5 research outputs found

    On-Chip-Netzwerk-Architekturen für eingebettete hierarchische Multiprozessoren

    Get PDF
    Ax J. On-Chip-Netzwerk-Architekturen für eingebettete hierarchische Multiprozessoren. Bielefeld: Universität Bielefeld; 2019.Das Ziel der vorliegenden Arbeit ist die Realisierung und Analyse einer skalierbaren Verbindungsstruktur für ein Multi-Prozessorsystem auf einem Chip (MPSoC). Durch die zunehmende Digitalisierung werden in immer mehr Geräten des täglichen Lebens und der Industrie mikroelektronische Systeme eingesetzt. Hierbei handelt es sich häufig um energiebeschränkte Systeme, die zusätzlich einen stetig steigenden Bedarf an Rechenleistung aufweisen. Ein Trend, diesen Bedarf zu decken ist die Integration von zunehmend mehr Prozessorkernen auf einem einzelnen Mikrochip. Many-Core-Systeme mit vielen hunderten bis tausenden ressourceneffizienten CPU-Kernen versprechen hierbei eine besonders hohe Energieeffizienz. Im Vergleich zu Systemen mit wenigen leistungsfähigen, jedoch auch komplexeren CPUs, wird bei Many-Cores die Rechenleistung durch massive Parallelität erzielt. In der AG Kognitronik und Sensorik der Universität Bielefeld wird dazu das CoreVA-MPSoC entwickelt. Um hunderte von CPUs auf einen Chip zu integrieren, verfügt das CoreVA-MPSoC über eine hierarchische Verbindungsstruktur. Diese besteht aus einem On-Chip-Netzwerk (NoC), welches eine Vielzahl von CPU-Cluster koppelt. In jedem CPU-Cluster sind mehrere ressourceneffiziente VLIW-Prozessorkerne über eine eng gekoppelte Bus-Struktur verbunden. Der Fokus dieser Arbeit ist die Entwicklung und Entwurfsraumexploration einer ressourceneffizienten NoC-Architektur für den Einsatz im CoreVA-MPSoC. Die Entwurfsraumexploration findet dazu auf verschiedenen Ebenen statt. Auf der Ebene der Verbindungsstruktur des NoCs werden verschiedene Topologien und Mechanismen der Flusskontrolle untersucht. Des Weiteren wird die Entwicklung und Analyse eines synchronen, mesochronen und asynchronen NoCs vorgestellt, um die Skalierbarkeit und Energieeffizienz dieser Methoden zu untersuchen. Eine weitere Ebene bildet die Schnittstelle zum Prozessorsystem bzw. CPU-Cluster, die einen maßgeblichen Einfluss auf die Softwareentwicklung und Gesamtperformanz des Systems hat. Auf Systemebene wird schließlich die Anbindung verschiedener Speicherarchitekturen an das NoC vorgestellt und deren Auswirkung auf Performanz und Energiebedarf analysiert. Ein abstraktes Modell des CoreVA-MPSoCs mit Fokus auf dem NoC erlaubt die Abschätzung von Fläche, Performanz und Energie des Systems, bzw. der Ausführung von Streaming-Anwendungen. Dieses Modell kann im CoreVA-MPSoC-Compiler für die automatische Abbildung von Anwendungen auf dem MPSoC eingesetzt werden. Zehn Streaming-Anwendungen, vorwiegend aus dem Bereich der Signal- und Bildverarbeitung, zeigen bei der Abbildung auf einem CoreVA-MPSoC mit 32 CPUs eine durchschnittliche Beschleunigung um den Faktor 24 gegenüber der Ausführung auf einer CPU. Ein CoreVA-MPSoC mit 64 CPUs und insgesamt 3MB Speicher besitzt bei einer prototypischen Implementierung in einer 28-nm-FD-SOI-Standardzellenbibliothek einen Flächenbedarf von 14,4mm2. Bei einer Taktfrequenz von 700MHz liegt die durchschnittliche Leistungsaufnahme bei 2W. Eine FPGA-basierte Emulation auf einem FPGA-Cluster aus Xilinx Virtex-5-FPGAs erlaubt zudem eine skalierbare Verifikation eines CoreVA-MPSoCs mit nahezu beliebig vielen CPUs

    Paketverarbeitende Systeme – Algorithmen und Architekturen für hohe Verarbeitungsgeschwindigkeiten

    Get PDF
    Paketverarbeitende Systeme basieren auf zwei wichtigen Bereichen: der eigentlichen Paketverarbeitung und der Paketklassifizierung. Zur Optimierung der Paketverarbeitung wurde eine FPGA-basierte Architektur für funktionale Module entwickelt, auf deren Basis verschiedene Funktionen für den Einsatz im Teilnehmerzugangsnetzwerk realisiert wurden. Hash-basierte Klassifizierungsalgorithmen und –architekturen sind grundsätzlich für die Paketklassifizierung geeignet. Zur Optimierung dieser Klasse von Algorithmen wurde eine evolvierbare Hashfunktionsarchitektur entwickelt.Packet processing systems base on two important areas: ultimate packet and packet classification. For optimization of packet processing an FPGA-based architecture for functional modules has been developed. For application in Access Network, different functional modules have been developed. Hash-based classification algorithms and architectures are appropriate for fast packet classification. For optimization of this class of algorithms, an evolvable architecture for hash functions has been developed

    Entwurfsraumexploration eng gekoppelter paralleler Rechnerarchitekturen

    Get PDF
    Sievers G. Entwurfsraumexploration eng gekoppelter paralleler Rechnerarchitekturen. Bielefeld: Universität Bielefeld; 2016.Eingebettete mikroelektronische Systeme finden in vielen Bereichen des täglichen Lebens Anwendung. Die Integration von zunehmend mehr Prozessorkernen auf einem einzelnen Mikrochip (On-Chip-Multiprozessor, MPSoC) erlaubt eine Steigerung der Rechenleistung und der Ressourceneffizienz dieser Systeme. In der AG Kognitronik und Sensorik der Universität Bielefeld wird das CoreVA-MPSoC entwickelt, welches ressourceneffiziente VLIW-Prozessorkerne über eine hierarchische Verbindungsstruktur koppelt. Eine enge Kopplung mehrerer Prozessorkerne in einem Cluster ermöglicht hierbei eine breitbandige Kommunikation mit geringer Latenz. Der Hauptbeitrag der vorliegenden Arbeit ist die Entwicklung und Entwurfsraumexploration eines ressourceneffizienten CPU-Clusters für den Einsatz im CoreVA-MPSoC. Eine abstrakte Modellierung der Hardware- und Softwarekomponenten des CPU-Clusters sowie ein hoch automatisierter Entwurfsablauf ermöglichen die schnelle Analyse eines großen Entwurfsraums. Im Rahmen der Entwurfsraumexploration werden verschiedene Topologien, Busstandards und Speicherarchitekturen untersucht. Insbesondere das Zusammenspiel der Hardware-Architektur mit Programmiermodell und Synchronisierung ist evident für eine hohe Ressourceneffizienz und eine gute Ausnutzung der verfügbaren Rechenleistung durch den Anwendungsentwickler. Dazu wird ein an die Hardwarearchitektur angepasstes blockbasiertes Synchronisierungsverfahren vorgestellt. Dieses Verfahren wird von Compilern für die Sprachen StreamIt, C sowie OpenCL verwendet, um Anwendungen auf verschiedenen Konfigurationen des CPU-Clusters abzubilden. Neun repräsentative Streaming-Anwendungen zeigen bei der Abbildung auf einem Cluster mit 16 CPUs eine durchschnittliche Beschleunigung um den Faktor 13,3 gegenüber der Ausführung auf einer CPU. Zudem wird ein eng gekoppelter gemeinsamer L1-Datenspeicher mit mehreren Speicherbänken in den CPU-Cluster integriert, der allen CPUs einen Zugriff mit geringer Latenz erlaubt. Des Weiteren wird die Verwendung verschiedener Instruktionsspeicher und -caches evaluiert sowie der Energiebedarf für Kommunikation und Synchronisierung im CPU-Cluster betrachtet. Es wird in dieser Arbeit gezeigt, dass ein CPU-Cluster mit 16 CPU-Kernen einen guten Kompromiss in Bezug auf den Flächenbedarf der Cluster-Verbindungsstruktur sowie die Leistungsfähigkeit des Clusters darstellt. Ein CPU-Cluster mit 16 2-Slot-VLIW-CPUs und insgesamt 512 kB Speicher besitzt bei einer prototypischen Implementierung in einer 28-nm-FD-SOI-Standardzellenbibliothek einen Flächenbedarf von 2,63 mm². Bei einer Taktfrequenz von 760 MHz liegt die durchschnittliche Leistungsaufnahme bei 440 mW. Eine FPGA-basierte Emulation auf einem Xilinx Virtex-7-FPGA erlaubt die Evaluierung eines CoreVA-MPSoCs mit bis zu 24 CPUs bei einer maximalen Taktfrequenz von bis zu 124 MHz. Als weiteres Anwendungsszenario wird ein CoreVA-MPSoC mit bis zu vier CPUs auf das FPGA des autonomen Miniroboters AMiRo abgebildet

    Ressourceneffiziente Hardware-Software-Kombinationen für Kryptographie mit elliptischen Kurven

    Get PDF
    Puttmann C. Ressourceneffiziente Hardware-Software-Kombinationen für Kryptographie mit elliptischen Kurven. Bielefeld: Universität Bielefeld; 2014.In der heutigen Informationsgesellschaft spielt die sichere Übertragung von elektronischen Daten eine immer wichtigere Rolle. Die hierfür eingesetzten Endgeräte beschränken sich mittlerweile nicht mehr auf klassische, stationäre Computer, sondern es setzen zunehmend mobile Alltagsgegenstände (z.B. Smartphone oder Reisepass) eine sichere Datenübertragung zwingend voraus. Die Anforderungen bezüglich der Ressourcen einer Hardware-Software-Kombination variieren dabei für verschiedene Anwendungsszenarien sehr stark. Kryptographie auf Basis von elliptischen Kurven stellt eine attraktive Alternative zu etablierten asymmetrischen Verfahren dar und wird vermehrt eingesetzt, um sicherheitskritische Daten zu ver- bzw. entschlüsseln sowie deren Integrität und Authentizität sicherzustellen. Im Rahmen dieser Arbeit werden, am Beispiel von Algorithmen für die Kryptographie mit elliptischen Kurven, verschiedene Methoden vorgestellt, um ressourceneffiziente Hardware-Software-Kombinationen zu entwickeln. Es wird eine automatisierte Testumgebung vorgestellt, welche die systematische Entwicklung von ressourceneffizienten Hardware-Software-Kombinationen ermöglicht. Um verschiedene Implementierungen im Hinblick auf ein spezielles Anwendungsszenario miteinander vergleichen zu können, wird eine allgemeine Bewertungsmetrik eingeführt, welche die drei wesentlichen Parameter (Chipfläche, Verlustleistung, Ausführungsdauer) des Entwurfsraumes einer ASIC-Entwicklung berücksichtigt. Basierend auf einer hierarchisch entwickelten, skalierbaren Systemarchitektur wird eine Entwurfsraumexploration für zwei exemplarische Anwendungsszenarien durchgeführt. Mit den angewandten Konzepten der Instruktionssatzerweiterung, der Parallelisierung sowie eines Coprozessor-Ansatzes wird die Ressourceneffizienz auf unterschiedlichen Hierarchieebenen der zugrundeliegenden Systemarchitektur anwendungsspezifisch optimiert. Die Ergebnisse werden mit Hilfe einer FPGA-basierten Entwicklungsumgebung prototypisch evaluiert sowie durch eine ASIC-Realisierung in einer 65-nm-CMOS-Standardzellentechnologie praktisch belegt

    Resource efficiency of the GigaNetIC chip multiprocessor architecture

    No full text
    Niemann J-C, Puttmann C, Porrmann M, Rückert U. Resource efficiency of the GigaNetIC chip multiprocessor architecture. Journal of System Architecture. 2007;53(5-6):285-299.In this article, we present the prototypical implementation of the scalable GigaNetIC chip multiprocessor architecture. We use an FPGA-based rapid prototyping system to verify the functionality of our architecture in a network application scenario before fabricating the ASIC in a modern CMOS standard cell technology. The rapid prototyping environment gives us the opportunity to test our multiprocessor architecture with Ethernet-based data streams in a real network scenario. Our system concept is based on a massively parallel processor structure. Due to its regularity, our architecture can be easily scaled to accommodate a wide range of packet processing applications with various performance and throughput requirements at high reliability. Furthermore, the composition based on predefined building blocks guarantees fast design cycles and simplifies system verification. We present standard cell synthesis results as well as a performance analysis for a firewall application with various couplings of hardware accelerators. Finally, we compare implementations of our architecture with state-of-the-art desktop CPUs. We use simple, general-purpose applications as well as the introduced packet processing tasks to determine the performance capabilities and the resource efficiency of the GigaNetIC architecture. We show that, if supported by the application, parallelism offers more opportunities than increasing clock frequencies
    corecore