the virtualisation process as if it was running on a separate physical

resource.

This technique optimises the use of resources and enables centralised manage-

ment of pooled resources[147]. The term virtualisation emerged in the late 1960s
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in different forms[130] and become a core enabling technology for cloud. Common

examples of virtualized resources described below[152]:

• Server: This is a physical server transformed into virtual server called virtual

machine (VM); examples include VMware, Xen and KVM[161].

• Storage: This is a physical storage devices used as a virtual storage machine

or virtual disk, examples include NAS and SAN.

• Network: This is a physical network peripherals, such as firewall, router and

switches are formed into a logical network fabric; examples include VPN and

VLAN.

2.2.4.3 Hypervisor

Hypervisors or virtual machine monitors (VMM) are software solutions for server

virtualisation, added between the hardware and operating systems responsible

to launch multiple virtual machines from a single physical machine, sharing re-

sources such as CPU, memory, storage and I/O devices [24]. This layer of virtu-

alisation can be performed in three different techniques; full virtualisation, para-

virtualisation and hardware-based virtualisation, as shown in figure 2.4, 2.5 &

2.6.

• full virtualization:Provides virtual abstraction that is completely de-coupled

from the underlying hardware. The guest is not aware it is being virtualised

and does not require modification. It provides isolation of virtual machines

and simplifies migration and portability. Examples include VMware, KVM,

Virtual box and Microsoft Virtual server.

• Para virtualization: Provides virtual abstraction, which is similar to underly-

ing hardware. It requires change to kernel of guest operating systems, which

makes it poor in compatibility and portability with unmodified operating

systems; examples include Xen and Hyper-V.

• Hardware-based virtualization: Virtualises guest operating systems with a

kernel that is the same as the host operating system. It creates isolation

process contexts inside one OS kernel, which are only available for the Linux

system.

Selecting a hypervisor is a critical task as it affects the system performance

[121]. Analysis and study between hypervisors: KVM, Xen, VMware, Virtualbox

has been intensively studied in the literature. One author[113] conducted a survey
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Figure 2.4: Full-Virtualization

Figure 2.5: Para-Virtualization

Figure 2.6: Hardware-based Virtualization
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on these virtualisation technologies, which is a high level comparison related to

type of techniques mentioned above. The author[173] states that KVM is the best

choice for HPC cloud environment. The author[28] built KVM environment into

a cloud system comparing its performance with a physical machine; KVM gives

good result when computational is high. The performance for processing real-time

data has been studied by[70] and the results show that KVM performs better with

CPU intensive tasks. This author[109] analysed Xen and KVM performance and

the results show best responsive time was achieved by KVM. The author[132]

investigated the scalability of KVM with three parameters (overhead, linearity

and isolation performance for three resources CPU, network and harddisk, the

results show good scalability with CPU and network.

According to the findings above, KVM is used as a virtual environment in

cloud systems for this research.

2.2.5 Cloud Computing Architecture

Cloud computing is a complex model, which involves different technologies and ser-

vices that form that overall operation of the cloud. Alexander at al. [110] classifies

cloud into different layers to ease explaining its process and interaction between

components. This approach has been used and extended by many researchers

to explain cloud architectures. Each focuses on describing certain components of

cloud computing from the perspective of service deployment and delivery models

[50][119][61]. In general, the architectures are guidance for vendors on how sys-

tems may be integrated to address issues of interoperability[133][110][177]and for

researchers to ease analysis of cloud issues; for example, not limited to security,

performance and management [174].

In 2009, Alexander Lenk et al. [110], proposed architectural categorisation of

cloud technologies as a stack of service types, for instance, Iaas, PaaS and SaaS,

each with their distinct features and current providers, see figure 2.7.

In September 2011, the government organisation NIST [50] published a Cloud

Computing Reference Architecture model, which provides a high level architec-

ture view of cloud computing. This architectural guidance is a starting point to

understand the common standard terms and terminologies related to the major

actors, their relationship, activities and functions in cloud computing, but not for

design solution and implementation, see figure 2.8.

In 2011, Grobauer et al. [78] proposed cloud reference architecture based upon

research funding from the University of California, Los Angeles, and IBM [174].

This architecture involves security-relevant cloud components that help analyse

security issues relevant to each of the cloud services. As shown in figure 2.9 the
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Figure 2.7: Cloud reference architecture[110]
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Figure 2.8: NIST conceptual reference model for cloud computing[50]

architecture shows the interaction between different layers divided into service

customer, cloud specific infrastructure, supporting IT infrastructure and network

carrier that connects cloud customers to cloud providers using standardised net-

work protocols, such as SSH or HTTP. Cloud-specific infrastructure consists of

three service models: IaaS, PaaS and SaaS, which are discussed in section 2.2.2.

These services interact with customers through application programming inter-

faces (API) such as XML or REST, management access console and Identity,

Authentication, Authorisation and Auditing mechanisms (IAAA) for user checks.

Cloud computing is composed of seven layers as described below [110][50][78]:

• Front-End: user, third party cloud, broker or auditor.

• Public network

• Application Layer

• Platform Layer

• Infrastructure layer

• Hypervisor layer

• Physical/hardware layer

In this research, the focus is upon IaaS and PaaS service model layers where

video surveillance will be processed and stored. IaaS uses a virtualised infrastruc-

ture environment that consists of three main service components: computation,

storage and communication. Frank Hans [67] presents a high level overview of typ-

ical technical infrastructure components of IaaS cloud, see figure 2.10. It is clear
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Figure 2.9: Cloud reference architecture[78]

that interaction between cloud customers and the virtualised services in cloud

computing is through a cloud management system. Data can be hosted either in

a shared multi-tenant or private single-tenant environment using virtual machine

(VM) executed through Hypervisor software, such as VMware, Xen or KVM. The

internal communication between VM’s and storage, highlighted in blue, delivered

through virtualised network components similar to the common IT data centre

peripherals. PaaS is the application platform whereby video analytic application

is installed on the top of IaaS. More information on PaaS is discussed in section

(2.2.2).

2.3 Hadoop1 Framework

One open source distributed computing framework, capable of processing large-

scale of data across cluster of computers whilst demonstrating a high degree of

scalability and fault tolerance[162] is Hadoop, which is an implementation of the

MapReduce model. Hadoop can be scaled up from a single machine to multiple

machines, which together form a Hadoop cluster, with each machine performing
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Figure 2.10: Typical components of IaaS cloud infrastructure[67]

Figure 2.11: Google trends on Hadoop compared with other technologies.

local storage and computational data.

Developers and programmers focus upon the designing of parallel and dis-

tributed applications without concerns related to underlying details of the Ha-

doop framework, because it is an automated synchronisation and handling I/O

process[141], which is capable of handling level failure applications. Hadoops dis-

tributed framework makes it sufficiently powerful and distinct when compared to

existing frameworks, such Spark, MPI and other technologies, as shown in figure

2.11 using google trends tool [22].

Two Google published projects called Google e Systems (GFS) in 2004 and

MapReduce programing model, which was invented in 2004 were the inspiration

behind the implementation of Hadoop, which is currently licensed by Apache,

initiated and led by Yahoo[23] in 2008, see figure 2.12.

The success of Hadoop is proven by one of Yahoo’s Hadoop clusters, which

processed one terabyte of data in 209 seconds, beating previous records of 297

seconds[8].

The platform that Hadoop platform has provided has resolved many large

data problems in structured/non-structured data in disciplines, such as science
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Figure 2.12: Hadoop developments.

and enterprise. Hadoop is currently deployed in large organisations, such as Ya-

hoo, Facebook and eBay. Experimental issues with Hadoop may be categorised

into computational problems that deal with massive data sets, requiring intensive

computation per data element, computing-intensive applications, I/O intensive ap-

plications, CPU-intensive applications and processing video analytics. A number

of enterprises adapt Hadoop in applications, such as web indexing, bioinformatics

research, satellite data processing, computer visioning graphics, report generation,

log analysis, data mining financial analysis, scientific simulation, medical imaging,

weather forecasting and security analysis [162].

Hadoop is defined by different distribution channels ranging from open-source

Apache Hadoop, pre-packaged commercial Hadoop providers such as Cloudera,

IBM BigInsights, Horontworks and cloud-based platform such as Amazon Elastic,

MapReduce (EMR) and Openstack Sahara enabling Hadoop as a service in the

Cloud. There are two releases: Hadoop1 version 1.x series, which is a continuation

of version 1.20.0 series used in production environments, and version 2.x, known

as Hadoop2-YARN (Yet Another Resource Negotiator), which is a continuation

of 0.23.x releases, discussed later in section 2.3.2.

Hadoop can work across commodity low-cost servers[162], since one piece of

processed work can be distributed among many machines, which combines the

total resource of each machine as one whole machine. Hadoop is able to distribute

chunks of data into various nodes in advance where data locality is considered for

computing to avoid storage and communication costs[162] [128], where according

to[145] the moving of computation is cheaper than moving data, which makes

Hadoop preferable to MPI.

2.3.1 Hadoop Ecosystem

There are two core components that form Hadoop: Hadoop Distributed File

System (HDFS), which is a distributed storage saleable system, and a model

that is responsible for distributed processing, called MapReduce. The Apache

Software Foundation host other Hadoop based ecosystems, which have been de-
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veloped and integrated within Hadoop in order to enhance the functionalities of

the framework[162].

Some of the projects are briefly discussed in this thesis for their popularity, and

information relating to flume, avero, parquet and crunch, we refer reader to [162].

The projects discussed below are: The systems are briefly introduced below:

• Pig: A scripting language and execution environment that is used to process

large datasets.

• Hive: Is a distributed data warehouse built on top of Hadoop, which man-

ages data stored in HDFS, providing a query language based on SQL called

HiveQL. Facebook originally used Hive to manage large quantities of data

produced daily on its social network and stored in HDFS.

• HBase: A column-oriented, distributive database built on top of HDFS

for its underlying storage. HBase has the capacity to scale and work with

large datasets, which supports batch-style computations using MapReduce,

as well as point queries.

• ZooKeeper: A Hadoop distributed coordination service, which is a dis-

tributed, highly available coordination service. Distributed locks that can

be used for building distributed applications through the use of ZooKeeper

primitives.

• Sqoop: An open source tool designed to move data efficiently between

relational databases, such as Sql Server, MySQL, Oracle, D2, Postange SQL

and HDFS, as well as to the HBase system.

• Spark: A cluster computing framework designed for large-scale data pro-

cessing [162], which is integrated with Hadoop. In can run in YARN, working

on HDFS system and storage. Spark deploys its own distributed runtime for

the execution of work in clusters to serve other types of applications, which

need to use dataset across parallel operations. These include interactive

applications and iterative jobs that have a limited use within the MapRe-

duce framework[175] because of the integrated modules such as machine

learning (ML-lib), stream processing (Spark Streaming), graphics processing

(GraphX), and SQL (Spark SQL)[162]. Spark caches data in memory across

iterations where in the datasets are loaded from disk in MapReduce, which

allows Spark to run programs 100x faster[10].
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2.3.2 MapReduce

MapReduce [162] is a programming model for distributed data processing, which

can be used for writing in any language, it can be writing in any computer lan-

guage, including Ruby, Java, Python and C. It works by distributing tasks across

multiple machines through the use of a job scheduler, which is performed by the

master machine. Each slave machine then processes the data stored on it. MapRe-

duce consists of two components: Job Tracker, which resides in the master controls

and monitors the distribution of task. Task Tracker, which resides in the slave

and processes each assigned task, sending its status to Job Tracker. For the par-

allelisation process, MapReduce breaks the processing into 2 phases that can be

executed in parallel on multiple machines[150]:

• Map function: This applies to every input record producing intermediate

key-value pair, which are then stored on a local disk ready to be transferred

to machines where a reducer is assigned to process the intermediate output.

• Reduce function: This merges the intermediate results from the Map phase

and produces a final output result, which is stored in HDFS.

Each phase has key-value pairs as an input and output that a programmer

specifies by map and reduce tasks. All jobs are executed on slave nodes as a map

task or reduce task.

2.3.2.1 MapReduce Workflow

MapReduce applications that need to be run in Hadoop are called MapReduce

jobs. In order to begin data processing, a client application submits a MapRe-

duce job to Job Tracker(master) as a java code. Job Tracker communicates with

Namenode (master) to find which Datanodes (slaves) contains blocks of input

data.

The Job Tracker divides each MapReduce job into a set of tasks called map

or reduce. Task Tracker running on those machines is then scheduled with the

java code required to execute map function on local data. Several map and reduce

tasks are running concurrently on each slave. The number of map slots and reduce

slots are configured, which are dependent on the number of processors available in

nodes to overlap computation and I/O. If all available slots are occupied, pending

tasks must wait until some slots are freed up.

When the map task is complete, each machine stores the output result call

intermediate data in its local temporary storage. It then sends the data over the

network to a machine running reduce task for final computation. The communic-

ation between reducer and mapper happens through a TCP/IP protocol. There
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are cases when data is not stored locally, such as when new nodes are added or

when the node fails and the task is assigned to other node. In both cases, the new

data node communicates with name node to be directed to nodes that have copies

of the data; it then copies the data to local storage.

The following diagram explains the MapReduce programing model for the se-

quential phases (map and reduce) that the MapReduce data framework follows

when executing a job, see figure 2.13 for illustration:

Figure 2.13: MapReduce data flow framework when executing a job

1. Map Phase:

• RecordReader: This reads files from HDFS or any storage specified

by the programmer; all data is then transformed into key-value pairs

where the key is a unique id and the value is the corresponding data in

bytes. It is then submitted to InputFormat in the form shown below:

map(K1, V1)→ list(K2,V2)

• One InputFormat: Multiple types of key-value pairs provided by

RecordReaders are accepted, all key-value pairs are combined and sub-

mitted to Mappers in Inputsplit form.

• Mapper: Key-value pairs are generated through Inputsplit, with each

node running one map task and run it in parallel. One map task takes

a key-value pair, processes it and generates another key-value pair for

reduced phase input. Mappers group key-value pairs according to re-

quirements of algorithms and dispatch them to Reducers.

Mappers group key-value pairs according to requirements of algorithms

and dispatch them to Reducers.

2. Reduce Phase:
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• Shuffle phase: When the nodes complete their map task they are

ready for sort phase (copy), where nodes communicate with each other

to pass key-value pairs to be sorted. This is the only phase where node

communicates with each other.

• Sort phase: keys are sorted according to the key ID, presented as:

Shuffle( list(K2,V2))→ (K2, list(V2) )

• Reducer phase: This makes each reducer take all key-value pairs

with the same key and merges them. It then performs computations

on the values according to the instruction from java code. Reducer

can take a subset of all the key-value pairs, but will always have all the

values to one key. The result will be submitted to OutputFormat. Each

reducer generates one output to storage (HDFS). This can be controlled

through an implementation of Outputformat. Reducer phase takes the

form shown below:

Reduce(K2, list(V2)) → list(V3)

• OutputFormat: This deploys RecordWriter to write results back to

HDFS ready for the client to read. The network is used when the blocks

of the result have to be replicated by HDFS for redundancy.

2.3.3 HDFS

In a Hadoop distributed system, (HDFS) is one of Hadoops systems that provides

scalable and shared storage network across cluster nodes. It is designed to work

with the MapReduce framework written in Java that sits on top of a native local

system. Files stored in HDFS are write only, but can be accessed and read many

times. HDFS consists of two components:

• Namenode:

– Resides on master machine and splitting data into blocks

– Distribute blocks across cluster with replication for fault tolerance

– Holds all metadata information about stored data blocks.

• Secondary Namenode:

– Reside in master

– Contains backup of all metadata stored in namenode.

• Datanode:
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– Reside in each slave and stores blocks of data.

– Serves Read/write request from client with replication for fault toler-

ance.

– Propagate replication task as directed by NameNode.

Namenode is at the heart of HDFS where it stores all metadata information of

the cluster and monitors the health of the datanodes. Datanodes stores the actual

data of any stored file, which it sends back to the namenode every 3 seconds

via the TCP protocol; every 10th heartbeat is block reported. The secondary

namenode is a backup of namenode metadata, which connects to namenode after

certain times to update its metadata information, which can be used to recover

namenode is case of node failure.

Data is read and written to HDFS by going through different producers of

communication between client and namenode through TCP. When a client sends

a le to HDFS, namenode (master) split the le into blocks and replicates each block

to a number of copies according to the Hadoop default setting, which is 3. It then

distributes them to cluster nodes based on disk space availability to balance the

load between the nodes.

In addition, Namenode uses rack awareness strategy (network topology) for

replicas placement sorted in metadata les. This helps namenode to locate different

copies of each block in away prevents the failure of one node from losing all copies

of data. When the client is informed of the location of the blocks, it performs a

pipeline[51] to sequentially copy data blocks between specified datanodes(slaves).

Figure 2.14, shows HDFS and MapReduce relationship within Hadoop frame-

work.

2.4 Hadoop2 Framework (YARN)

Yet Another Resource Negotiator, YARN, is the next generation of Hadoop that

is used for general computing platform that serves other large-scale program-

ming models such as Spark, Dryad, Storm, and Graph processing [158], as well

as MapReduce. These models provide different functionalities to data life cycle

ranging from real time processing to interactive and batch processing that can be

applied on the same data stored in single YARN cluster. Enterprises are therefore

not required to retain separate clusters for different application types; they can

work with data from the time that is generated from a single cluster [11]. Hadoop1

is designed for MapReduce implementation only. When a request from a client is

submitted as a MR job, it will be the responsibility of job tracker to manage all
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Figure 2.14: Hadoop Framework[127]

the execution of Mapreduce tasks in Hadoop cluster in terms of resource manage-

ment and scheduling jobs across the cluster. However, in YARN architecture, this

responsibility is separated into two functionalities:

• ResourceManager(previously JobTracker): Is a global distribution of avail-

able resources in a cluster among running applications (MapReduce, Spark

etc.).

• NodeManager(previously TaskTracker): Provides per-node services within

the cluster, which is responsible for launching application containers (re-

sources), and monitors the resource usage of CPU, disk, memory, network

bandwidth and reports back to the ResourceManager.

This separation of task makes managing multiple jobs running in YARN cluster

easier. Figure 2.1 compares the architecture of Hadoop1 and Hadoop2, showing

the role of ResourceManager in managing the jobs of different clients, each with

separate NodeManagers. ApplicationMaster is a per-application component that

works with NodeManager to manage the any job inside the cluster by negotiating

resource containers with ResourceManager, tracking their status and progress.

Containers are available in each node and they are allocated resources (CPU,

memory, Network etc.) resulting from the negotiation between ResourceManager

and Application manager.

The figure below shows that YARN continuing to use the HDFS layer, with

its master NameNode for the storage of metadata services and DataNode for

replicated storage services across a cluster[101]. However, in Hadoop1, it only

supports one Namenode that manages the whole clustername space, which limits
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system scalability. In YARN it supports multiple NameNodes in a single cluster

for scalability and avoids single points of failure [11][9].

Hadoop1 Architecture New YARN Architecture

Table 2.1: Comparing Architecture of Hadoop1 & Hadoop2-YARN [101]

Benefits gained from this new Hadoop architecture include managing the life

cycle of the application, improving the ability to scale Hadoop clusters to much lar-

ger configurations than previously possible, and allowing simultaneous execution

of a variety of programming models[101].

2.5 Cloud-based Hadoop

2.5.0.1 Amazon EMR

Amazon Elastic MapReduce (EMR) [2] is a public cloud service for large-scale

data analysis in a distributed environment. EMR uses the elastic infrastructure of

Amazon taking advantage of EC2 computing and S3 storage to provide managed

Hadoop framework releasing the customer from the expense of purchasing the

underlying hardware and software, as well as its complexity. Figure 2.15 shows

a high level view of EMR. Users only focus on analysing their data by loading

their data to Amazon S2 storage, submitting their application and selecting the

cluster size (number of machines). Amazon EMR provider takes care of Hadoop

cluster deployment, management and security. EMR makes it easy and flexible for

users to expand or shrink cluster size according to their analysis requirements. In

addition, they provide virtual private cluster for users and organisation that want

to be logically separated from other Amazon customers for enhanced security and
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privacy. Other distributed processing are also powered by EMR, such as Apache,

Spark, and different Hadoop jobs: Hive, Pig and Oozie.

Amazon EC2 (discussed in section 2.2.3.1), gives options for changing the

type of an already provisioned instance, yet switching between instances types in

Hadoop cluster can only be performed when instances are in their stopped state.

Prior to running any job, a user should know what is the optimal number of

instances (machines) and their types.

Figure 2.15: High level view of Amazon EMR [2]

2.5.0.2 Sahara OpenStack

2.3.2.3 Sahara OpenStack[33] is an open source data processing project that en-

ables users to easily provision Hadoop cluster on top of Openstack infrastructure,

which is a similar concept to Amazons EMR service. This project allows for collab-

oration between Horontworks, Redhart and Opetsack marinties. Sahara deploys

clusters in few minutes and scales already provisioned clusters by adding/removing

nodes on demand without the need to recreate the cluster. It supports different

Hadoop distribution and vendor specific tools. Sahara use pre-designed templates

for Hadoop configuration with the ability to modify parameter (e.g. heap size,

map/reduce slot numbers). Figure 2.16 shows architecture of Sahara OpenStack

[33], showing how Sahara interacts with Openstack components: Horizon, Key-

stone, Nova, Glance and Swift.

• Horizon: Is a graphical user interface (GUI) to be used by users to access

all Saharas features.
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• Keystone: Provides a security token used to work with the OpenStack, lim-

iting authenticated user abilities in Sahara to OpenStack privileges.

• Nova: It is Hadoop cluster virtual machines provisioning unit.

• Glance: It is a pool of Hadoop VM images preconfigured with Hadoop and

operating system.

• Swift: It is a data storage processed by Hadoop jobs.

Figure 2.16: Sahara architecture [33]

According to Sahara, it is the users option to choose the cluster size, which

means that a user should have knowledge about the running application prior to

selecting a large cluster size that can cause under utilised virtual machines and

a smaller cluster size can cause over-provision of resources in nodes, leading to

performance degradation.

This drawback in also found in Amazon EMR service. The proposed research

will investigate this issue and propose a novel automated technique to predict the

number of VMs and corresponding resources required for video analytic applica-

tions.

2.6 Literature Review

A discussion of the existing literature is carried out in this section considering

the solution for video processing running in cloud based Hadoop enviroenment.

The categories of related work discussed based on the different proposed pipeline

solution framework.
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2.6.1 Hadoop Platform for Video Processing

Hadoop based platforms have been utilised in many application domains for dis-

tributed data processing. The focus of the following review of literature is limited

to only video data processing, coding and transcoding.

Recently, with the popularisation of cloud based technologies, the use of a

Hadoop based framework for processing video streams in a cloud like environ-

ment has become an active area of research, with the key focus being achieving

time efficiency in processing large scale video data, due to the availability of dis-

tributed and abundant computer based processing and storage resources. The

proposed work has been inspired by existing work on video/image processing and

video coding/transcoding using a Hadoop based framework [126][148][141]. In

the initial stages of research within this area, processing video using a Hadoop

based framework was found to be challenging due to the fact that Hadoop was

originally designed only to deal with text type of data. Therefore much of the

early research focused on finding efficient ways to adapt video applications to a

Hadoop framework and distribute the video stream in a manner that preserves its

content[126][148][29].

The common approach used in literature for performing video analytics via a

Hadoop cluster is by utilizing Hadoop related elements (i.e. projects) such as the

Hadoop Distributed File System (HDFS), the MapReduce framework (see section

2.3) to carry out fast processing of large scale video data using open source tools

such as OpenCV[30] and FFmpeg[18] that implements computer vision algorithms

carrying out the required intelligent processing of data at a reduced cost[125]. In

this research area one key focus has been in solving the two practical challenges

faced by a Hadoop based architecture in processing video, namely, the modifica-

tion of video processing libraries to work within a distributed computing cluster

and transforming video analytic algorithms into map & reduce functions[149] com-

patible with the Hadoop-Mapreduce framework. Although all existing work follow

similar approaches on solving the associated challenges, they differ in the methods

used to read/write video files from the Hadoop distributed file system (HDFS).

The following literature details some recent work in this area.

Ryu et al [59] proposed a framework for processing video analytic data based

on a commodity physical Hadoop cluster and software tools such as OpenCV and

FFmpeg. The author compared the performance of the system in single core and

multi-core machines using a basic computer vision algorithm for face detection.

Due to native library dependencies, FFmpeg was modified to be able to access

data through the Hadoop distributed file system (hdfs), which the authors claim

provide better performance than using the common mounting approach, fuse-hdfs
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(see section 4.3.1.2). The video was split into Groups of Pictures (GOPs) [141],

and was synchronized with the hdfs block size. The results showed a proportional

increase of performance as the number of cores increase, a conclusion that was

also confirmed by [85] for carrying out computer-intensive applications. However

the paper did disclose the how the CPU was utilised nor discussed the factors that

influence performance.

Heikkinen et al [85] also implemented video processing/analytics similar to

that described in [59]. The key focus of the research was on effective data dis-

tribution that is based on video size and system performance parameters. The

authors proposed the splitting of the input video file into 10MB size video clips

as input, using an external tool, before inserting it into hdfs. However, the reason

of selecting 10MB video input size is not well defined. The experimental res-

ults showed improvement in data distribution time compared to the traditional

method of extracting frames first and then distributing them. For determining

system performance, the authors measured the performance without considering

the data transfer time, which is not accurate since data transfer causes overhead

in i/o operations that could impact the overall execution time.

Another research by Hanlin [149], provided a technical implementation of video

analysis on a physical Hadoop cluster. This work has enabled the research presen-

ted in this thesis to understand the design information of a video data workload in

a cloud like environment. The author used open source tools such as fuse-dfs and

traditional standalone software packages (FFmpeg, OpenCV and javacv). This

is a approach similar to that used in [85] and [59]. However, the input video

data written to hdfs is considered as one complete file. Which then internally goes

through the common hdfs splitter. This fixed size video splits will then be decoded

into a sequence of frames using FFmpeg tools during a MapReduce job, and each

frame will be processed sequentially. The proposed system reduced processing

time when compared to a typical local video analysis system. A similar approach

was used in the research proposed in this thesis.

A recent study by Zhao et al [179] proposed a Hadoop video processing inter-

face (HVPI) to help the user convert video analytic applications to a compatible

Hadoop-Mapreduce framework.

In [16] Intel revealed a case study using a Hadoop based framework for imple-

menting a distributed video monitoring syetem. However in this work the specific

type of video application was not detailed and the technical implementation and

system optimization was not discussed, making the contribution somewhat lim-

ited.

All of above works have focused on the implementation of video analytic al-

gorithms using a Hadoop based framework. The experimental results demon-
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strated the effectiveness of Hadoop in processing a video workload, considering

video splitting techniques to optimize Hadoop performance. A similar architec-

tural approach is used in the research presented in this thesis. However, the previ-

ous work are based on physical clusters and in the proposed research a virtualised

execution environment is considered for the purposes of scalability and flexibility

in assigning resources on demand. Virtualization provides a cost effective solution

to the problem of building a Hadoop cluster with several physical machines. Given

the above, the section 4.2.2 explores the existing research efforts that has exper-

imented the visibility of using virtualization of Hadoop in processing large-scale

data and have proposed solutions to improve performance.

2.6.2 Hadoop Performance in a Virtualized Cluster

Hadoop based implementation of Mapreduce applications using virtualization tech-

nology has been widely studied due its advantages, which include rapid provi-

sioning, scalability, easy cluster management, cluster consolidation, optimal re-

source utilisation, live migration, network isolation, high availability and security

[94][128][45][24].

Virtualization is one of cloud core technologies and recently attract attention in

adding scalability and flexibility to big data issues (for details see section 2.2.4.2).

Many existing industrial initiatives utilized the benefit of virtualization in a cloud-

based Hadoop to run big data workload such as: IBM serengeti, VMware Hadoop,

Openstack Sahara and Amazon Elastic Mapreduce(EMR). However, the benefit

of virtualization may come with the price of reduction in performance due to

overheads, resource competition and complex network communications. VMware

reported in their virtualized Hadoop study that only 4% average performance im-

provement is possible as compared to utilising a physical Hadoop [45]. However

this remains an insignificant observation when compared to the overall benefits of

virtualization in Hadoop [45]. In literature several experiments have been conduc-

ted to test the performance of Hadoop on virtual machines(VM) using different

approaches, [102] reported on experiments that presents a Hadoop performance

analysis and diagnosis, [87] studied the cluster size variations, [63] presented the

virtual machine configuration in detail and considered the use of different hyper-

visor types and Hadoop deployment strategies, [176] presented scheduling/load

balancing algorithms, and [63] presented how to utilize cloud open source software

as a platform. These previous research studies indicated a reduction on system

performance due to overhead costs of a virtualization platform. Some research

work proposed solutions to improve performance.

Hadoop and virtualization vendors, Hortonworks and VMware, have conducted
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collaborative work to improve Hadoop support in a virtual cluster. For instance,

adding extensions such as topology-aware plugins and providing elastic clusters

by separating compute VM from local disk.

Ibrahim [94], evaluated the Hadoop framework in virtualized and non virtual-

ized environments to address overheads caused by VM. He proposed a Cloudlet

[93] as a new MapReduce framework by adding a local reducer for virtual machines

in each physical environment to reduce data transfer during shuffle phase.

The author[84] designed a virtualized Hadoop cluster to study the scalability

performance in two scenarios; first by adding extra node to a cluster (scale-out),

and second by adding resources to the existing cluster node (scale-up). The exper-

iment was conducted on a OpenNepula cloud platform [31], using Xen hypervisor.

The result shows that different workloads require different types of scalability, for

example the CPU-bound applications performed well with the scaling out method

and vice versa for the I/O-bound application. In addition, they used a monitor-

ing tool named Gangalia[21] to observe bottlenecks, while running Hadoop jobs

and accordingly tuned Hadoop configuration parameters such as, map/reduce task

slots, cpu, memory..etc, to reduce job execution time and improve resource util-

ization. The findings of this paper motivated the use of the scale-out mehtod

for the investigations carried out within the context of the reseearch presented in

this thesis. Morever, the proposed work also useds a similar tool to analyze video

analytic resource consumption.

The author [127] proposed three types of topologies to test Hadoop perform-

ance: use of a fully virtualized cluster environment, use of separated data & com-

puting nodes, and a topology that separates master and slave nodes. The work

presented only investigated and experimented on a fully virtulized Hadoop using

an openstack cloud. The results indicated a degradation of the performance when

more VMs were added, due to increased overheads. Additionally, it was shown

that the performance decreases due to the use of different HDFS block sizes and

increase in the size of input data. These findings prompted the research conduc-

ted within the context of this thesis to consider adding a virtual machine to the

network, only when the existing cluster machines are fully utilized, thus avoiding

unnecessary overheads that degradate performance.

The paper [72] investigated the separation of data & compute operations con-

ducted on both physical & virtual clusters, when conducting specific data oper-

ations. The implementation was not in a cloud environment. In the research

proposed in this thesis, to avoid complexity, Hadoop’s traditional and common

architecture [162] containing all services from HDFS & MapReduce are operated

on the same physical machine.

In [168] the authors have proposed a method to deploy Hadoop with Cloud-
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stack [7] solving the cloned hostname issue that is caused when creating a virtual

machine. The authors explained theoretically the drawbacks of a virtualization

environment in running Hadoop and the fact that the efficiency of I/O scheduling

are essential to reduce response time. There is no solution proposed to solve the

performance issue.

In[92] the authors compared the Hadoop virtual cluster with a cloud-based

Hadoop, using Openstack Sahara[33]. The authors used Hadoop benchmarks for

performance analysis. The authors did not explain the variation in performance

results of different MapReduce jobs running on both architecture scenarios. For

example the case with the benchmark Hadoop application of calculation of math-

ematical Pi, which took less time to execute on a virtualized cluster.

In[63] the author analysed the impact of a Hadoop based deployment strategy

on a cloud infrastructure in terms of performance, power consumption and resource

utilization, by considering virtual machine placement of master and slaves within

a virtual cluster for multi-tenant scenarios. The experiments were conducted on

OpenNepula[31] cloud testbed with KVM hypervisor [28]. The results show that

increasing the amount of virtual clusters within a cloud infrastructure has a direct

impact on application performance and system behaviour. This conclusion is

similar to the conclusion of [127].

In the absence of research investigations on how cloud-based Hadoop can ef-

fectively handle video analytic applications, it is important to identify the relevant

issues when designing and implementing large scale video analytic applications in

such environments. For this reason in Chapter-4 we aim to deploy a video analytic

application in a Hadoop based virtual cluster with the objectives of investigating

the system behaviour when the cluster size and the input data payload is varied.

The results thus obtained will provide a solid foundation to the resource allocation

modelling that is conducted in Chapter-5.

2.6.3 Performance Modelling and Optimization

Prediction-based performance modelling and optimisation of resources and pro-

visioning based on characteristics of the workload are not new topics. They

have been widely discussed in the literature using historical information to pre-

dict different performance metrics such as execution time for different field of

applications in various computing environments such as datacentres [146], Cloud

Computing[157][98][165] and Hadoop-MapReduce[102] report different approaches

ranging from online/offline instrumental profiling, machine learning techniques to

statistical modelling and control theory. Furthermore, within Hadoop-based ap-

plications, a number of optimisation methods were investigated with different ob-
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jectives and constraints, such as cost, energy, quality and reducing job execution

time. The management of resources for Hadoop includes issues with VM place-

ment to physical machines [108][169], or placing applications to VM. Within this

research, the focus is proactive prediction and optimisation of resources required

by the application, and on the basis that cluster nodes deploy homogeneous VM

types.

In this section we will review some relevant existing research on using machine

learning for performance prediction in a given resource and using optimization

approach for performanc optimization and resource provisioning.

Resource allocation and performance analysis for Cloud-based media applica-

tions have been studied in terms of considering their individual performance met-

rics. These exciting approaches focus on online resource adaptation (i.e. runtime

estimation of resource usage) for media tasks being processed to meet QoS, job

deadlines or performance goals. The authors [144] modelled resource allocation as

a bin packing problem, considering only the CPU usage. They proposed dynamic

resource allocation predictions based on Machine Learning algorithms SVM and

KNN, to estimate tasks requirements and survival functions in order to estimate

how much load a single VM can handle in parallel and shared environments so

as not to violate QoS constraints. The authors [100] also aimed to predict the

dynamic resource allocation, but specifically for real time video transcoding. This

depends on the prediction of future user load demand using time series models.

While the researchers have applied Machine Learning for resource prediction, no

one has considered video analytic performance metrics in a Hadoop based distrib-

uted environment.

However, there are existing research conducted on a general Hadoop-based

MapReduce using statistical models and Machine Learning techniques. The re-

lated work in this area was proposed by Kambatla et al.[102] who proposed the

use of the online RSmaximizer tool that searches for optimum configuration para-

meters in terms of Hadoop applications by statistically matching its resource con-

sumption with already known applications resource consumption signature and the

optimal configuration stored in a database, using a brute force method. However,

the optimisation techniques were built on fixed nodes and slots, which we proved

in our study of Chapter-4 to have a great impact to overall performance. Verma

et al. [160] developed online SLO-based resource provisioning, which can predict a

reduced job completion time using the parameters from job profiles (Map, shuffle,

reducer phases, completion times), input size and allocated resources. Herodotos

et al. [87] proposed the use of an online Elastisizer tool which is an automated

technique to optimise different configuration parameter settings and cluster re-

sources (sizing) for a Hadoop job to meet performance needs. The authors used a
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mix of a statistical blackbox model and a white-box model for estimation. They

also used an instrumental application profiler which has high overheads. How-

ever, our application is processor-intensive, so this method will make it slower.

Moreover, they used a fixed slot number when collecting job profiling data. This

approach suffers from resource underutilisation or overutilisation. In addition,

the method requires intensive job profiling. The author [107] proposed AROMA

system that followed the same approach as [102] in classifying applications using

clustering technqiues and SVM algorithm for hadoop job performance modelling.

The author applied a pattern search technique that is based upon a SVM model

to find the optimal resources to meet the required target at a reduced cost. The

variation of slot and task numbers were ignored by AROMA when the model was

built, which had a negative impact upon the accuracy of the model, and the op-

timisation goal. In addition did not describe how the problem was mathematically

formulated.

The author in [104] improvd th work proposed by [160] and proposed a classical

language multiplier to optimise resource provision, again based on the Hadoop per-

formance model, which was generated by using locally weighted linear regression.

The application specific characteristics were ignored and the aim was to focus

on map and reduce task durations during modelling to estimate resources (i.e.

map/reduce slot).

CRESP applies a search technique that is brute force in order to provision

optimal resources within a Hadoop cluster[154] [58]. This is based upon a cost

model deployed, which estimates job performance, as well as organising the jobs

resources for the job through the use of a regression technique. The brute-force

method generates a single solution for testing when there is a large search space

with a number of representative and attributes that have a wide distribution of

values, which takes longer to process when attempting to reach an optimal solu-

tion.

Our technique is different from all previous works in that we evaluate various

Machine Learning algorithms using the WEKA tool [39] to find the best model

with high prediction accuracy, modelled using feature vectors specifically related to

video analytic application performance metrics such as resolution, file size, Hadoop

configuration parameters and system performance (i.e. resource consumption)

that affects video analytic services and uses them as input to the Machine Learning

algorithms. In addition, for performance optimization and resource provisioning

we have mathematically formulated the optimisation problem and presenting the

genetic algorithm method for fast and effective results. We finally compared the

result with other optimization technqiues Pattern Search and Language Multiplier

technqiues that were proposed in literature.
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2.7 Summary

This chapter introduces the background of intelligent video surveillance system,

cloud computing paradigm and the Hadoop framework. In addition, the Hadoop2-

YARN is discussed to show the improvements made in Hadoop2 over Hadoop1.

In this thesis, research is limited to the Hadoop1 MapReduce processing engine in

order to avoid version compatibility issues that are often found with the software

and tools used to construct distributed video analytics. Moreover the related work

were described to identify the gaps in the research field.

Having completed the above study of the research background and related

work, in the following chapters the thesis aims to contribute with novel knowledge

that will further extend the state-of-art in the area of video surveillance system

deployment, analysis, modelling and optimisation.



Chapter 3

Video in Cloud Computing: The

Challenges & Recommendations

In this chapter, we review the legal implications of deploying large scale video

surveillance in a public cloud and determine the practicalities and challenges that

need to be met to abide by the law. The research findings of this chapter provide

recommendations for the design of a large-scale cloud-based video forensic sys-

tem. The chapter brings together legal, policy related and technical requirements

pertaining to the design, installation, commissiond and operation of large scale

video surveillance in a public environment bridging an existing gap in academic

and industry research.

3.1 Introduction

Present video surveillance systems that typically consist of a large number of dis-

tributed and networked CCTV cameras, collect significant quantities of digital

evidence that can be used for crime forensics. The evolution of such systems have

at present resulted in a significant proportion of the labour intensive video ana-

lytic and forensic tasks, usually carried out by trained CCTV operators, to be

alternatively carried out by intelligent, automated, computer based analysis sys-

tems. Such systems use image processing, computer vision, pattern recognition

and machine learning algorithms to detect and recognize objects of interest (e.g.,

people, vehicles etc.) and identify events of significance (e.g., person running, car

speeding, people fighting etc.) enabling real-time alerts/warnings (i.e. video ana-

lytics) to be generated or objects/events to be indexed and stored in a database

to allow on-line search to be carried out (e.g. search for a man wearing a red shirt

who entered a specific named building between 1pm to 3pm during a given week)

for video forensic investigations (i.e. post incident analysis). However conducting

41
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efficient video forensics analysis on large datasets of video by distributed camera

systems require high performance computing capabilities due to the complexities

of computing algorithms to be utilized and the significant storage capacity re-

quired due to the sheer volume of data usually recorded. These two requirements

increase the burden on the IT infrastructure to be used and introduce import-

ant challenges that need to be met to ensure practical viability of systems. In

response to meeting the above challenges at present there are initiatives to move

video analytics/forensics, typically carried out using dedicated storage and com-

puting infrastructure to the cloud to best utilize its potential benefits in providing

on-demand resource pooling (both compute power and storage). Although cloud

computing and related infrastructure can support the above mentioned critical

requirements of modern intelligent, automated video surveillance systems it also

introduces other technical and non-technical challenges. Security and privacy risks

are the most cited challenges in the area of cloud computing[75] due to the custom-

ers/users lack of physical control and the multi-tenancy nature of the cloud. Yet

this is of fundamental importance in video evidence analytics and forensics, given

the potential legal use of the evidence stored and/or created. Since video evidence

gathering and use is regulated by law, it is crucial to review the legal implications

of deploying video surveillance in the cloud and determine the practicalities and

challenges that need to be met to abide by the law.

According to the research conducted within the remits of the research presen-

ted in this thesis there has not been any previous attempt in studying the legal

requirements of a video forensic system and investigating the viability of develop-

ing a cloud based computing system for video forensics, given the known security

and privacy threats of cloud computing.

While allocation and provisioning of virtual and physical sources in cloud are

outside the control of cloud user, users need to specify the type and number of

virtual machines that meets their application performance goal. This is a challenge

since creating many virtual machines may lead to underutilized resources and may

not also be cost-effective since in a public cloud the processing time is charged in

an hourly basise[e.g Amazon EC2]. Furthermore, if less machines are created, it

may affect performance expectation. This resource provisioning issue is an open

research problem in cloud computing infrastructure management. This aim is to

optimize the underlying resource utilization with a trade-off between resource cost

and performance to meet a given customer’s service level agreement(SLA) within

a given budget.

This chapter attempts to bridge these research gaps and make relevant recom-

mendations for the design of a large-scale, cloud-based video forensic systems.
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3.2 Related Work

Some recent initiatives have focused on gathering video surveillance data from a

system of distributed IP cameras and carring out basic video analytic tasks such

as, motion detection, object identication, etc., in the cloud, overcoming storage ca-

pacity and processing power limitations of traditional video analytic applications.

One example is the releases of the commercial cloud-based video surveillance sys-

tems, ”Video Surveillance as a Service (VSaaS)”, which is expected to grow in

usage by 17% annually[38]. VSaaS is software-as-a service (SaaS) powered by Mi-

crosoft Windows Azure cloud platform. It provides High dimension (HD) video

quality, real-time alerts performing motion detection, through heterogeneous con-

nected devices. However, VSaaS is used for alert based video analytic tasks and

do not support an extensive range of algorithms that can work together to sup-

port large-scale post incidence (i.e. video forensic tasks) video surveillance. Hence

the basic dataset stored is nothing beyond the original video data captured and

the usage of the service is so far not to support evidence in courts, but just as

an alert system that can be used for monitoring security of a locality. A fur-

ther drawback of VSaaS is that the infrastructure is beyond the user’s control,

which raises security and privacy concerns. In addition the compatibility issue

of integrating cameras to VSaaS software adds extra hardware costs [122]. Some

recent efforts from academic research addressed the challenges in the context of a

cloud-based video surveillance system. The following sections introduce some of

these research findings: Neal et al [122] investigated the capability of cloud ser-

vices to support the requirements of hosting a high-resolution video surveillance

management system and studied the cost in various cloud service models based

on market pricing model. The author proposed cloud computing as a solution for

VSM and highlighted issues to be considered such as the cost, legal requirements

and compliance. These issues are considered and discussed in detail in this pa-

per. Anwar Hussain has a number of contributions to video surveillance in the

cloud. In 2012[90], he proposed a dynamic resource allocation scheme using a liner

programming approach for composite video surveillance streams with cloud-based

video surveillance system. A prototype of a system was implemented in Amazon

AWS. In 2013[88], he analyzed the suitability of cloud solution by comparing video

surveillance local infrastructure with his proposed cloud-based system in terms of

performance, storage, scalability, reliability and collaborative sharing of media

streams. The results demonstrated the capability of cloud computing to tackle

the mentioned issues. In 2014 [89], a prototype design considering issues from

his previous work was implemented and tested on Amazon EC2 platform. The

author raised concerns in relation to the security and privacy factors and thus
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suggested a hybrid-cloud solution as an alternative. Yong-Hua et al[167] proposed

a prototype design for cloud-based video surveillance implemented in a private

campus network. The design was focused on exploring the interaction between

system components: the surveillance system, the browsing system and the storage

system. Rodriguez and Gonzalez[137] proposed a cloud-based video surveillance

system and focused on scalability and reliability issues in comparison to a tradi-

tional surveillance system. The proposed system was operated by optimizing the

transmission of video streams between the client and cloud server, depending on

network conditions, to avoid data loss in case of cloud failure or excessive net-

work traffic. In this work video data was received and processed in the cloud,

attending to security and privacy consideration. This was done by using security

mechanisms such as, data encryption and secure transmission. The authors of

[89],[167] and[137]utilized a cloud computing model to perform some basic image

processing and computer vision algorithms. This work was limited with the design

of fundamental video analytic tasks and no technical details were discussed.

As discussed above although some work has been presented in literature on

cloud based video surveillance, this work has been limited to implementing simple

video analytics tasks within a standard cloud based architecture. The key focus

of such attempts have been to optimally use the available infrastructure and en-

sure security of video evidence gathered. However, the surveillance systems used

were not of a scale that requires the storage of metadata about the stored videos

thus requiring the safeguarding of such annotated data. Further the computing

resource requirements were not sufficiently extensive to warrant considering the

best use of a cloud based architecture. Further such work also did not discuss

the legal requirements of a surveillance data gathering and investigatory system.

Nevertheless such requirements warrant special features of both architectural and

security requirements of a cloud based implementation. The key focus of the

research presented in this paper is to bridge this research gap in making viable

recommendations for a cloud based architecture for video forensics.

3.3 Security and Privacy Requirements of a

Video Surveillance System

Intelligent CCTV surveillance systems used in public areas are installed by inter-

national, national and local governments to help prevent/detect crimes. Therefore

they should be operated in such away to preserve confidentiality, integrity and per-

sonal privacy, by following appropriate laws and adopted codes of practice [41].

From country to country the legal requirements can differ in the details but the
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essence of the requirements would be the same. In this section we focus our in-

vestigation on UK based legal and regulatory frameworks. It is noted that in the

design, implementation and operation of a computer based, automated, CCTV

video forensic system the legal and regulatory aspects would be taken into ac-

count. If not the practical use of such a system as a forensic evidence gathering

and investigatory tool will be questionable. In this section we review and analyze

the security and privacy requirements of video surveillance based on the following:

1. Legal frameworks: provides information on the Data Protection Act (DPA)

that applies to video data processed in a cloud infrastructure[95] and also

how it is accepted as evidence in court[111], and

2. Research publications: that address current problems, solutions, and future

trends for research.

3.3.1 Review of the current legal framework that governs

video surveillance systems installed in the UK

In the UK, the operation of CCTV is regulated by Data Protection Act of 1998

and Human Rights Act of 1998. In 2008, the UK Information Commissioners

Office (ICO) issued guidance for the use of CCTV in the ”CCTV code of practice”

which was subsequently updated in 2014 titled, ”In the picture: A data protection

code of practice for surveillance cameras and personal information” to cover the

inevitable widespread use of CCTV systems and thus the essential need to focus

on data protection. The document provides practical guidance to those involved

in operating surveillance camera systems and provide recommendations on how

the legal requirements of Data Protection Act (DPA) can be met when monitoring

individuals and disclosing images for the investigation of crimes. The guidelines

highlight important criteria that should be considered in line with the requirements

of designing a video surveillance architecture. The criteria can be summarised as

follows:

• Ensuring effective administration - An individual/organization (i.e. the

Data Controller) should be taking the ownership of the data gathered. The

Data Controller is legally responsible for maintaining compliance with the

DPA([96],page 10).

• Storing and viewing surveillance system information - Recorded material

should be stored in a way that maintains the confidentiality and integrity of

an image. In some cases when Cloud computing is used the controller has
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to ensue that the cloud provider can ensure the security of the information

following guidance from ICO ([96] , page 12).

• Disclosure - Video records must be secured and only accessed when there is

a court order or information access right (freedom of information act 2012).

This is to prevent the potential misuse of the system by operators who

could spy on people, collect unauthorized copies, and manipulate data and

marketing purpose which violate privacy and confidentiality of individuals.

Disclosure of any image should be consistent with their purpose([96], page

14).

• Retention - The DPA does not prescribe specific minimum or maximum

retention periods, which apply to all systems or footage. Rather retention

should depend on an organizations own purposes for recording images ([96],

page 19). Retention depends on the needs of a typical investigation that

might be carried out by an organisation. After the retention period the

data should be permanently deleted. However, recently UK government has

introduced specific laws for dealing with data retention to protect public

from criminals and terrorists [14].

A further guidance was published for the use of CCTV camera and Automatic

Number Plate Recognition (ANPR) systems in the form of ”Surveillance Camera

Code of Practice” by Home Office and Lord Taylor of Holbeach CBE [46]. The

guidelines include twelve principles that describe the best practices to be followed

in using surveillance camera systems and processing images and footage in public

places. This code of practice came into effect in England and Wales in 2013[15].

The guiding principles can be categorized into two groups as follows:

1. The development or use of surveillance camera systems, addressed in prin-

ciples 1-4 (chapter 3-page 12) - These principles are related to the purpose of

using the surveillance camera system, consideration of privacy and location

of individual cameras, transparency/signage of cameras and clear respons-

ibilities and accountability of surveillance systems.

2. The use or processing of images or other information obtained by virtue of

such systems, addressed in principles 5-12 (chapter 4-page 16).

The eight principles under category (2) above are related to the way that the

video feed is handled. These principles overlap with the requirements listed by

the ICOs principles [96] listed above, including, video integrity and authorization

access, retention and purpose of data disclosure. These principles are as follows:
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• Principle 5: ”Clear rules, policies and procedures must be in place before a

surveillance camera system is used, and these must be communicated to all

who need to comply with them.”

• Principle 6: ”No more images and information should be stored than that

is strictly required for the stated purpose of a surveillance camera system.

Such images and information should be deleted once their purposes have

been discharged.”

• Principle 7: ”Access to retained images and information should be restricted

and there must be clearly defined rules on who can gain access and for what

purpose such access is granted; the disclosure of images and information

should only take place when it is necessary for such a purpose or for law

enforcement purposes.”

• Principle 8: ”Surveillance camera system operators should consider any ap-

proved operational, technical and competency standards relevant to a system

and its purpose and work, in order to meet and maintain those standards”

• Principle 9: ”Surveillance camera system images and information should be

subjected to appropriate security measures to safeguard against unauthor-

ized access and use.”

• Principle 10: ”There should be effective review and audit mechanisms to

ensure that legal requirements, policies and standards are complied with in

practice, and regular reports should be published.”

• Principle 11: ”When the use of a surveillance camera system is in pursuit of

a legitimate aim, and there is a pressing need for its use, it should then be

used in the most effective way to support public safety and law enforcement

with the aim of processing images and information of evidential value.”

• Principle 12: ”Any information that is used to support a surveillance camera

system, which compares against a reference database for matching purposes

should be accurate and kept up to date.”

A closer study of the above principles reveal that the annotation of stored video

database (Principle 6) should be carried out only when there is a need for a forensic

investigation (Principle 11). Therefore the data within the annotation database

will only be created when it is necessary or for law enforcement purposes (Principle

7) and should be accurate and complete (Principle 12) at any given time. In other

words, a need exist for carrying out on-demand, real time data processing of large

datasets of captured video evidance.
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3.3.2 Review of the legal framework governing video to

be used as evidence

Video footage evidence, is defined as: ”the presentation of visual facts about the

crime or an individual that the prosecution presents to the court in support of their

case”[62]. Once video evidence is collected from any type of storage media it must

comply with legal requirements to ensure its admissibility in court procedures. In

order for any digital evidence to be admissible in court, Nagel [120] listed a number

of evidentiality rules required for any digital evidence to be relevant, authentic,

original or an acceptable duplicate and hearsay.

Other evidentiality rules found in literature [151] such as those that relate

to preservation, completeness and reliability is considered by Nagel as simply

methods of authenticating digital evidence. The work presented in [139] explained

how the court addresses legal issues when video is presented as evidence and

emphasizes that video should be authenticated by testifying what is on the video

is an exact representation of what should be on the video footage. If no witness is

able to authenticate the surveillance video, then under the silent witness theory a

judge can determine if the video can be authenticated if the following requirements

are met [139]:

• There is evidence establishing the time and date of the video, which can be

found in the metadata files of the captured videos.

• There was no tampering with the video.

• The video equipment used was sound.

• There is testimony identifying the participants depicted in the video.

This links to a reported court case in [120] which considered the use of hashing,

metadata, and collection of data in its native format, as ways to authenticating

evidence [111]. Even if evidence cleared the authentication process, additional

evidential rules such as originality, preservation and hearsay will also apply [120].

An example of this is when a judge requests for a still-frame photo extracted from

the video surveillance footage and compares it with the original video captured

from the camera to ensure its originality and to avoid the possible misleading of

the jury [123][43]. This confirms the importance of securing video surveillance

data in-transit and at-rest, to preserve its integrity.

The process of investigating a crime via camera surveillance involves extract-

ing the original video sequence and its associated meta-data files from recorded

systems [32]. A given video files reliability to be used as evidence can be met by
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technical authenticity methods such as using an audit trail, encryption or water-

marking [17].

Modern video surveillance systems such as that presented in section 2.1.1,

integrates various image processing, pattern recognition, machine vision and com-

puter vision techniques for forensics video analysis. The operation of these al-

gorithms affects the integrity of the resulting images but not their authenticity

[62]. However, the use of processed images is not a problem in the law of England,

Wales and Scotland as long as the user(investigator) is able to perform an audit

trail to give evidence of the procedures used for generating, processing and storing

digital images that proves the image is an accurate copy of the original[17].

3.3.3 Research Publications

In addition to the information presented above based on various laws and codes of

practice, a number of research papers have been published in literature that relates

to the use of video footage as evidence. Qasim and Christian[114] summaried

the current state of the security and privacy requirements of modern distributed

video surveillance with respect of integrity, confidentiality and access authoriza-

tion mechanisms and underlined limitations of the existing approaches in large

scale video surveillance systems. Real-time video encryption, key management,

storage of video and its associated metadata, dynamic access controls are some

research challenges identified by the authors. Another research effort by Winkler

and Rinner [163] conducted a comprehensive survey of security and privacy pro-

tection related research work that have been published in the general area of visual

sensor networks, also relates to video surveillance systems. In this paper[163], se-

curity requirements to ensure data integrity, authenticity and confidentiality are

classified into four areas:

• Data-centric: include security of all data file cycles.

• Node-centric: include security of physical devices.

• Network-centric: include security of data transmission and communication.

• User-centric: related to awareness of how an individual’s personal data is

protected.

The solutions adopted to achieve these requirements range from trusted com-

puting, encryption to access control. Authors highlighted the need for the protec-

tion of security and privacy within the application layer where more research were

traditionally focused but also within the underlying infrastructure, a concern that

this paper demonstrates to be genuine within cloud domain.
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3.3.4 The Legal Aspects: Summary & Conclusions

The regulations and guidelines discussed above require appropriate technical and

security safeguards to ensure the confidentiality, integrity, availability and authen-

ticity of video, in order to be accepted as evidence in court and also to prevent

breaches of an individual’s privacy. The following is a summary of typical technical

security practices adopted to ensure legal compliance with DPA:

• Encrypt data in transit and at rest, to maintain integrity and confidentiality.

• Implement a data backup plan to prevent data loss.

• Implement a mechanism to remove data from storage media after the reten-

tion period.

• Implement an audit mechanism to monitor that published polices and legal

requirements are met.

There is one principle listed in DPA about international restrictions of data

transfer. This principle is not mentioned in any of the legal frameworks discussed

above. Data transfer is relevant to how cloud computing handles data for better

performance and resource utilization; this will be discussed in (section ). The

implementation of the technical security practices mentioned above are based on

common Information Technology (IT) practices presented in[114] and [163], How-

ever, there is no legislation that yet has specifically considered the use of cloud

computing[55] and virtualization technology for CCTV video evidence gathering,

processing and investigation. Therefore we consider security in cloud-based video

surveillance as a research gap to be further explored.

The following sections present security concerns and the associated technical

and non-technical issues relevant to using cloud computing as a environment for

video surveillance.

3.4 Cloud Computing Security Concerns

Migrating a video surveillance system and its associated metadata outside the

limits of an organization requires the cloud provider to provide a level of security

protection similar to that could be provided if the system is operated within a local

data centre [142], in a manner consistent with policies[99]. In fact, hosting data,

whether in a local data centre or in a public cloud, makes data exposed to the

same risks and breaches. Hence existing security measures can be implemented

[56]. Nevertheless, cloud computing inherits risks from the core enabling technolo-

gies such as multi-tenancy, web services, utility computing and the internet[78][65].
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This combination of cloud technologies makes the existing security controls not

applicable, thus requiring further research and appropriate modification [136]. Be-

sides, the concept of security and privacy are different depending on the law of a

given country or business requirements. This leads to different requirements and

protection mechanisms for data [57].

The centralized nature of resources and data in the cloud presents a more

attractive target to attackers[55], where one successful attack can make way to

follow up attacks against the whole system. This show how severe is the po-

tential for security breaches in the cloud. A number of real world security in-

cidents have been reported in literature that proves possibilities of cloud attacks

[42][65][105][135][136]. The main causes of these security incidents are a customer’s

lack of physical control and the multi-tendency shared environment[55][61][135],

which are vulnerabilities in cloud computing[166]. Surveys conducted by Inter-

national Data Corporation (IDC)[75] in 2008 & 2009 shows that security is the

top concern and barrier for cloud users, which reflects why the topic of security

has been considered the primary research focus in the area of cloud computing

[55][61]. The following sections refer to a review of literature that highlights the

technical and non-technical issues that relates to the security and privacy of cloud

computing.

3.4.1 The Cloud: Technical Issues

In literature several researchers have addressed cloud security and privacy from

the perspective of industry, governmental and academia to determine research

gaps, propose solutions and provide guidelines on best practices. Gartner Inc[53]

was one of the first contributors to cloud computing. Their work titled ”Assessing

the Security Risks of Cloud Computing” published in 2008, warns organizations

about the danger of migrating to the cloud, without performing a risk assessment

in order to evaluate cloud specific risks, such as privileged user access, compli-

ance, data location, data segregation, availability, recovery, investigative support

and viability. Further the European Network and Information Security Agency

(ENISA)[55] published a research article titled: Cloud Computing: Benefits, Risks

and Recommendations for Information Security in November 2009. The document

details a cloud computing risk assessment and provides guidelines on technical,

organizational, and legal issues of cloud computing. It further introduced cloud

vulnerabilities. Cloud Computing Security Alliance (CSA)[42] is another well-

known organization that has conducted comprehensive research on cloud security,

with a help of expert volunteers. They published their first report in December

2009 titled: Security Guidance for critical Areas of Focus in Cloud Computing [42]
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and updated it in November 2011 as version 3.0. The report provides analysis of

cloud risks identified in thirteen domain areas considering the architecture, legal

and operational aspects of the cloud, with recommendation on technical security

controls. In 2010, CSA released another set of guidelines titled: ”Top Threats

to Cloud Computing V1.0”, which identified seven top threats related to cloud

computing. In 2013 this work was extended and updated as ”The Notorious Nine,

Cloud Computing Top Threats in 2013”, the threats ranked in order of severity

[64], see figuee 3.1. As compared to the previous version of the guidelines, some

shifts in ranking is noticeable, where data breaches have been moved from the

5th ranked in 2010 to the 1st ranked in 2013. This observation is not surprising

due to the volume of data centralized in the cloud at present, which attract more

attackers.

Figure 3.1: CSA Top Threats ranking in 2010 & 2013[42][64]

In [53][55][42] a number of organisations identified the security risks in cloud

aiming to provide recommendations and guidelines when using cloud computing.

However, no technical details have been provided as how to secure the infrastruc-

ture or data and how to achieve compliance to data protection law[68].

In publications, the paper [77] conducted a quantitative analysis on cloud se-

curity challenges and identified seven cloud-specific issues that have extensively

received more attention in literature in terms of problems and solutions. The au-

thor classified them into a security model (considering network security, data se-

curity, interface, compliance, governance, legal issues, virtualization). The results

showed that compliance, governance and legal issues received more solutions than

problem citations, whereas the technical aspects such as virtualization, data leak-

age and isolation received less citation in terms of solutions. In [142][135][82], and

the security and the protection of cloud infrastructure focused on trusted comput-

ing, cryptography and access control mechanisms. Similar mechanisms have been

stated in video surveillance security[114]. Implementing any of the these mech-

anisms depends on the identified security metrics to quantify the improvement to

system security and to compare security alternatives with similar functionalities
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[116][114]. Given above, an attack surface metric can be used to identify the access

entry points that attackers exploit to target data integrity, confidentiality or avail-

ability and hence decide on security measures. Frank [67] presented cloud specific

security attacks in a technical infrastructure as a service(IaaS) cloud environment.

The author considered these risks as attack surfaces in IaaS caused by malicious

insiders (i.e a rogue cloud provider or malicious tenant). (C). Two scenarios of

cloud infrastructure were illustrated and discussed, namely: multi-tenancy cloud

host and single-tenant cloud host. In multi-tenancy scenario, multiple customers

in a form of Virtual machines (VM) reside on the same physical machine and share

resources. A single-tenant multiple virtual machine is only dedicated to a single

customer, this concept is also called an off-private cloud. Both scenarios present

security risks.

3.4.2 The Cloud: Non-Technical Issues

Legal issues and compliance have been recently addressed by researchers [48][111][103][66]

analyzing the key issues outlined by ENISA. Within the context of this research

we will focus on the legal issues related to data protection, data security and data

location in the cloud, since they are considered main requirements for compliance

with video surveillance laws. The following questions will be addressed in this

section:

1. How data protection law applies and what are the responsibilities of the data

controller (owner) and the data processor (provider) in a cloud environment?

2. How should data be stored and operated?

3. Where can data be stored?

4. Who can access data?

3.4.2.1 Data Protection

In common pubic cloud computing scenarios, personal data is processed and stored

in a virtualized infrastructure, where multiple customers can share the same phys-

ical resources, and it can be transferred from one data center to another, without

the knowledge of the next location of resources. This can violate data protection

laws of an organization’s asset if no prior risk assessment was performed [53]. Two

documents providing guidelines have been published on the use of cloud comput-

ing by the European regulator [44] and UK Information Commissioners Office

(ICO) [95], which approves the use of cloud computing. The documents provide

guidelines to protect personal data in the cloud, explaining the procedures to be
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considered prior to moving to cloud computing to protect personal data and lists

the duties and obligations of data controller and data processors, in order to com-

ply with the principles listed in EU Data Protection Directive 95/46EC and UK

Data Protection Act 1998(DPA). Video data constitutes personal data thereby

falls under DPA [40]. The following sections will discuss the main points in both

ICO’s and DPA’s guidelines that are related to cloud computing.

1- Roles of the data controller & data processor:

How does the data protection law apply to the roles of the data controller and

data processor in a cloud environment?

The guidelines emphasized the need to identify the data controller (owner) and

the data processor (operator) and their interaction to identify who is responsible

to be compliant with data protection laws. This helps the cloud customer to un-

derstand their obligation and what data protection risks that cloud computing

presents and similarly, for the cloud provider to understand data protection re-

quirements to make their service more efficient to customers that are subject to

DPA laws [95].

The guidelines defined the controller as the one who determines the purpose

of processing personal data and has the highest responsibility for complying with

the DPA.The processor is the one who processes personal data on behalf of the

controller [95]. Applying these roles to our proposed cloud-based video surveillance

model gives the following assumption:

(The organization is the operator of the video surveillance system, for example a

local government council. They use a third party application for forensic video

analysis to run in a cloud computing environment. The organization will be a

data controller for the video data processed by the application since they are the

one who determine the purpose for which video data is processed. Cloud

computing platform will be acting as the data processor.)

Now by identifying the organization as the data controller, we understand

that all the duties and obligations imposed by the Data Protection Act 1998 are

upon the controller (data owner). This relates to the collection, storage, retention,

access, and ensuring that security measures are adequately placed by the processor.

2- Data Security:

How should data be stored and operated? The Seventh principle of the Data

Protection Act states that: ”Appropriate technical and organisational measures

shall be taken against unauthorised or unlawful processing of personal data and
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against the accidental loss or destruction of, or damage to, personal data” In

accordance with this principle, the security requirement is only applied to the

data processor by having to select the appropriate security measures taking into

account the type of data being processed and the harm that might result from

unauthorized access and misuse of the system. Putting this into the context of

the cloud, the location of data in relation to the data controller is different for

a public cloud. The data is stored remotely and the data control depends on

the cloud service model. Compliance with the seventh principle requires that

the cloud provider provides the basic security to data, and the customer (data

controller) reviews the guaranteeing of availability, confidentiality and integrity

of data through following an audit trail [95]. Figure 3.3, shows the relationship

between the role of data controller and data processor.

Figure 3.2: Roles of data controller & data processor

Given the above, The UK ICO guidance advices the data controller to assess

and monitor the security measures by arranging an independent third party as a

part of a standard certification to conduct a security audit of provider’s services

[117]. This will help a customer to monitor and check if the provider implements

appropriate security and also to comply with its data protection obligation. It

further reminds the customer to encrypt data in transit and at rest, to keep the

encryption key at the customer premises, make sure all data copies made by the

provider are completely deleted by the retention period. Data controller is not

to be considered complying unless there is a written contract. Therefore, there

should be a negotiation for SLA, including all requirements needed for data to

be stored and processed in the cloud and to prevent the processor breaching the

agreement.

3- Data Location:

Where is the data stored? The eighth principle of the Data Protection Act 1998

states that: ”Personal data shall not be transferred to a country or territory

outside the European Economic Area unless that country or territory ensures

an adequate level of protection for the rights and freedoms of data subjects in

relation to the processing of personal data”, Cloud provider may have data centers
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distributed across different geographical areas. This results in different laws and

jurisdictions applying across countries. A consumer may specify the location of

where data should be stored in their contract with the cloud provider (e.g. the

Amazon cloud), However, determining which specific server or storage device will

be used is difficult to verify due to the dynamic nature of cloud computing [155].

Even if they do, data may be subject to transfer without being informed[103].

This result in cross-jurisdiction by having to determine what law applies to which

country and activity. Referring to the eighth principle, processing personal data is

only restricted in EEA and to countries listed in the Safe Harbor Scheme[20] that

can ensure an adequate level of protection to comply with all principles and the

Act as a whole. There are some exceptional cases where data can be transferred

to a non EEA country but this requires conducting a priori risk assessment. The

cloud provider should guarantee lawfulness of cross-border data transfer and is

included in a customer’s contact agreement. Otherwise it could breach the eighth

data protection principle.

4- Subpoena and E-discovery:

Who can access data? When there is a subpoena by law enforcement agencies for

investigation, they may have the power to require the cloud provider to give them

access to personal data. However due to the shared multi-tenancy architecture,

this may cause other customers who may reside on the same physical servers to

be at risk of the disclosure of their data to undesirable agents. One solution that

can solve this problem is to encrypt data to ensure data protection in case provi-

sion for such disclosure [55]. However, malicious insider is another possible threat.

It can be that the employers working for the cloud provider who have access to

the system or an attackers virtual machine resides on the same physical machine

where data is stored.

It has been shown above that many security issues are found in cloud com-

puting, whether technical or non technical, due to a customer’s lack of control

and multi-tenancy nature of cloud computing. The security and privacy laws

that regulate video data does not take the virtualization environment into ac-

count, which present challenges for a cloud provider to comply with [68] within

a cloud based video forensic system. For example Amazon AWS [13] states that

its virtual infrastructure has been designed to provide high security and ensure

complete customer privacy to promote compliance with for e.g. healthcare and

other governments needs [3][12]. However, a question of trust still remains as a

challenge, whether cloud providers would comply with what they have promised,
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and how transparent they are about security breaches. Therefore the potential

use of clouds such as Amazon AWS for video forensics needs careful thought and

trusted collaboration with the service provider.

3.5 Cloud Computing Performance Concerns

One of the guidlines presented in ”Surveillance Camera Code of Practice” [46]

highlights the need for a surveillance camera system to be capable of capturing,

processing, analysing and storing images and information at a quality which is

suitable for its intended purpose[46]. This principle is related to the performance

issues around cloud computing, when deploying effective surveillance system in

the cloud.

A cloud computing platform presents a unique apportunity for batch-processing

video analytic tasks to deliver video analytics as a service by using multiple ma-

chines to analyse the significant scale of data at a reduced overall cost and less

processing time, hiding the operational complexity of likely parallel execution from

its user. The resources are provided from the cloud as virtual machines (VMs)

which can reside on a single server or on different servers resulting in resource shar-

ing for better system resource utilization. Many approaches exsit in processing

big data in a cloud based platform to solve distributed computing problems and

selecting of any particular one of them depends on the charactersitics of the data.

For example, Hadoop, which is an open source implementation of the MapReduce

model, has been widely adapted by the community for data storage and intensive

processing. However, according to Ambrust et al.[47] the performance of a cloud

computing based solution is unpredictable due to overheads sourced from virtuliz-

ation and sharing of resources. A number of researchers have investigated this

issue[172], but there has been no attempt to study the impact of virtualization

on carrying out video analytics in a cloud based distributed system. In addition,

cloud users will benefit from a deeper insight into the achievable performance im-

provement when a distributed computing approach is adopted for video analytics.

Cloud service providers such as the Amazon EC2 Cloud now support Hadoop

user applications. However, a key challenge is that the cloud service provider’s

incapability to provide resource need estimate for user computing needss with

specified requirements. For example a user requiring the real-time processing of

100 CCTV cameras simultaneuosly for video analytic/forensic purposes cannot

obtain from the service provider an accurate estimate of the distributed comput-

ing resource, which will have to be allocated to the job. Currently, it is the user’s

responsibility to estimate the required amount of resources for their job running in

a public cloud. While There are a number of proposed models for performance op-
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timization of a Hadoop based system and for the associated resource provisioning

for general data, the case of a performance model for hadoop-based video analytic

system has not yet been studied. Nevertheless the bursty nature of video data

that makes performance needs patchy and bursty makes video data different from

general purpose data. Hence it is vital this research problem is investigated. In

Chapters 4 & 5 a novel solution to this problem is presented.

3.6 Conclusion & Recommendation

In this chapter we have investigated the security and privacy related legal require-

ments and performance related concern in deploying cloud-based video surveillance

systems. In particular the study was conducted in relation to a video forensic sys-

tem that requires data storage both in its original and annotated formats, operat-

ing a number of video surveillance algorithms and conducting an effective search.

Maintaining security at all levels of the video forensic system when deployed within

a cloud is important. Table 3.1, summarises the key legal requirements that ori-

ginate from the data protection act that governs the legal compliance of a video

surveillance that can provide evidence that will be legally acceptable. The table

further tabulates the challenges one must meet when using a cloud infrastructure

to deploy a video forensic system.

Based on the information summarized in Table 3.1, the following recommend-

ations can be made:

• Data within the annotation database of the video forensic tool should only

be created when it is necessary for law enforcement purposes. This usually

happens occasionally when there is an investigation request. When imple-

mented within a cloud based environment to store the large amounts of

annotated data produced when an investigation needs to be carried out, the

on-demand resource pooling characteristics of a cloud should be effectively

utilized. For effective processing of large-scale video data it may require sev-

eral machines for parallel distributed processing. From the technical point

of view, the use of cloud infrastructure brings many advantages to the video

analytic architecture in terms of reducing investment cost on hardware that

to be utilized occasionally and provide high scalability by easily increasing

resources (server, processors, storage) to support a large number of cameras.

Our research investigated the possible methods used to process video analyt-

ics in the cloud. Most of the previous work in cloud-based video surveillance

system take advantage of the Amazon cloud [138][89] or build their own
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Table 3.1: Summaries of the key legal requirements, the corresponding video sur-
veillance system compliance and cloud computing challenges.

Legal Requirement
(Data Protection
Act)

Video Surveillance Sys-
tem Compliance

Cloud Computing
Challenge

Fair & Lawful
Controller is responsible to
ensure that the law is
obeyed

Provider’s Level of trans-
parency is not clear

Purpose

Annotation of stored video
database is carried out only
when there is a need for a
forensic investigation

Possibility exists for mali-
cious insider attacks

Accuracy
Ensure authenticity & in-
tegrity of video data

Possible data loss /leak-
age/manipulation

Retention
Retention requirements can
depends on organization us-
ing the system

For a complete removal of
data a device need to be
destroyed which is not pos-
sible in cloud environment.
Also Attackers may be able
to recover data due to re-
source sharing

Security

Protect annotation engine
(i.e. processing algorithms),
video database & annota-
tion database

Protect annotation engine
(i.e. processing algorithms),
video database & annota-
tion database

International data transfer
Transfer data only within
EEA & countries having
similar data protection laws

Specific data location is un-
known

Table 3.2: Summaries of performance requirements, the corresponding video sur-
veillance system compliance and cloud computing challenges.

Performance
Concern

Video Surveillance Sys-
tem Compliance

Cloud Computing
Challenge

Virtualization Reliable quality Perfromance unpredicted

Computing Resource Scalability
Distributed computing effi-
ciency
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cloud-like environment[167], both approaches did not explain the processing

workflow of video analysis algorithms used and how the video is distributed

and stored. Distributed processing and distributed storage are the solution

that our research focus on to solve storage and computational processing lim-

its by choosing an effective data distribution scheme in terms of availability,

security & performance.

• Security measures must be put in place to prevent video data from unau-

thorized access and to preserve accuracy, while in transit (network) and at

rest (storage). Although various security measures are implemented by cloud

providers, known real world examples exists of past, unpredicted breaches

and outages. Although a definite solution does not exists as yet, on-going

work by both academic and industry researchers should ensure improved

levels of security in the future. The controller of a video surveillance system

is responsible for ensuring that the system complies with security and pri-

vacy requirements. When implemented within a cloud based environment

the cloud provider’s level of transparency is not always clear to the control-

ler. Therefore the controller can outsource to a reputable third party auditor

to monitor security and levels of disclosure of data and if the cloud provider

comply with SLA(Service Level Agreement).

Nevertheless, video surveillance data and its associated metadata are very

sensitive and not suitable to be stored in a public cloud. Using a private/hybrid

cloud can be an alternative solutions at present to have wider control of the

data. Processing video analytics in a private cloud will be the focus of this

research.

This chapter identified issues that are important to consider when using cloud

based technologies and the findings open new areas for significant research. The

scope of this thesis is limited and related to the performance concern when us-

ing cloud, see Table 3.2. Considering the above requirements and challanges for

deploying a scalable distributed video surveillance system, we found no literat-

ure that provide a significant research on the performance of cloud-based hadoop

architures, specifically for video applications. However, the exsiting literature fo-

cused on the implementation of the system and the promising results motivated

us to expand the research to provide a detailed analysis of the behaviour of video

analytics application under different constraints and parameters applied to the

cloud platform.

Given this, the chapters 4, 5 and 6 answer the research questions highlighted

in Chapter-1 (i.e. RQ 2, 3 & 4) that are based on a selective video analytic

application’s performance analysis, modelling and performance optimization under
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constraints computing resources, within a cloud-based Hadoop architecture.



Chapter 4

Video Analytics Applications

Deployment on Hadoop

Deploying large scale video surveillance requires the use of significant computing

resources that often need to be scalable. Such resources will also have to be of

a distributed nature to satisfy practical design requirements and also sometimes

procedural and legal reasons. The recent popularisation of cloud based technolo-

gies giving access to scalable and elastic computing resources make the cloud a

viable option to support large scale video surveillance.

Chapter 3 described two key challenges behind the use of a cloud based ap-

proach for large scale video surveillance, namely, the security concerns around

using the cloud for an application that has stringent data security requirements

and the complexities behind allocating cloud based computing resources to an

application that needs scalability and elasticity in resource allocation. Whilst ad-

dressing the first challenge is out of the scope of the research context of this thesis,

the focus of this chapter is to initiate fundamental research that can eventually

address the second challenge. However studying the resource allocation related

issues within a real cloud is challenging due to the inability for a general user to

control the allocation of resources. Building a private cloud for the purpose of

research and development could be a costly and time-consuming task. As a result

this is an area that has not been studied in detail in previous literature.

Considering the above observations in this chapter we propose the deployment

of a selected video analysis task (i.e.face detection and motion detection) within

a single Physical Machine (PM) virtualised to contain multiple Virtual Machines

(VMs), supported by a Hadoop based architecture. In particular the focus is to

identify the parameters that play a significant role in the distribution of computing

resources and study their effect in the overall data processing speed. In Chapter-5

we demonstrate how these parameters can be used within a model that can then

62
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be effectively used for the efficient allocation of resources.

4.1 Introduction

CCTV camera systems are installed in many public places to enhance security

and surveillance. Often such data is gathered for manual processing by CCTV

operators but more recently large-scale data collected by such syetems have been

subjected to automated computer based processing, namely video analytics and

forensics. Every CCTV camera produces large amount of video data per day.

Therefore accumulating video streams often from a large amount of CCTV cam-

eras present within a typical CCTV system produce a significant amount of data

that conventional analysis platforms that are often supported by a single computer

(or processor) may not be able to handle in a fast and efficient way. Thus there is

a need for the use of a distributed data storage and processing platform such as a

cloud (either public or private), to perform seamlessly scalable distributed video

storage and processing. One important need in such a cloud based deployment is

to fully understand the computing resource requirements so that such resources

can be cost effectively allocated. For example a CCTV operator intending to use

a public cloud would aspire to know what cloud resources need to be deployed so

that the processing can be done in the fastest (or within a known time constraint)

and the most cost effective manner. The same operator wanting to use a private,

purpose built cloud will want to know the resource needs to estimate the cost of

building and installing a private cloud that can serve the purpose for which it is to

be used. Unfortunately such a resource modelling, estimation and prediction task

is impossible to be carried out as a research exercise within a public cloud, due to

limitations of knowledge of the operation of such a cloud to a general user. Further

performing such an exercise on a purpose built private cloud will be both costly

and time consuming. Review of literature conducted within the context of the re-

search presented in this thesis has revealed that a number of industrial initiatives

such as Intel[16],Pivotal[29] etc. and previous academic research have focussed ef-

forts to deploy video analytic applications in a cloud-like, Hadoop environment to

enhance performance and scalability. Such a design and deployment provides an

environment that can be subjected to R&D in resource allocation in a flexible and

unrestricted manner, thus making such an approach highly suited for the research

being proposed. However it is noted that in a practical deployment the challenge

of a Hadoop based architecture is that it requires several machines for effective

processing, which then adds investment cost in the infrastructure. Therefore fully

understanding the true resource requirements, given the knowledge of the CCTV

task to be processed is important. In other words one should be able to model the
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resource requirements in order to effectively predict and forecast resources to be

utilised within the Hadoop based implementation. Unfortunately no work exists

in literature addressing this issue in detail. Instead, the use of cloud computing

infrastructure has been proposed in literature to solve both scalability and re-

source related cost [47], assuming unlimited scalability and ignoring cost-effective

resource usage. It is noted here that cloud computing infrastructure is built on its

core technology, virtualization, which provides on-demand elastic resource provi-

sioning to meet scalable user’s requirements, the same principle on which a Hadoop

based architecture is built. Thus a Hadoop based architecture provides a cloud-

like environment in which flexible, un-restricted research into resource allocation

in a cloud based deployment can be effectively carried out. Given the above, in

this chapter we investigate the resouce modelling and prediction of resource re-

quirements in deploying a scalable video analytic application on a Hadoop based

framework running on virtualized cluster. It is shown that this will enable one to

model the resource needs when the same application is to be deployed in a cloud,

hence providing answers to a number of open research and practical problems.

For clarity of presentation this chapter is organized as follows. In section 4.2 we

introduce the design and implementation of a selected video processing application

(face detection and motion detection algorithms) within a Hadoop MapReduce

architecture. In section 4.3 we present the experiments that are conducted to

characterise the performance of the implementation, enabling the modelling of

resource requirements, in chapter-5. In section 4.4 we provide experimental results

and a detailed analyses. In section 4.5 we provide discussion. We finally conclude

in Section 4.6.

4.2 Methodology

In this section, the design and implementation of a simple video analytic system,

i.e. a face detection and motion detection algorithems, in a Hadoop based virtual

cluster environment is presented with the aim of investigating the research ques-

tions highlighted in section 1.2. Although the applications simple they are very

much representatives of the type of most common video analytic tasks.

4.2.1 Video Dataset Description

The experiments were conducted on two different video datasets obtained from a

benchmark website [34]. One video contains crowded scene with many images of

different people (buddhist walking at a temple in queues), we refer to this video

as type1. The other video contains less crowded scene of people walking in/out



65

a train station, we refer to this video as type2. These two terms will be used

throughout the thesis to distinguish between the two videos. More details about

each video file is given in Table 4.1.

Table 4.1: Video files details .

Video Type Content Resolution Format Frame Rate

type1 crowded 720x576 & 360x288 mp4 25
type2 less crowded 720x576 & 230x288 mp4 25

4.2.2 Video Applications Description

4.2.2.1 Face Detection Algorithm

The algorithm used in this thesis is based on Viola Jones face detection algorithm

using Haar Feature-based Cascade Classifiers. The idea is to scan the detector

many times through the same image each time with a new size. The face is

detected and the feature is extracted using Haar feature where each feature is a

single value obtained by subtracting sum of pixels under white rectangle from sum

of pixels under black rectangle.

Viola jones algorithm uses a 24x24 windows as the base windows size to start

evaluating these features in a given image. The algorithm uses Adaboost a machine

learning algorithm to eliminate the large number of haar features for every single

24x24 sub window in any given image that can be redendent or not useful and

select only the features that are very useful for the prupose of detection that

needed to evaluate. After these features are found, a weight combination of all

these features is used in evaluting and deciding any given window has a face or

not. And to reduce the computational power needed to sum up all th pixel values

under the black and white rectangles every time, the algorithm use the concept of

integral image to find the sum of all pixels under a rectangle with just four corner

values of the integral image. The algorithm uses a casdade classifer composed of

stages each contaning a strong classifer. So all features are grouped into several

stages where each stage has certain number of features to determin whether a

given sub window is face or not. A given sub window is discarded as not a face.

Figure 4.1 illustrate how the algorithm works in our video type1 dataset.

4.2.2.2 Motion Detection Algorithm

The algorithm used in this thesis is on background subtraction based on frame

difference method. It detect moving of object from a sequence of frames, i.e. from
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Figure 4.1: Image output from face detection Algorithm

the difference between consecutive frames. It adopts pixel-based difference to find

the moving object. When there is no movement in the image sequence then the

difference between the two images shows a black binary output image. When there

is a movement the binary image of the difference between the two frames shows

motion having white colour and where there is no change shows black colour.

Figure 4.2 illustrates how the algorithm applies on our video type1 dataset.

Figure 4.2: Image output from motion detection Algorithm

4.2.3 Hadoop System Design Overview

The scalable Hadoop-based video analytic architecture used in this research is

similar to that adopted in [149] and [179]. However, the proposed platform is

virtualized. The system consists of an Apache Hadoop framework (discussed in

section 2.3) and a collection of open source software applications such as the

OpenCV library for video processing, FFmpeg for video splitting & frame extrac-

tion, javacv wrapper for integrating OpenCV and fuse-dfs, to build a distributed

video analysis system. For each virtual node of the Hadoop cluster, a Hadoop dis-

tributed file system (HDFS) is used for storing video splits ready for processing.

This approach is highly fault-tolerant and is suitable for large datasets[25] and

using a MapReduce framework for distributed computation. Figure 4.3, shows

the architecture of video processing using the Hadoop framework. The following
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sections give a brief introduction about the functionality of the various system

components.

Figure 4.3: Hadoop framework for video analytic application

4.2.3.1 Input Video

The default way for HDFS to manage input data format is to split data into chunks

or blocks to be spread across a cluster nodes for distributed parallel processing,

each data chunk is an independent sequence of a data record. This method has

been utilized in literature for text data formats in order to read line by line,

records such as, logs, web documents etc. However, it is rather a challenge to

adopt the same approach in handling video file formats, as video data comes in

different format of containers, which consist of dependent frames that need an

efficient mechanism to split video at particular boundaries that makes each video

split meaningful[126]. Video files that comes from CCTV footage are stored as

compressed files, therefore compression format should be taken into account when

reading video chunks to decode into frames processed by mappers. Given this, the

custom Inputformat & RecordReader classes of Hadoop are required to overwrite

the default approach to read data.

In literature different approaches have been experimented on video input format

to enhance overall performance. For example [85] suggested the use of a 10 MB

input file size. However, our preliminarily results show an increase in execution

time when the file split sizes are smaller than the block size. This performance

degradation resulted from the overheads caused by starting and initiating many

mappers to process each block individually. In addition, our result might also

be in influenced by virtualization overheads. The authors of [59] used GoP tech-

niques and the authors[149] read a video file as a single input file. In our work we

followed[149] to avoid open GOP related issues.
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4.2.3.2 HDFS

To analyse a video file, HDFS should be able to read/write the recorded video

file and make it available to mpeg and OpenCV libraries for frame extraction

and video processing. The challenge is that both libraries can not be directly

accessed by HDFS since they are designed for a local system. Therefore, fuse-dfs

module, based on the Filesystem in Userspace project (FUSE)[19], was selected

as a method to mount HDFS on all nodes to a local file system.

4.2.3.3 MapReduce-based Video Analytic Application

For the proposed experiment a simple face detection algorithm and motion detec-

tion algorithms were implemented and tested as the custom MapReduce job. The

system makes use of FFmpeg for video file decoding and encoding and OpenCV

for the execution of the algorithms. Unfortunately these applications are C and

C++ based native libraries, whereas Hadoop is a java based run time environment.

Therefore the javacv wrapper was selected to provide a java API to Hadoop.

In the proposed research the Mapreduce-based algorithms were implemented

by modifying the default java classes utilized in different phases of mapreduce data

flow. Figure 4.4, illustrates mapreduce data flow showing the connection between

system phases and detailed steps of processing one video file, named InputSplit).

Figure 4.4: Hadoop performing a video analytic job

As illustrated in figure 4.4, initially when video file is stored in HDFS it is

generally divided into logical separate files InputSplits of the same size and dis-

tributed them across the cluster of VM nodes (see Figure 4.4). The known storage

locations of the Inputsplits are used by the Hadoop system (i.e. the master) to
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schedule map tasks on the tasktracker (of VM nodes), where data splits resits.

It is worth mentioning that a mapper takes the file as an input, so data locality

becomes important.

In our case we consider the input video file as a complete file to be processed

as one mapper by overwriting default Hadoop isSplitable() method in FileInput-

Format class. We avoid splitting the input file for reasons detailed in section

4.3.1.1, i.e., a compressed video file consists of correlated frames and hence ran-

dom splitting will cause dependent frames to be processed in different Inputsplits

thus gives non-decodable files by FFmpeg.

When mapreduce face detection or motion detection task is executed, typically

it should first calculate the splits for the job by calling getSplits. In the proposed

configuration only one Inputsplit is considered as discussed above. The application

will send this split to the master jobtracker to schedule a map task to be processed

by the only tasktracker (a VM). The details of the map and reduce phases are as

follows:

• In map phase:

– VideoRecordReader class: Map task uses ReaderRecorder to de-

code and extract the sequence of frames out of the InputSplit by calling

FFmpeg tool. Each decoded frame is then represented by a key-value

pairs. The Key is a unique frame id corresponding to the frame num-

ber within the sequence and the value is the data of the corresponding

frame. Subsequently Inputsplits in a form of key-value pair are sent to

the map function to process. For instance a video file have the following

sequence of frames & transformed into (key,value) pairs, see Figure 4.5:

Figure 4.5: Video (key,value) pairs generated from decoded frames
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– Mapper function: Takes key-value pairs generated from previous

phase and subsequently group them depending on the video analytic

algorithms requirements as single frames like face detection algorithm

or series of frames like motion detection algorithm. If there are more

than one reduce mapper the output is partitioned by key and is sent to

the buffer as input for the reduce phase. Map output is named as an

intermediate output.

• In Reducer phase:

– Shuffle phase: Transfers intermediate data from the mapper nodes

to the reducer nodes scheduled by the jobtracker. Reducer deals with

(key, value) as input, therefore any node (VM) can perform the reducer

task and there is no need for concern about data locality.

– Sort phase : It sorts intermediate inputs that comes from the different

mappers, by key.

– Reducer function: Each reducer takes all key-value pairs with the

same key and merges them, and subsequently applies the face detection

or motion detection algorithm on the frames (i.e., values) according to

the instructions within the java code representing the computer vision

algorithm. Finally the results are sent to the class OutputFormat.

– OutputFormat: Generates output in a form of text including the

frame number in which a face is detected and the locations of face/s

on the frame. Finally the Record-Writer is used to write the results to

the HDFS, ready for the application to read. .

The output for Mapreduce face detection application is written in a text file

showing the coordinates (left, top, width, height) as location of faces in each

video frame(images). The output for Mapreduce motion detection application is

also written in a text file showing the number, time and duration of the detected

motion. We checked the accuracy of these applications when running in hadoop

environement with that running in stand-alone system, we found similar results in

both scenarios. This is expected since in Hadoop distributed system each machine

processes the same application code on every video file then merges the output.

Table 4.1 provides the pseudo code for the mapreduce functions of the face

detection (i.e applied on frame by frame basis) and motion detection algorithm

(i.e applied on overlaped frames).
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Table 4.2: Pseudo code for the implementation of a single-frame and overlapped-
frame oriented applications based on Hadoop MapReduce.

Map Phase:

Inputs: <frameID,frame>
Outputs: <groupID,EncodedFrame>

if Single-Frame-App
// if the application is single
frame oriented

groupID=frameID
EncodedFrame=frame

else

groupID= get-episod(frameID)
// determine which group
this frame belongs to

EncodedFrame= <frameID,frame>
//encapsulate each frame
with its id

end

Reduce Phase:

Inputs: <groupID,encodedFrame-set >
Outputs: <groupID,output-data>

if Single-Frame-App
for each frame in encodedFrame-set do

output= proc-single-frame(frmae)
// a custom proedure pro-
cessing a single frame

output-data.add(output)
end
else

encodedFrame-array= sort (encodedFrame-set)
//restore the order of the
frames in one group

output-data= proc-episode(encodedFrame-array) // a procedure for processing an episode
end
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4.3 Experimental Testbed Set Up

4.3.1 Virtual Cluster Configuration

The Hadoop-based face detection/motion detection applications described in sec-

tion 4.2.2 are implemented in a small scale virtual environment consists of one

physical server machine deployed with KVM (Kernel-based Virtual Machine) that

consolidated into multiple machines called virtual machines (VM). Each VM oper-

ates independently from the others. As described in Figure 4.6, master and slave

nodes are built upon a virtual cluster sharing resources such as CPU, memory and

network I/O. This type of deployment has advantage of saving power consumption

and maximize resource utilization.

Figure 4.6: Hadoop virtual topology

The experiments were evaluated on a Hadoop virtual cluster consisting of nine

virtual nodes, i.e., one master node and eight nodes dedicated as slaves. The

hardware conguration is the same for all virtual nodes (4 cores & 8 GB memory).

The software configuration across all node are given in Table 4.3.

The application run time is our performance metric to investigate the gained

acceleration. We used cluster size, video format, video le size, resource capacity as
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Table 4.3: Software configuration for the cluster of VMs.

Software Version

Guest Operating System(OS) CentOS 6.6
Java enviroement jdk 1.7.0
Hadoop distribution Apache Hadoop 1.0.4
Replication factor 2
OpenCV v1.0.4
JavaCV Compatible with OpenCV
Ffmpeg v0.6.5

controlling variables to evaluate the behaviour of Hadoop cluster. Each experiment

was conducted 3 times under exactly the same condition.

Hadoop comes with more than 100 default conguration parameters[162]. In our

experiments we changed some of the signicant parameters to suit the underlying

cluster resource capabilities in terms of handling the application in Hadoop. The

replication factor was set to two, since it is a small scale cluster. The Java Heap

size was set to 1024MB to avoid memory swap and reduce the limitations in terms

of each running task. The number of map and reduce slot numbers which indicates

how many parallel tasks to execute by one datanode(VM), vary depends on the

experiment type and the available resources which is discussed in section 5.3.1.1.

4.4 Experiments Results & Analysis

In this section we present the performance of the face detection and motion de-

tection algorithms implemented based on a virtualised Hadoop cluster, the design

and implementation of which was described in the above sections. It is noted

that the objectives of the research proposed in this chapter is twofold: first to

investigate the performance gain achievable by the use of the Hadoop based vir-

tual cluster when compared with running two video applications, face detection

and motion detection algorithms in a standalone desktop computer that has been

configured with setting similar to a virtual machine used by the Hadoop based

cluster.Second, to evaluate the behaviour of the above systems when different

video related parameters and computing resources are used.

It is beneficial to study how the Hadoop based virtualised cluster of machines

can effect the algorithms performance, when different sizes of input video is pro-

cessed. For this, we conducted a number of experiments to evaluate the per-

formance gain considering execution time and speedup as performance metrics.

Graphes plotted in Figure 4.7 shows how Hadoop based framework is able to ac-

celerate the execution time using 1 to 8 virtual machines, when processing input
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video footage from 4 min to 20 min duration in incremental steps of 4 min. It

is observed that generally the execution time increases with the increase of input

file size/duration. This is expected as the face detection algorithm operates on a

frame-by-frame basis requiring ideally the same time to process each frame. The

same observation found in motion detection algorithm, shown in figure 4.8.

Figure 4.7: Execution time against number of VMs for face detection algorithm

Figure 4.8: Execution time against number of VMs for motion detection algorithm

An interesting observation found in figures 4.7 and 4.8. In Figure 4.7 when

using the 20 min input video the execution time falls by approximately 37.5%

when the number of VM is increased from 1 to 8 and for the shorter input video of

4 min this reduction is only about 6%. The larger number of VMs is able to more

effectively handle larger input video files due to the efficient handling of distributed

processing of data within the virtualised Hadoop environment. A closer inspection
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of figure 4.8 reveals that when the input video was 4 minutes long, upto 4 VMs

the execution time gradually decreased but an addition of a further VM slightly

increases the execution time. This is due to the fact that at a lower processing

need of the 4 min input video the fifth VM will be largely under utilised but will

need extra time with regards to overheads in the inter VM communication. It

is noted that at higher input file sizes an increase of the VM number from 4 to

5 continues to decrease the execution time. This is due to the fact that under

higher input file processing needs the fifth VM will be also be better utilised and

will therefore outperform the cost of overhead communication.

To further analyse the results presented in the Figure 4.7 and 4.8, we calculate

the speedup of Hadoop applications in terms of computation when processing the

four different sized video files using Amdahl’s Law[6]:

S = TS/TN (4.1)

Where, TS is the execution time of the face detection algorithm on a single VM

and TN represents the execution time of the Hadoop-based face detection on N

number of VMs. The results of this calculation are displayed in figure 4.9 for face

detection, and figure 4.10 for motion detection. It is clear that the Hadoop-based

virtualised distributed architecture achieves the best speedup in computation when

larger input file sizes are being handled.

These experiments demostrate the capability of hadoop to process large video

files by different applications charactristics and different video types.

Figure 4.9: Speedup analysis of Hadoop-based face detection

After achieving the first research objective of the chapter as discussed above,

a series of experiments were conducted on the implemented distributed video pro-

cessing system to study the impact of various configuration parameters of the

Hadoop architecture on system performance and performance effects of data scal-

ing. The key observations are summarised as follows:
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Figure 4.10: Speedup analysis of Hadoop-based motion detection

• When increasing the duration of the input video file, in other words when

processing more frames, total processing time increased. The results tabu-

lated in figure 4.11 shows that it is the reduce phase that takes the most

amount of time for execution in all cases of different input video file size.

We tested different video input file sizes, and in each time the reduce phase

consumes most of the application job execution time. This is because it is in

the reduce phase that the application algorithms are executed and applied

on each single input frame. Initially for our experiments we used one slot

within each reducer. This prevents any part of the video analytic applica-

tion, run in a parallelised manner, hence needing the maximum time for the

reduce phase.

Figure 4.11: Processing time when different video input size is used.

• With the aim of improving the reducer performance we added more reducer

slots to the VMs that contains the reducers, motivating the VM to attempt

to parallel process the video content. Although we noticed a slight improve-

ment in performance, this improvement was insignificant. The reasons are

two fold. The video analytic application being investigated has not been im-

plemented with parallelisation in mind (in fact it is serially written code) and
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thus even in the presence of multiple reducer slots the reducer tasks cannot

be effectively run in parallel. The slight improvement in performance is due

to some presence of unintended parallelism that is being better exploited by

the presence of multiple slots as compared to the case where each reducer

has one slot. This experiment justifies the need for not only provisioning an

appropriate virtual hardware configuration for parallelised implementation

but also the need for software parallelism in the code implementing the video

analytic application. It is noted that the latter is beyond the scope of the

research context of this thesis and is suggested under further work in the

thesis conclusion chapter, Chapter 7.

• Figure 4.12 shows an increase in processing time when number of video

input files increase while the number of VMs or the cluster size is fixed.

This is because the number of parallel tasks that can be run in the reducers

gets subjected to an upper bound. Due to this reason if one increases the

number of input video files each file requires separate mapping tasks (VM)

to be processed in parallel. Moreover, the overhead caused by starting up

and shutting down the required tasks increase processing time.

Figure 4.12: Processing time variation with different number of input video files
when the number of VMs are held constant.

• Referring to Figures 4.7 & 4.8, they illustrate the change of execution time

when the input video file size is held constant but the number of cluster nodes

are increased. To further investigate the reasons behind these observations,

we used the monitoring tool Ganglia[21], which is an open source tool, to

monitor a virtual machines resource utilization during a job’s run time. The

tool allows the utilization analysis of individual nodes. A close look at the

analysis results indicated that for the video analytic task at hand, upto 3

nodes, independent sub tasks from the video processing was automatically
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identified by the operating system that could run in parallel and hence all

three VMs were effectively utilised. However when more nodes are added,

the actual advantage that three VMs provided was due to further attempted

and unbalanced operations assigned to the fourth VM onwards. Whilst the

excess VMs remain underutilised, the inter processor communication over-

head increases the overall processing time needed. In chapter 5 we provide

further experimental analysis that enables us to study this behaviour in more

detail.

4.5 Discussion

The aim of this study was to investigate the performance gain of a typical video

analytic application when implemented based on a Hadoop based virtual cluster

of machines. The research conducted within the context of this chapter showed

that a Hadoop based virtual system was easy to setup, provided the flexibility to

easily manage and also proved to overperform local single processor based systems

that are typically used to implement video analytic systems due to the advantage

of used distributed processing.

The video analytic application used for the experiments conducted are a simple

face detection algorithm that work based on a frame-by-frame basis to detect hu-

man faces and motion delection algorithm. Conceptually for face detection this

means that the algorithm requires the same amount of processing to be carried

out (i.e. same level of image processing) in each frame. For motion delection

algorithm a group of overlapped frames are processed together. The software im-

plementation used for the algorithms were not parallelised hence the amount of

parallelism exploitable was limited to the highly likely possibility of divided pro-

cessing of frames (as the face detection is done independently in each frame) but

not the inherent and algorithmic parallelism. Given the application, algorithmic

parallelism obtainable is anyway limited and hence deemed to be not important

for the conducted experiments. It is noted that the following summary of perform-

ance is best applicable to only video analytic applications of the nature described

above. The performance of the video analytic applications when implemented

based on the Hadoop based virtual cluster were tested under different choice of

distributed resources, obtainable easily by exploiting parameters of the Hadoop

based configuration.

Keeping the resource availability fixed (i.e. fixed number of virtual machines,

reducer slots and number of separate input files) when the input file size was

increased (i.e. input data was scaled mimicking a typical application scenario of

large scale video analytics) the required processing time increased. However for a
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given input file size if the number of slots was increased, up to a certain limit, the

processing time decreases due to multiple groups of (key-value) pairs processed

in parallel. Beyond a certain number of reducer slots, the time taken gradually

increases from reaching a minimum due to the under utilisation of clusters and

the time needed for communication (i.e. hypervisor) overhead. Hadoop based

parameters can be used to improve overall system performance [162][97]. In the

case of changing the reducer slots the existing studies[59][149][179] have only used

two reducer slots, the default value of the Hadoop configuration.

In addition to the above observations it was shown that increasing the number

of input files (i.e. dividing and hence parallel feeding the input video) using a

fixed cluster size (i.e. VMs), and fixed number of reducer slots, resulted in a

almost linear increase of execution time as each files processing needs competes

for computing resources, such as each file requires separate mapping tasks (VM)

to be processed in parallel by the reducer slots. Moreover, the overhead caused

by starting up and shutting down the required tasks increases processing time.

The experimental results summarised above shows that there should be a

method to allocate the right resources to meet processing requirement of a video

analytic algorithm in a Hadoop based architecture. As a number of configurable

Hadoop parameters exists, it is important to determine which parameters play a

more significant role in determining the total execution time. However this de-

pends on the nature of the application and also the data being processed and will

hence depend on parameters external to those configurable within Hadoop. Al-

though previous studies have been conducted to investigate the impact of various

Hadoop based parameters[93],[24],[171] [59],[149] no work exists that looks at the

effect of the above mentioned wider set of parameters that impacts performance.

The focus of the research presented in Chapter-5 is addressing this research gap

in carrying out video analytics within a Hadoop based architecture.

Our study indicates that performance gain of the application in the Hadoop vir-

tual cluster requires maximizing resource utilization in individual VM and provide

appropriate number of VMs in cluster according to the input load. These findings

have previously been under-presented in studies.

4.6 Conclusion

This chapter discussed the deployment of a scalable video analytic application

on a cluster of virtual machines that are implemented on Hadoop based virtual

framework. A face detection algorithm that works on a frame-by-frame opera-

tional basis on input video was used as the video analytic application as well as

motion delection algorithm was used to confirm the effectivness of our approach
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when using different type of video application. The results demonstrated the cap-

ability of the Hadoop based virtualised cluster to reduce the execution time if an

appropriate Hadoop configuration was used, dependent on how the input video

was fed. The experimental results and a detailed analysis revealed that a Hadoop

based distributed and virtualised system provides a flexible, scalable and effective

platform to carry out large scale video analytics. The careful design of the Hadoop

based system plays a key role in the systems applicability in such domains.

Let us assume that there is a case for law enforcement and there is a need for

a crime investigation analysis based on a collected set of CCTV video footage,

within a specified (often limited) period of time. For such a task to be deployed

having access to a computing platform with scalable computing resources is a must

as one cannot pre-determine computational needs. Certainly a single processor,

handling tasks sequentially, is only going to provide an ineffective solution. The

solution lie in an environment that is reconfigurable and where the computing

resources are elastic/scalable. In this chapter we have shown that a Hadoop based

virtualised cluster of machines provides such a platform. In particular if practically

implemented in a cloud or a cloud-like environment with scalable/elastic resource

allocation capability, depending on the video processing needs the architecture

can be reconfigured to provide an effective processing platform.

In this chapter we used a proof of concept approach and studied the Hadoop

and video related parameters that play a significant role in such a deployment.

In Chapter-5 and 6 we extend this work with the ultimate goal of proposing

a framework that can be used for performance modelling and multi constraint

based optimal allocation of resources when video analytics/forensics application

are deployed in a cloud-like environment.



Chapter 5

Performance Modelling for

Hadoop-Based Video Analytics

This chapter proposes a machine learning based approach to predict the total

execution time of a video analytic application when deployed in a Hadoop vir-

tual cluster based on the job execution profile, allocated Hadop configuration (i.e.

Reducer slots and tasks), and the size of an input dataset. Experiments are con-

ducted to determine which machine learning algorithms provide the most accurate

prediction model for the system. The model is constructed by analysing the most

influential input parameters, specifically related to video analytic applications,

such as, video file characteristics (resolution, file size, frame rate etc.), cluster re-

source consumption (number of VMs) and Hadoop configurations values( Reducer

slots and tasks).

5.1 Introduction

With the increasing demand on video forensics with regard to the investigation of

criminal activities and terrorist attacks, responding to incidents require the ana-

lysis of large amounts of video data. From the perspective of law enforcement and

investigation, this involves time and resource constraints. From the perspective

of the computing environment, processing a large volume of video data requires

a scalable solution. Putting the Hadoop-MapReduce framework approach into

context, it enables scalable, fault-tolerant, automatically distributed and parallel

processing framework across a cluster of machines [162].This reduces the execu-

tion time of an application, and hence speeds up the output in terms of the results

associated with crime investigation. Hadoop is an open source framework that is

popular within the research community alongside other large-scale data processing

such as Phonesix[115] and Spark[175].

81
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The Hadoop framework benefits from the virtual cloud infrastructure in scal-

ing out to clusters of different VM numbers in order to meet the demand for

video analytics. Cloud computing providers such as Amazon Elastic MapRedce

(EMR) [2] offers Hadoop on the top of their infrastructure. Recently the private

Cloud Openstack has integrated Hadoop as one of its components with the title

Sahara[33]. This provision of Cloud-based Hadoop as a service is a cost-effective

solution that relieves end users: companies and industries from having to estab-

lish dedicated Hadoop clusters, and being involved in maintenance and upgrading,

which requires a great deal of capital expenditure.

The performance of Hadoop MapReduce depends on the type of application

running and on the performance of the underlying hardware[162]. Video forensics

is a computationally intensive application that operates on a frame-by-frame basis

for a given video file to extract information from its content. The complexity of

the operation and the amount of resources used depends on the algorithm type,

video data, size, resolution, frame rate and intensity. In addition, video data takes

many forms, such as video sequences from a single camera or views from multiple

cameras. Both scenarios produce large video files that it will be impossible to

process by a single machine with limited resources, or it may degrade perform-

ance in the Hadoop-based cluster when adding additional VM due to hypervisor

overheads [171][45][94]and to VMs being under-utilised, explained in section 4.5,

Furthermore, Cloud workloads are characterised by their own performance

profiles, resource requirements and constraints specified in service level agreements

(SLA). Therefore, making decisions on the correct resource and job provisioning

strategy for a video analytic application workload to meet performance goals,

requires analysing its behaviour in a Cloud-based Hadoop environment in terms

of resource usage patterns under different job configuration parameters. This

performance model provides the ability to predict application performance, and

hence can be used for resource management.

While existing research efforts in the multimedia domain have studied VM

resource allocation in the cloud [91][144][100], their common focus has been on

the dynamic requirements of different types of multimedia tasks in terms of a run

time to meet QoS (i.e. delay-sensitive requirements) and cost goals. None have

tackled the problem within the Hadoop domain, and the parameters used in our

study to build the model have not been studied. Existing solutions with regard

to the Hadoop domain have focused on resource allocation [107][160][159][87] and

they vary from optimising Hadoop configuration parameters to optimising the

number of VMs in cluster. All studies have been related to web server applications

or Hadoop benchmarking for evaluation. The previous studies did not consider

multimedia applications where resources depends on the media request type[144].
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While there have been research efforts investigating the capability of the Ha-

doop framework in a Cloud environment to scale and speed up video analytic

operations [85][59][149][179],the scalability of the application raises a new chal-

lenge with regard to resource utilisation and performance. Currently, Cloud

users are assigned the task of selecting the amount of resources required for their

application[2] without prior knowledge of its resulting performance. However, a

wrong decision can cause overprovisioning or underprovisioning of virtual machine

resources within the selected cluster (e.g. CPU, memory, network). This leads to

application performance degradation affecting the user as well as the Cloud pro-

vider.

To address the above issue, we need a model that can predict how much time a

video analytic application will take to process in a Hadoop Cloud-like environment

with fully utilised resources to provide a QoS at a lower cost. In this chapter we

present an experimental study to develop the model by comparing several machine-

learning algorithms(ML) implemented with the Waikato Environment for Know-

ledge Analysis (WEKA) toolkit [39] with the aim of achieve the best predictive ac-

curacy. The algorithms make different speed-accuracy-complexity tradeoffs[106],

which will be used as metrics for decision making. The parameters used to build

the model are proved to have a significant influence on processing time; such as

video data settings (resolution and file size), the cluster CPU consumption and

Hadoop configuration values( Reducer slots and tasks).The experimental results

show that our model can successfully be applied to estimate the execution time for

a face detection and motion detection tasks. While all tested ML classifiers give

high prediction accuracy, the M5P and bagging algorithms proves to be the most

accurate.we evalutated the accuracy of prediction models using various video file

content.

The remainder of the chapter is organised as follows. Section 5.2 provides de-

tails of the experimental procedure followed. Section 5.3 provides experimental

results and a detailed analysis. Section 5.4 discusses the implementation chal-

lenges. Finally Section 5.5 concludes the chapter.

5.2 Methodology

To meet the aim of this research, the proposed approach adopts Machine Learning

(ML) techniques for the prediction using open source software WEKA which sup-

ports a large number of options for data pre-processing and modelling. The reason

for selecting a Machine Learning approach was motivated by way the Hadoop-

MapReduce functions. All distributed application tasks that belong to the same

type of job apply the same computation in terms of data input which is controlled
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by job configuration and cluster size. Therefore the resource usage pattern be-

comes recognisable for particular job application. As the result, the pattern tends

to be fairly predictable. In this section we introduce the reader to the specific

steps used for modelling that have been adopted within the research context of

the proposed framework.

Our prediction process goes through three phases:

• Phase one: Study the behaviour of the applications performance in a Ha-

doop environment and identify features (i.e. attributes) that are related

to the input data and the Hadoop configuration that affects performance.

These features alongside the job execution times form the training dataset

to construct the prediction model.

• Phase two: Apply feature selection techniques to minimise the above fea-

ture set, removing features that have insignificant impact, thus making the

subsequent modelling process less complicated.

• Phase three: Train various ML algorithms with the dataset created in last

phase to determine the Machine Learning Algorithm that results in the most

accurate prediction.

5.2.1 Phase One: Analyse the characteristical

behavioural of video analytic application in

Cloud-Hadoop environment

The objective of this phase is to identify all features variables (attributes) that

are needed for making the prediction decision. Previous research works[102][107]

have shown that an optimal MapReduce configuration depends on the resource

consumption profile of the job application. Therefore, we extract features from:

• The job Application level (see experiments 1 & 2): describes the Hadoop

job configuration parameters (slots and tasks) and their impact on execution

time.

• Cluster VM sizing level (see experiment 3): describes the resource allocation

and consumption patterns of the application job.

We conducted an intensive analytical study of face detection/motion detection

applications running on a virtualized Hadoop cluster to specifically investigate the

features mentioned above. After each executing of the face detection and motion

detection jobs within Hadoop system, we extract information about job execution
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time from Hadoop jobtracker logs, and estimate its CPU resource usage observed

from an online monitoring tool. The process is recorded after each execution for

each individual virtual machine. Job counter logs gives application execution time

during all phases: map, shuffle and reduce phases along with other information.

In all experiments we considered various attribute values: video input file size,

resolution, fps, Hadoop job configuration parameters such as(map/reducer slot

number, map/reducer task number), job completion time, and CPU usage.

Previous work on MapReduce performance models were based on attributes

that either focused on job execution time of the fine-granuality phases or on an

applications resource consumption. Our proposed model is developed on video ap-

plication specific parameters and resource consumption, since each has an impact

on the total application run time.

The following experiments explain in detail the type of feature variables (at-

tributes) we have been investigated and how they influence the job execution time.

5.2.1.1 Experiment 1

The main objective of this experiment is to observe the impact of reducer slots

on CPU resource utilisation, and consequently on overall performance in a given

cluster size. We run the face detection and motion detection application with video

type1 and type 2 considering different variables: various input dataset sizes, video

resolution, cluster size, reducer slots (the maximum number of parallel reducers

per node), and reducer tasks. We focus on the resource allocation with regard

to the reducer phase. This is because the mapper function in our face detection

case(as described in chapter 4) is very simple, and most of the processing is being

carried out by reducer.

Figure 5.1 shows the CPU consumption according to our hadoop virtual cluster

configuration. We observe that 2 slots utilize 50% of the CPU, 3 slots utilize 75%,

and 4 slots utilize 100%. Increasing the slot number to 5 results in same CPU

usage as 4 slots. This observation was found when running both face detection

and motion detection algorithms on two video types, which means that output

is obtained depending on CPU resource usage regardless of input load and the

application used. Moreover, number of slot number affects job execution time

since increasing slots provide extra rooms for parallel processing. From figures 5.2

& 5.3 we observed a decrease in execution time when we increased the number of

slots up to 4.
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Figure 5.1: Impact of Reducer slots on CPU resource utilization

Figure 5.2: Impact of Reducer slots on the face detection job execution time

Figure 5.3: Impact of Reducer slots on the motion detection job execution time
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5.2.1.2 Experiment 2

The objective of this experiment is to observe the impact of the Hadoop configur-

ation parameter, the number of tasks on the job execution time. By running the

experiments, we observed a job application that executes tasks in a single wave

(round) is faster than if it is in multiple waves. For instance, if we configure three

slots for a single VM, the total tasks to be processed in that VM should be equal to

the VMs slot number(this is 3), which was found to fully utilise the CPU resource,

and required less execution time. On the one hand, if less than three tasks are

processed by a VM, this leads to CPU resource under-utilisation which wasting

computing resources and energy[124]. On the other hand, when more than three

tasks were assigned, this means that the extra tasks will be processed in another

wave. This will need more time for processing since each wave will consume the

same amount of time that was spent on the first wave. These observations were

also seen in motion detection experiments.

NT = Nvm ∗Ns (5.1)

where, NT is the number of tasks, Nvm is the number of nodes and Ns is the

number of slots. Applying the eq.(5.1) to a cluster with certain VM size, the total

tasks should be equal to the total number of individual VM slots in the cluster.

This is, if cluster has 4 VMs each with 3 slots, then the number of tasks should

be 12. Table 5.1 shows the job execution time for face detection algorithm using

different slots and tasks. For instance, in the first row assigning 9 tasks leads to

a better performance than with regard to tasks 12 and 18 using 3 nodes with 3

slots.

Table 5.1: Total execution time with different Reducer slots and tasks for face
detection application.

File
size
(min)

No.
nodes

Reducer
slots

Reducer
tasks

Total
execution
time(sec)

4 3 3 9 1278
4 3 3 12 1778
4 3 3 18 1440
4 3 4 6 1764
4 3 4 12 1328
4 3 4 18 1542
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5.2.1.3 Experiment 3

The objective of this experiment is to observe the impact of different VM hardware

configurations (resources) and the Hadoop parameter configurations (slots and

tasks) on job execution time. In this section we demonstrate the result of Hadoop

face detection application since motion detection application shows similer result.

We conducted the experiments using two types of VM hardware configurations.

Type1 consists of 2 CPU core and 4 GB RAM. Type2 consists of 4 CPU cores

and 8 GB RAM. The application job was processed in both VM types using

fixed video file characteristics (four minutes, 720x576 resolution, 25 fps), a fixed

number of VMs and various slot numbers. We observed that the job execution

time was reduced when the cpu usage reached its full utilisation using 3 slots in

VM type 1, and when using 4 slots in VM type 2. As illustrated in Table 5.2,

type 2 outperformed type1 due to the fact that face detection is a CPU-intensive

application, where more CPU is needed for processing.

Table 5.2: Comparison of the Total Execution Time (TET) with two different VM
resource types.

File
size(min)

No.
nodes

Hadoop Configuration
TET for dif-
ferent VM
Types

Reducer
Slot

Reducer
Tasks

Type1 Type2

4 3 2 6 1901 1601
4 3 2 12 1946 1624
4 3 2 18 1953 1828
4 3 3 6 1920 1507
4 3 3 12 2400 1778
4 3 3 18 1920 1440
4 3 4 6 1896 1764
4 3 4 12 1916 1328
4 3 4 18 2324 1542

5.2.1.4 Discussion

The aim of the first phase of the study is to identify the features that contrib-

ute to providing optimal computing resources in order to reduce an application

execution times, on which a performance prediction model can be constructed.

The selected feastures are based on the observation found in both video applica-

tions(face detection and motion detection). We found that reducer slots control

the resource utilisation with regard to application run time. Its optimal value
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depends on the underlying VM hardware configuration. This leads to maximising

resource usage and reducing execution time. Therefore, we select a slot number to

be the parameter input for the model, and give users the options when it comes to

selecting the level of CPU usage required in the cluster. Another parameter that

is considered is the reducer task which causes different resource usages during the

reducer processing phase. In some scenarios we found VMs to be underutilised or

idle, due to queuing tasks that need to be processed in waves. Our approach to

balance the task number with the total slots in the cluster resulted in fully utilized

resources and less execution time. Therefore, we select the task number to be a

parameter in the dataset that influences the models construction.

Other feature variables to be included in the dataset are: video input size,

resolution and the number of VMs.

5.2.2 Phase Two: Create Training Dataset

5.2.2.1 Dataset Variables

The observation from last section provides an insight to the important features

(parameters) that have a direct influence to the application performance as well

as system performance. Table 5.3 shows the features (attributes) used to generate

the training dataset. To build up the training dataset many experiments have

been conducted with inputs such as: two resoutions[720x576 and 260x288], input

file sizes [ 4, 6, 8 & 20 mins], each tested with reducer slots [2, 3, 4 ] and reducer

tasks[6, 12, 18] and the frame rate fixed at 25 frames per second(fps).

Table 5.3: Attribute used for video analytic application performance modelling.

Attributes Values

Input video size(min) 4,8,12,20
Resolution 360x288 and 720x576
Frame rate(fps) 25
Number of nodes (VMs) 2,3,6,8
mapred.reduce.tasks.maximum 2,3,4
mapred.reduce.tasks 6,12,18
Avg map time
Avg shuffle time
Avg reduce time
Total job execution time
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5.2.2.2 Data Collection

After each job completion, the data collector extracts the information listed in

Table 5.3 (execution time for map phase, shuffle phase, reduce phase and the total

job completion time) from Hadoop jobtracker log files, and monitor the CPU

utilization using the external monitoring tool named Uptime Cloud Monitor. It is

worth noting that CPU utilization is bound by slot number as described in section

(5.3.1.1).

5.2.2.3 Dataset Representation

Table 5.4 and 5.5 list sample datasets that are resulting from the above experiment.

Table 5.4: Training dataset for face detection application with videp type1.

Fps Resolution
File size
(min)

No.
nodes

Reducer
slots

Reducer
tasks

Total
exe-
cution
time(sec)

25 720x576 8 2 2 6 2845
25 720x576 12 3 3 12 4907
25 720x576 20 4 4 18 7955
25 360x288 8 3 2 12 775
25 360x288 12 3 3 12 1111
25 360x288 20 8 4 18 1119

Table 5.5: Training dataset for motion detection application with videp type1.

Fps Resolution
File size
(min)

No.
nodes

Reducer
slots

Reducer
tasks

Total
exe-
cution
time(sec)

25 720x576 8 2 2 6 772
25 720x576 12 3 3 12 382
25 720x576 20 4 4 18 972
25 360x288 8 3 2 12 300
25 360x288 12 3 3 12 475
25 360x288 20 8 4 18 633

5.2.2.4 Data Preparation (Feature Selection)

To increase the performance prediction accuracy we need to identify the most in-

fluential attributes and reduce attributes that do not significantly contribute to the
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improved accuracy. According to [164], feature (attribute) selection has many be-

nefits such as: improving the prediction performance of the predictors(classfiers),

providing faster and more cost-effective predictors, and providing a better under-

standing of the underlying process that generated the data. WEKA has automated

attribute selection option to determine which set of attributes are the best pre-

diction for the application performance. For this study we selected among many

options the wrapper method evaluator ”cfsSubsetEval” with search method greedy

step wise algorithm as it uses the prediction model to make selection assessment

which provides higher accuracy for any tested algorithm. Table 5.5, shows the

resulting attributes selected to predict the total execution time.

As shown in Table 5.6, we observe that the attribute frame rate(fps) was

excluded, as expected, as in this selected case it is constant in all scenarios. In

addition to this the attribute, shuffle phase execution time, was dropped as the

cluster virtual machines are hosted in one single physical machine, and therefore,

the process of coping data from the mapper to the reducer( data transfer activity)

is internal, within same VM disk or between VMs which has no significat influance

on the total execution time.

Table 5.6: Attributes for video analytic applications performance model.

Dataset Attributes Feature Selection

Input video size(min)
Resolution 3

Frame rate(fps) 7

Number of nodes (VMs) 3

mapred.reduce.tasks.maximum 3

mapred.reduce.tasks 3

Avg map time 3

Avg shuffle time 7

Avg reduce time 3

Total job execution time 3

5.2.3 Phase Three: Modelling the Job Execution Time

This research adapted a WEKA tool (v3.6.13) for the implementation of Machine

Learning classifiers; REPTree [164], Multi-Layer Perceptron(MLP) [164], M5P

[131], Linear Regression(LR) [143] and the Ensemble Learning algorithm Bagging

combined with M5P and LR [52] as the base classifier. The purpose is to find

the best classiffer in order to predict the job execution time of the Hadoop-based

video analytic application. Each learning algorithm was trained and tested using

the same input dataset making use of ten-fold cross validation [81].
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5.3 Experimental Results & Analysis

This section describes the analysis of the results obtained from the experiments to

compare performance of various learning algorithms implemented within WEKA

(using their default parameter settings) to model the system performance. We

used the training datasets described in section 5.2.2.3 to train the eight algorithms

in order to predict the total job execution time under different scenarios. In our

experiment, the accuracy on the sample dataset has been obtained using 10-fold

cross validation, which is helpful to prevent overfitting. The following sections

present analysis of prediction models built by using different training datasets

obtained from running both face detection and motion delection algorithms with

two types of video files.

5.3.1 Prediction Experiment Result 1

5.3.1.1 Training Datasets

A total of 346 scenarios (instances) were recorded for each video type from various

experiments presented in Microsoft excel .csv format. The dataset after feature se-

lection technique consists of parameters which include, video resolution, input file

size, number of nodes, number of slot slots, number of reducer tasks, map/reduce

phases completion time and total job completion time.

5.3.1.2 Prediction Models

In this section we present various prediction models built by using the training

datasets explained in section 5.3.11. For Predictive accuracy comparison, Table

5.7 and 5.8 tabulate the prediction accuracies obtained by each classifier with

selected attributes, presented in terms of the time it takes to build the model,

the correlation coefficient and the relative absolute error. From the table 5.7 we

found interesting observations: First, the prediction accuracy from the classifiers

RepTree, M5P, MLP and LR are high. Second, when we compare between the

classfiers, we noted the ensemble classifier Bagging has a marginally increased

accuracy when to the standard single classifiers, REPTRee, M5P , MLP and LR

being used.

From table 5.8 we found that motion detection (overlapped frame applica-

tion) producd less prediction accuracy comparing to face detection (a single frame

oriented application). This is because number of overlapped frame that are re-

quired for procssing varies depending on the algorithm requirment. However, the

results still show good prediction model with a correlation coefficient over 0.8.
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We observed that with motion detection, the ensemble classifier Bagging has also

increased accuracy when compared to the standard single classifiers, REPTRee,

M5P , MLP and LR. The single classifier M5P model tree show better performance

than LR, MLP, and REPTree.

Table 5.7: Results of the prediction models for face detection application with
video type1.

Classifier
Correlation
Coefficient

Relative
Absolute
Error

Time
Building
Model(s)

LR 0.991 9.6% 0.0
MLP 0.984 16.43% 0.29
M5P 0.993 7.9% 0.22
REPTree 0.972 15.4 % 0.04
Bagged LR 0.992 9.5% 0.02
Bagged MLP 0.993 7.9% 2.02
Bagged M5P 0.993 7.3% 0.39
Bagged REPTree 0.982 11.14% 0.03

Table 5.8: Results of the prediction models for motion detection application with
video type1.

Classifier
Correlation
Coefficient

Relative
Absolute
Error

Time
Building
Model(s)

LR 0.866 34% 0.03
MLP 0.831 53% 0.36
M5P 0.889 30% 0.1
REPTree 0.857 35% 0.0
Bagged LR 0.867 47% 0.0
Bagged MLP 0.833 45% 2.51
Bagged M5P 0.900 46% 0.67
Bagged REPTree 0.872 48% 0.0

To help visually compare the classification results, Figure 5.3 presents scatter

plots of the predicted vs the actual execution times for each trained model. The

figure illustrates the comparison of error spread between bagging and single classi-

fiers. It shows an improved prediction capability of bagging with low error spread

as compared to the others. While REPTree, LR and MLP have more spread of

scatter points, indicating lower prediction accuracy when used as a single classifier.

The single classifier with the best performance was M5P model.
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Figure 5.4: Comparing the predicted vs actual execution time for different clas-
sifers
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5.3.2 Prediction Experiment Result 2

We discussed in the last section the process of predicting the total execution

time of a video analytic applications by training ML classffers using dataset with

predefined attributes. In view of the fact that some of the attributes for example,

map, shuffle and reduce completion times, are not available before running an

application, we found the models to be impractical. Thus the attribute training

sets should be revised to be able to provide realistic inputs for prediction. As

a result we removed all the phase completion times as attributes and kept only

the system and video characteristic metrics as input parameters to the model. In

this section we present prediction models created by four different training data

sets that are obatined by running face detection and motion detection application

using two different types of video file.

5.3.2.1 Training Datasets

As shown in Table 5.9, the new training datasets consist of six attributes: video

resolution, input file size, number of nodes, number of reducer slots, number of

reducer tasks and total job execution time.

Table 5.9: Updated training dataset.

Attributes

Input video size(min)
Resolution
Number of nodes (VMs)
mapred.reduce.tasks.maximum (slots)
mapred.reduce.tasks
Total job execution time

5.3.2.2 Prediction Models

Modelling was conducted and prediction results were obtained following a pro-

cedure similar to that described by section 5.3.1.2. Tables 5.10 and 5.11 tabulate

the prediction accuracies obtained by each classiffer with the new selected attrib-

utes, presented in terms of the time it takes to build the model, the correlation

coefficient and the relative absolute error.

Table 5.10 present predicition models for face detection application using video

type1. An interesting observation found in face detection prediction model is that

most of the classffiers are still performing at a high accuracy level as compared to

the accuracies obtained in the previous experiment. We observe Linear Regression
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Table 5.10: Results of the prediction models for face detection application with
video type1.

Classifier
Correlation
Coefficient

Relative
Absolute
Error

Time
Building
Model(s)

LR 0.854 52.6137% 0.0
MLP 0.9435 30.7926% 0.13
M5P 0.9638 21.8014% 0.07
REPTree 0.9628 19.9094% 0
Bagged LR 0.8537 52.6068% 0.01
Bagged MLP 0.9661 20.958% 1.11
Bagged M5P 0.9676 20.6712% 0.32
Bagged REPTree 0.9709 17.3204% 0.02

Table 5.11: Results of the prediction models for motion detection with video type1.

Classifier
Correlation
Coefficient

Relative
Absolute
Error

Time
Building
Model(s)

LR 0.877 34.11% 0.02
MLP 0.845 49.81% 0.14
M5P 0.875 34.04% 0.05
REPTree 0.864 35.90% 0.0
Bagged LR 0.878 34.13% 0.02
Bagged MLP 0.884 35.91% 1.39
Bagged M5P 0.886 33.14% 0.28
Bagged REPTree 0.882 31.44% 0.02
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model has slightly reduced performance, seeing that the correlation coeffcient has

dropped to 0.85. To justify this, in the previous experiment the variable to be pre-

dicted (total execution time) depends linearly on the inputs: map/shuffle/reduce

phases completion times, which explains why including these attributes presented

more accurate modelling. For the new LR model, the dataset attributes include

number of nodes, reducer slots and reducer tasks; which has nonlinear effects

depending on the system behaviour, resource consumption and workload. For ex-

ample, when increasing the number of node and keeping the reducer slot constant,

the total execution time may not reduce, it depends on the processed load and

accordingly on resource consumption. However the correlation coefficient of 0.854

is still considered to be sufficiently accurate for practical applications.

As illustrated in the Table 5.10, REPTree and M5P tree models are more

efficient in predicting non-linear behaviour because they involve modelling based

on tree structured algorithms. We observe the results using M5P is much better

because prediction errors are consistently lower than those obtained by RepTree

or Linear Regression.

Once again, the Ensemble method bagging outperforms the standard single

classiffiers and proved its ability to improve prediction power of its base classifiers,

as visually illustrated in figure 5.5. The reason for this is that it resamples the

original training dataset and develops a prediction model from each sample using a

single learning algorithm (e.g. LR, MLP,M5P or REPTree). Then it combines the

output of these multiple prediction models by averaging the output or by voting,

in order to increase performance over a single model.

Table 5.11 presents prediciton results for motion detection application using

video type1 dataset. We found slight differences in accuracy comparing to the

results illustrated in Table 5.8. However, the results in terms of best classifier

shows that Ensemble bagging outperforms the standard single classiffiers which is

similar to our conclusion on face detection.

To confirm the effectiveness of our prediction method we have trained the

ML classifers with different video datasets for both face detection and motion

detection applications. The results show exactly the same prediction accuracies

as Tables 5.10 and 5.11. This is not superising since the new video datasets were

obtained from running the same applications, which means the same procedure

was applied to a frame or group of frames. However, because the job execution

times have definitly changed in the dataset, this has ultimately resulted in some

changes to the models coefficients to fit the new data. For illustration see the

following regression model equations, it is clear that the coefficients differ in both

equations.
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Figure 5.5: Comparing the predicted vs actual execution time for different classi-
fiers
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• Linear Regression model f(x) for face detection using video type1 is given

as:

f(x) = 4.2907 ∗ x1 + 5.3205 ∗ x2 + 260.58 ∗ x3 − 95.9374 ∗ x4
− 256.625 ∗ x5 − 27.0816 ∗ x6 − 3379.6942 (5.2)

• Linear Regression model f(x) for face detection using video type2 is given

as:

f(x) = 2.9794 ∗ x1 + 3.7243 ∗ x2 + 182.406 ∗ x3 − 67.1562 ∗ x4
− 179.6375 ∗ x5 − 18.9571 ∗ x6 − 2365.7859 (5.3)

5.4 Implementation Challenge & Discussion

Throughout the design and implementation phases of this project a number of

practical challenges were met and successfully resolved. As these challenges may

be important in a large scale deployment of the proposed system are presented as

follows:

• In a real application to process larger video streams coming from different

sources one will require a large-scale cluster environment that consists of

many VMs that resides in different physical machines. In this case transfer-

ring data from the master to the slaves and from mappers to the reducers

will have an impact to the network traffic and bandwidth. In our small scale

cluster, all VMs reside on the same physical machine. The communication

within VMs was performed inside that machine. This means that there is no

network to monitor and analyse. Thus further tests are needed on network

performance related aspects to confirm further application upscaling.

• Video input format was and is still an issue in processing Hadoop-based

video analytic applications. For example: when processing one video file

as a whole file it means only one mapper will process the file. This solu-

tion helps prevent splitting a video file when using Hadoop content-unaware

splitting. Nevertheless, it has drawbacks in terms of resource limitation on

one machine, since in some of our experiments we received error messages

about java heap and memory limitation. In addition, reading a file as one
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whole file does not mean that the file is read from one source but it actu-

ally had been split and distributed among the cluster VMs, then when the

application job runs, all the data segments are fetched as a whole file to

map the function to process. In terms of network related issues this causes

network traffic and also increases processing time.

5.5 Conclusion

This chapter discussed performance modelling which can predict application ex-

ecution times by given a resource allocation (e.g. a specified VM number) in a

Hadoop based virtual environment. The prediction model was developed by com-

paring the performance of eight Machine Learning algorithms; M5P, REPTree,

LR, MLP and Ensemble Learning algorithm Bagging with the same single classi-

fiers, in terms of their predictive accuracy. We found out that all created models

from our four training datasets, gave high prediction accuracies. The four train-

ing datasets represent data collected from running face deection as well as motion

detection on two video types. In a first phase of experiments we included as

predictor parameters the Hadoop phases completion times (map, shuffe and re-

ducer). In a second phase, we removed the parameters and trained models with

only video characteristics attributes (i.e. input size, fps and resolution), Hadoop

configuration parameters (i.e. reducer slots, reducer tasks) and cluster size (i.e.

num of nodes) that are available at the time of execution. Though the latter has

lower accuracy than the former, it still provides accuracy with correlation coef-

ficient above 0.80 .It is noted that the predictors for these models are available

inputs that can be provided before any application runs. Whereas in the former

scenario the Hadoop phases completion times are not known prior, therefore it is

impractical to predict unless using online prediction methods similar to[107] [100].



Chapter 6

Performance Optimisation for

Hadoop-Based Video Analytics

under Constraint Conditions

In cloud-based Hadoop environments optimizing resource provisioning under con-

trainted conditions to minimise a job execution time has been a challenge. This

chapter addresses this constrained problem by introducing genetic algorithm based

optimization technique that makes use of one of the application performance model

generated in Chapter-5 based on the Linear Regression approach. The optimiza-

tion algorithm searches for the optimal resourc parameter settings(i.e VM number,

slots number and task number) of the model to obtain minimum job execution

time. This work closes an existing research gap in distributed processing of video

analytic data and together with the content presented in Chapters 4 and 5, forms

a framework that can be practically used in the performance optimisation of video

analytic applications, when executed in a cloud-like environment.

6.1 Introduction

Cloud-based Hadoop environments are an active area of research focussing upon

data processing and providing on-demand computing resources and storage that

are appropriate for the needs of the user.

A cloud-computing platform offers mechanisms to automatically scale VM ca-

pacity, which makes the deployment of an on-demand Hadoop cluster a preferable

choice for most users for scalability in building cluster sizes that are appropriate

for a given task [58]. In particular the new Hadoop-YARN architecture includes

resource management features, which manage resources across a cluster of ma-

chines, subject to the constraints of capacities of applications deployed. Features

101



102

such as this allows users to specify the cluster size, as well as the available re-

sources for each machine in the cluster, together with assistance in redistributing

the total resources available into containers that are appropriate for running a

specific application. Further the allocation of resources can be automated by the

cluster[36].

This dynamic allocation of resources enhances the utilisation of cluster re-

sources, as well as providing enhanced performance, which removes users from

being unduly concerned about capacity planning. However when a Hadoop ap-

plication performance model is unknown prior to usage, it is a challenge to under-

stand their resource capacity requirements in both Hadoop1 and Hadoop-YARN,

which require careful consideration by new users due to implications on resource

hiring costs.

A framework to model the performance of video analytic application, in terms

of predicting the execution time considering the relationship between application

specific characteristics, system performance parameters and available system re-

sources, was discussed in a previous chapter. Making use of this model it will be

useful to be able to determine the minimal execution time (i.e. the optimal value)

of a video analytic application, when deployed within a Hadoop based virtual

cluster under given multiple practical constraints (e.g. number of VMs, number

of slots in a VM etc.). Although Hadoop can be adapted to the requirements of

an application [162], the user is still required to specify the number of virtual ma-

chines for a cluster in order for the system to allocate the available resources. A

user may be keen to know how the Hadoop based system could be most economic-

ally used to get the video analytic job completed within a time limit. Usually such

a judgement is made based on users previous experience that could be subjective.

Hence a sceintific and objective approach to optimal allocation of resources will

be forthcoming. Thus the development of a multi-constraint optimisation frame-

work to achieve this task will be a useful contribution to the present state-of-art.

Several researchers have addressed the above problem[107][58][104] through the

deployment of heuristic search techniques. However, these fail to guarantee op-

timum solutions, as well as being the only resource allocation considered that are

based upon the Hadoop performance model.

In this chapter, resource constrained processing of video analytic data in a ha-

doop based distributed VM cluster is discussed and a method for resource alloca-

tion for optimised performance under multiple constraints using genetic algorithms

(GAs) is investigated. In particular optimal CPU utilisation, video related char-

acteristics/parameters and job execution time targets for a given video analytic

application is discussed. Out of a number of possible alternative approaches a ge-

netic algorithm based method was selected to support the research proposed due
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to its multi-point search capability and robustness in global optimal value that

guarantees the aim of minimising application execution time.

For clarity of presentation this chapter is organized as follows. In section 6.2,

we define and formulate the minimization problem for optimization. In section

6.3 we provide a brief introduction to Genetic Algorithms, Pattern Search and

Lagrange Multipliers technqiues. In section 6.4 we describe the details of the

experimental procedure followed, provide experimental results and a detailed ana-

lysis and compare the performance of the algorithms. Finally section 6.5 concludes

the chapter.

6.2 Problem Formulation

The decision problem considered in this chapter is a resource constrained prob-

lem, in which the objective is to minimize the total job execution time t of the

video analytic application running in a defined Hadoop cluster. We aim to find

the optimal execution time (e.g minimum execution time) under given multiple

constraints. This problem is formulated as a single objective, multiple constraint,

and optimization problem based on the generated Linear Regression model de-

rived in Chapter 5. The aim is to minimize this time based on given constraints

of computing resources and Hadoop based parameters.

Following the above mentioned general description of the problem formulation,

the specific optimisation problem considered within the proposed framework can

be described as follows:

The total execution time f(x) is defined as

f(x) =
6∑

i=1

θixi + ε (6.1)

Where

f(x)= objective function (fitness)

θi = model parameters

xi = model variables

ε = error term epsilon

For our Linear Regression model (based on face detection application tested

with video type1)
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f(x) = t = 4.2907 ∗ x1 + 5.3205 ∗ x2 + 260.58 ∗ x3 − 95.9374 ∗ x4
− 256.625 ∗ x5 − 27.0816 ∗ x6 − 3379.6942 (6.2)

Therefore the problem formulation could be written as:

minimizef(x) (6.3)

subject to

t ≤ timed (6.4)

x1 = framewidth, fixed, (6.5)

x2 = framehight, fixed. (6.6)

x3 = filesize, fixed, (6.7)

lb4 ≤ x4 ≤ ub4 (6.8)

lb5 ≤ x5 ≤ ub5 (6.9)

lb6 ≤ x6 ≤ ub6 (6.10)

Where

t= total job execution time

timed = job execution time deadline

x4 = number of virtual machines

x5 = number of reducer slots

x6 = number of reducer tasks

lb4 & ub4 = lower/upper bound of x4

lb5 & ub5 = lower/upper bound of x5

lb6 & ub6 = lower/upper bound of x6

Similar procedures were applied to develop the following mathematical models

to solve the optimization problem for face detection and motion detection with

different video types:
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• Linear Regression model for face detection with video type2.

f(x) = 2.9794 ∗ x1 + 3.7243 ∗ x2 + 182.406 ∗ x3 − 67.1562 ∗ x4
− 179.6375 ∗ x5 − 18.9571 ∗ x6 − 2365.7859 (6.11)

• Linear Regression model for motion detection with video type1.

f(x) = 0.5959 ∗ x1 + 0.7449 ∗ x2 + 36.4812 ∗ x3 −−13.4312 ∗ x4
− 35.9275 ∗ x5 − 3.7914 ∗ x6 − 473.1572 (6.12)

• Linear Regression model for motion detection with video type2.

f(x) = 0.4767 ∗ x1 + 0.5959 ∗ x2 + 29.185 ∗ x3 − 13.4312 ∗ x4
− 10.745 ∗ x5 − 3.0331 ∗ x6 − 378.5257 (6.13)

The following section shows how a genetic algorithm is used to provide a solu-

tion for the above problem allocation and compare results with other optimization

techniques.

6.3 Methodology

In this section we introduce Genetic Algorithm (GA) as a solution to our optimiza-

tion problem. The result of GA is compared to other techniques used in literature:

Pattern Search(PS) and Lagrange Multipliers(ML) optimisation techniques.

6.3.1 Algorithms Description

Pattern search is a numerical optimization method known as direct search. It

begins with a point that satisfis the bounds throughout the search. It generates

a sequence of iterations xk. Given the current iterate xk at each iteration k, the

next point xk+1 is chosen from a finite number of candidats on a given mesh Mk

(i.e . set of points). At each iteration the algorithm looks for a point in the mesh

that minimise the objective function: f(xk+1) < f(xk). This step is called search

step. After that in poll step if the search step was unsuccessful, evaluate f at
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points in the poll set Pk until an improved mesh point xk+1 is found. For further

details on PS technique, the readers are referred to [156] .

Lagrange Multiplier is a technqiue to solve constrainted optimization problem

to find maxima or minima of objective function f(x) subject to a constraints

by considering certain points in a surface. For further details on theory of ML

technique, the readers are referred to [49] .

Genetic algorithms (GAs)[76][83] may be described as a global search optim-

isation technique based upon the principles of natural selection and evolution.

John Holland and colleagues invented the technique during the 1960s-1970s[76].

From that time, GAs have demonstrated their usefulness in a number of different

problems found in science, business and engineering applications.

The search process is carried out by GA in four stages: initialisation, selection,

crossover and mutation. The initial population of chromosomes is defined by an

algorithm, called individuals, with a variety of possible solutions with various

genes structures, which are distributed randomly in the search space as the search

starting position. The chromosomes are then calculated and evaluated by using

a user-defined function, which is designed to numerically encode the performance

of the chromosome.

GA is based on the idea of survival of the fittest, where the reproduction hap-

pens in such a way that only the highest performing chromosomes are selected

from the initial population, and allowed to survive and breed their characteristics

for coming generations, thus assisting in the search for the ideal solution; chro-

mosomes that are poorly performing are discarded. At the crossover stage, two

randomly selected chromosomes, exchange corresponding segments of a string rep-

resentation of the parents, looking for a new solution in far-reaching directions.

There are many different types of crossover: the one-point, the two-point, con-

strained and the uniform.

The mutation occurs when a member of the population(i.e chromosome) is

randomly selected and one randomly selected bit in its string of bits is altered,

which is a GA function. The reproduction and the crossover process produce many

new strings, yet no new information is introduced at bit level into the population.

If the mutant member is feasible, it replaces the member that mutated in the

population. This mutation occurs with some probability, called the mutation rate

running the algorithm for more generations. Mutation presence exists to ensure

that the probability of reaching any point in the search space is never zero.

This process of natural selection occurs in all stages of the algorithm, which

allows the population of chromosomes to evolve. The algorithm does not require

cost function derivatives as with conventional analytic optimisation that deals

with non-continuous cost functions and discrete variables. GAs are computation-



107

ally simple yet powerful in their search for improvement. In addition, genetic

algorithms are evolutionary computing algorithms that distinguishes from other

search and optimisation techniques, because they are processes that use the pop-

ulation of many individuals rather than a single individual to solve a problem.

6.3.2 Fit GAs to Resource Allocation Problem

The aim of the chapter is to solve the above minimization problem to determine

optimal solutions thus making it possible for the optimal resource allocation in

Hadoop cluster to the meet user’s performance requirement in terms of minimizing

the application execution time. Once the fitness function is defined, we began the

process of fitting it to a GA by randomly generating the initial population by

encoding the Linear Regression model data into set of chromosomes (possible

solutions) named, individuals. Each gene in the chromosome represent a feature

(variable) of the model that contributes to the prediction of the job execution time

t . This is a multiple-dimensional optimization problem where each chromosome

has six variables (x1, x2, x3, x4, x5, x6) and it is written as an array of N6 elements

so that the:

chromosome = [x1, x2, x3, x4, x5, x6] (6.14)

The set of chromosomes is called a population where each chromosome repres-

nts a different solution containing optimal resources with a possibly minimized

t.

In a population each chromosome’s (individual) fitness value f is calculated by

running all the data points (xi) in the training dataset. The fitness fuction f(x)

is formulated as a single objective f(x) as follows:

F (x) = f(chromosome) = f(x1, x2, x3, x4, x5, x6) (6.15)

In our problem the fitness function equales to the total execution time, and

the objective would be to minimise it subject to constraints of each variable, i.e.

to optimise f(x) under multiple constraints.

We limit the exploring a reasonable region of variables space by imposing a

constraints and bounds using eq. (6.4 - 6.10). Deciding which chromosomes in

the population are to survive and represent the offspring in the next generation, a

fititness value for each chromosome is ranked from lower to highest cost, and the

rest are discarded. The individuals with the highest-fitness (lower execution time)

are selected to be parents for the next generation by applying the operators rank

selection, crossover and mutation (with constrained option settings) to the cur-

rent population. This process is repeated until a global optimization approaching
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towards the ideal point (minimized t) is found, since none of the initial randomly

selected variable values are particularly close to the global minimum.

6.4 Experimental Results and Analysis

This section, presents the results and an analysis of the experiment that was per-

formed to illustrate the effectiveness of using GAs in finding the minimal execution

time given multiple operational constraints. Two test cases are presented. The

first test optimizes face detection and motion application with video type1. The

second test optimizes the applications with video type2.

6.4.1 Face Detection Application

6.4.1.1 Test1

Suppose that the users requirements for running face detection application on a

Hadoop based setup is listed in Table 6.1, and it is required to find the parameters

that minimizes the execution time under constrained conditions. The experimental

results obtained from applying GA to the eq.(6.2) are illustrated in Table 6.2. The

optimum (i.e. the minimum) execution time is obtained as 2248 seconds (despite

the given target of 2000 seconds) when the number of nodes, slots and tasks are

set at 8, 4 and 32 respectively. It can be clearly seen that the algorithm can

effectively assign the computing resources (i.e. number of nodes, slots & tasks) to

obtain the optimal point of operation, i.e. minimising the execution time, whilst

still satisfying the given constraints.

Table 6.1: User input requirements and the system constraints

Variables Parameter

User input:
Video Resolution (x1),(x2) 720x576
Video file size (x3) 480 sec
Execution deadline (timed) 2000 sec

Constraints:
Number of nodes (x4) 2 ≤ x4 ≤ 8
Number of slots (x5) 2 ≤ x5 ≤ 4
Number of tasks (x6) 4 ≤ x6 ≤ 32

Figure 6.1 illustrates the evolution curves in searching for the optimal value of

the execution time, i.e. minimal value of f(x), that results from specific values for

x4;x5;x6, that were presented in Table 6.2. The function reaches its optimal value
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Table 6.2: Results generated by the GAs operation

Variables
GAs
Solution

Number of nodes (x4) 8
Number of slots (x5) 4
Number of tasks (x6) 32

Fitness value f(x) 2248

with the increase of the generation number. The searching procedures is stopped

when the function continuous to have the same minimal value with an increasing

generation number. It is the global minimum that one should focus on achieving

given that there are two other stable states of the graph.

Figure 6.1: Evolution curves searching for best fitness

We evaluated the results generated from GAs operation further by substituting

the values of x4;x5;x6, that results in the optimal performance to the fitness func-

tion of our model to obtain the optimal reading for the execution time. Then the

parameters were changed by slightly increasing and decreasing each parameter

separately whilst keeping the other parameters fixed at the values that created

the optimal execution time. The results are tabulated in Table 6.3 which demon-

strates that what we have obtained is the optimal execution time under the given

constraints. In Table 6.3 it is observed that some value of combinated parameters

give close results, for example when we used 8 nodes/4slots with 32 tasks and 31

tasks, and also 7 nodes/4slots with 32 tasks. These marginal changes are critical

when we consider the trade-off between cost and time where more resource results

in more cost, but will minimise execution time.
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Table 6.3: Analysis of results generated by the GAs operation

x4 x5 x6 minf(x)

GA optimal values 8 4 32 2248
Change x6 value 8 4 31 2373
Change x5 value 8 3 32 2603
Change x4value 7 4 32 2442

6.4.1.2 Test2

We used eq.(6.11) as objective function(fitness) for GA to optimize resources for

face detection application running a different video file. We assume user input

requirements and constraints are listed in Table 6.4. The experimental results

gives the fitness value 260 seconds as a minimum job execution time when selecting

the parameters nodes, slots and tasks as 3, 2, 6 respectively, shown in Table 6.5.

Table 6.6 shows that the obtained results are the optimal values when increas-

ing and decreasing the parameters x4;x5;x6 separately whilst keeping the other

parameters fixed at the values that created the optimal execution time.

Table 6.4: User input requirements and the system constraints

Variables Parameter

User input:
Video Resolution (x1),(x2) 360x288
Video file size (x3) 240 sec

Constraints:
Number of nodes (x4) 3 ≤ x4 ≤ 5
Number of slots (x5) 2 ≤ x5 ≤ 4
Number of tasks (x6) 4 ≤ x6 ≤ 20

Table 6.5: Results generated by the GAs operation

Variables
GAs
Solution

Number of nodes (x4) 3
Number of slots (x5) 2
Number of tasks (x6) 6

Fitness value f(x) 260
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Table 6.6: Analysis of results generated by the GAs operation

x4 x5 x6 minf(x)

GA optimal values 3 2 6 260
Change x6 value 4 2 6 319
Change x5 value 3 3 6 280
Change x4value 3 2 8 273

6.4.2 Motion Detection Application

6.4.2.1 Test1

We used eq.(6.12) as objective function and applied the data listed in Table 6.7 to

find the parameter values of x4;x5;x6. Table 6.8 shows the optimization results.

The optimum execution time is obtained as 168 seconds when the number of

nodes, slots and tasks are set at 4, 2, 12 respectively. GA minimised the execution

time whilst still satisfying the given constraints. Table 6.9 analyses the results

generated by GA.

Table 6.7: User input requirements and the system constraints

Variables Parameter

User input:
Video Resolution (x1),(x2) 720x576
Video file size (x3) 480 sec
Execution deadline (timed) 150 sec

Constraints:
Number of nodes (x4) 2 ≤ x4 ≤ 8
Number of slots (x5) 2 ≤ x5 ≤ 4
Number of tasks (x6) 4 ≤ x6 ≤ 32

Table 6.8: Results generated by the GAs operation for motion detection

Variables
GAs
Solution

Number of nodes (x4) 4
Number of slots (x5) 2
Number of tasks (x6) 12

Fitness value f(x) 168

The simulation results when searching for the minimal value is shown in Figure

6.2. We notice the population remain stable when it reached the value 168, which

is considered to be the global optimization point.
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Figure 6.2: Evolution curves searching for best fitness

Table 6.9: Analysis of results generated by the GAs operation

x4 x5 x6 minf(x)

GA optimal values 4 2 12 168
Change x4 value 3 2 12 227
Change x5 value 4 3 12 194
Change x6value 4 2 6 270

6.4.2.2 Test2

We used eq.(6.13) as objective function and applied the data listed in Table 6.10

to find the optimal parameter values of x4;x5;x6. The optimum execution time

is obtained as 458 seconds when the number of nodes, slots and tasks are set at

4, 3, 8 respectively. Figure 6.3 illustrates the evolution curves when searching for

the minimal value 458.

Table 6.10: User input requirements and the system constraints

Variables Parameter

User input:
Video Resolution (x1),(x2) 720x576
Video file size (x3) 720 sec
Execution deadline (timed) 400 sec

Constraints:
Number of nodes (x4) 2 ≤ x4 ≤ 8
Number of slots (x5) 2 ≤ x5 ≤ 4
Number of tasks (x6) 4 ≤ x6 ≤ 32

We evaluated the results generated from GAs operation further by substituting
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Table 6.11: Results generated by the GAs operation

Variables
GAs
Solution

Number of nodes (x4) 4
Number of slots (x5) 3
Number of tasks (x6) 8

Fitness value f(x) 458

Figure 6.3: Evolution curves searching for best fitness
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the values of x4;x5;x6, that results in the optimal performance to the fitness func-

tion of our model to obtain the optimal reading for the execution time. Then the

parameters were changed by slightly increasing and decreasing each parameter

separately whilst keeping the other parameters fixed at the values that created

the optimal execution time. The results are tabulated in Table 6.12 which demon-

strates that what we have obtained is the optimal execution time under the given

constraints

Table 6.12: Analysis of results generated by the GAs operation

x4 x5 x6 minf(x)

GA optimal values 4 3 8 458
Change x4 value 3 2 12 528
Change x5 value 4 4 12 468
Change x6value 4 3 6 614

6.4.3 Comparison of Different Optimization Results

We optimised the same fitness functions (objective functions for the execution

time) using PS and LM optimisation techniques from Matlab optimization toolbox.

We followed the same structure and scenarios applied to GA in (section 6.4) to

compare the obtained results. Tables 6.13 $ 6.14 show the optimal values obtained

by all the algorithms for both face detection and motion detection applications

with video type1 and type2. We observed that PS and LM algorithms did not

reached the optimal solution compared to GA. This is because GA starts with

a population of points that are randomly distributed in the search space. This

reduce the risk of falling in local minimum that is not global. Whereas PS and

LM converged to a local optima due to the various distribution of variable values

in our model that GAs is capable to avoid. Therefore, we conclude that GAs is

a more effective approach to our problem optimisation as compared to the above

algorithms.

Table 6.13: Comparative optimization results for face detection application with
two video types.

Video type1 Video type2

Optimization Techniques x4 x5 x6 minf(x) x4 x5 x6 minf(x)

GAs optimal values 8 4 32 2248 3 2 6 260
PS optimal values 6 2 32 2858 3 2 7 326
LM optimal values 6 2 32 2858 4 2 5 260
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Table 6.14: Comparative optimization results for motion detection application
with two video types.

Video type1 Video type2

Optimization Techniques x4 x5 x6 minf(x) x4 x5 x6 minf(x)

GAs optimal values 4 2 12 168 4 3 8 458
PS optimal values 3 2 11 668 5 2 29 459
LM optimal values 3 3 8 672 6 4 8 458

6.5 Conclusion

In this chapter a Genetic Algorithm based method for the minimisation of the ex-

ecution time based on the Linear Regression based performance prediction model

obtained in Chapter-5 was proposed. The minimal execution time was effectively

obtained subject to operation constraints under which the Hadoop based architec-

ture executed the algorithm within the distributed cluster of VMs. It was shown

that GAs can be used for this process with different video processing applications

and video types. The use of two alternative algorithms i.e. PS and LM were also

considered but were found to be less effective.

The work presented in this chapter concludes the final part of the novel per-

formance modelling and optimisation framework proposed in this thesis, with

Chapter 4 proposed a preliminary study to identify the significant parameters that

affects the performance, Chapter-5 successfully modelling the performance based

on these parameters and finally Chapter-6 proposing the optimisation approach.

This successfully concludes the research agenda of this thesis.



Chapter 7

Conclusion and Future Work

This chapter summarises and concludes the major research findings of this thesis,

and explains how these findings have contributed to achieving the research ob-

jectives. It also outlines potential opportunities to further improve the research

presented in this thesis that could extend the knowledge in this subject and the

applications that could benefit from this research.

7.1 Summary

The research presented in this thesis has investigated the feasibility of implement-

ing video applications(face detection & motion detection) in a computing environ-

ment with distributed processing capabilities, so that the application could benefit

from scalabilities of computing resources such an environment can provide. In par-

ticular due to the ultimate aim being on a comprehensive study of the use of a

cloud based Hadoop infrastructure, a comprehensive review of the legal require-

ments and performance challenges in deploying video surveillance within a cloud

infrastructure (both public and private) was initially investigated (see Chapter-3).

The research findings concluded that cloud based architectures can be effectively

used for distributed video surveillance provided some strict security guidelines

and resource considerations were followed. Further the parameters of a Hadoop

based cloud infrastructure that play a significant role in the distribution of com-

puting resources and system performance have been studied in detail. The effect

of these parameters on the overall data processing speed when the application is

executed in the cloud-like environment has been studied in detail and a machine

learning based approach has been adopted for modelling the performance based

on the said parameters. A number of different learning algorithms have been ad-

opted and their performance have been investigated and compared. The ability

of these models to accurately model and subsequently predict computing resource

116
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requirements of a distributed processing environment when running a selected

video analytic application, has been demonstrated. Finally a Genetic Algorithm

based single-object optimisation technique that is capable of using these models

to obtain optimised performance under given multiple resource constraints, has

been presented.

7.2 Conclusions

The following describes the contribution of this thesis:

• For legal rquirements of video surveillance, a private cloud can be used to

harness the benefits of cloud based distributed scalable systems to support

large scale video surveillance. This option can be more secured and con-

trolled within an operator’s premises.

• A Hadoop based framework was proposed in this research to perform the dis-

tributed parallel processing of video surveillance application within a private

cloud environment.

• The performance of the video analytic application when implemented on the

Hadoop based virtual cluster showed increasd performance from the aspect

of scalability and efficiency in computation.

• ML methods helped in understanding the relationship between the differ-

ent parameters (features) affecting the performance model. Bagging and

decision tree models fit very well with our video application/data.

• Genetic Algorithms based approaches perform most effectively to our bound

minimization problem.

7.3 Future Work

While the novel ideas presented in this thesis advances the current distributed

processing framework in a number of areas related to resource allocation and

performance in the application area of video surveillance system, the findings

discussed in the last section highlighted a number of further opportunities and

new directions that could be explored for future studies. These are presented

below:

1. An important direction for improving the proposed performance modelling

is to consider other video file attributes (features) when creating the model
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such as different frame rates, input video with different levels of complex-

ity, different video file formats that may need decoding using algorithms of

different complexity before processing, etc.

2. The process of modelling the performance of the video application in a cloud-

like environment can be made more accurate by considering other resource

utilisations such as network data transmission between VMs, and available

memory, alongside CPU resource which was considered in this thesis for

better performance analysis of the underlying platform that can be used to

improve the propose resource allocation optimization technique.

3. The use of virtualization makes our implementation much faster in terms of

generating virtual machine and presents the ability to clone VMs for scalab-

ility when more nodes are needed. In the research presented in this thesis by

using a simple virtual cluster the manual process adopted for adding or re-

moving VM nodes was found to be time consuming since in each attempt one

has to ensure the stored block data of the removed nodes are re-distributed

to live nodes for availability. Thus automated configuration and rebalancing

is needed. This can be obtained by using a cloud infrastructure integrated,

Hadoop framework, for example such as Openstack Sahara[33].

4. The presented evaluation in this thesis was conducted on a small scale cluster

of VMs running on a single physical machine. Therefore to generalize the

results, the scale of the experiment set up should be extended to a large

number of virtual machines, residing on different physical machines. Making

use of existing public cloud services or a large dedicated private cloud is

recommended

5. As mentioned in section 4.5, the face detection algorithm tested and eval-

uated runs on a frame by frame basis, with the same type of processing

applied on each frame. As the Hadoop framework runs the application tasks

in parallel, as the utilised code is of a sequential nature, the only parallelism

it exploits is the division of input data into data segments (a collection of

frames) that are independently processed by the distributed VMs. More

complicated video processing algorithms contain a collection of basic al-

gorithms (i.e. background/foreground extraction, colour correction, object

detection, etc.) that could be run in parallel or in a more structured manner,

within a distributed environment. It is recommended that such implement-

ations are parallelised to take the best advantage of a distributed Hadoop

based cloud like environment.
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6. In this research we have used a multi-constraint, single objective optimiza-

tion algorithm based on Genetic Algorithms, for the optimisation, i.e. the

minimisation of the execution time. In other words we only have one object-

ive, which has been optimised/minimised. Often in practice there will be

a need to optimise together, two objectives, such as speed and the number

of VMs. In such an attempt we can continue to use a Genetic Algorithms

based approach for multi-objective optimisation.

7. We evaluated our model using the Hadoop MapReduce framework. We

showed that the MapReduce approach has some practical limitations that

are addressed by the more recent version of Hadoop YARN. It will be useful

to repeat this research with the use of the Hadoop YARN framework to

benefit from its resource management mechanism.

8. In the proposed research the Hadoop framework is used for online batch

processing, it would be interesting to extend the work to involve online and

interactive processing between different complex video analytics/forensics

tasks. A possible future research direction is to use other integrated data

processing frameworks, such as Spark[10] and Pig[162].

This research was motivated to respond to expectations of digital surveillance

systems that apply advanced technology. We have resolved a number of funda-

mental research issues with regards to the performance of analysis, modelling and

optimisation of video processing systems, when deployed in a cloud like envir-

onment by answering key questions related to efficiently of allocating computing

resources to ensure an effective performance. In doing so a number of research

gaps in existing research was closed. Despite the contributions of this thesis a sub-

stantial amount of further research can be carried out to further the advancement

of this field.
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