12,872 research outputs found

    Insights in the cost of continuous broadband Internet on trains for multi-service deployments by multiple actors with resource sharing

    Get PDF
    The economic viability of broadband Internet services on trains has always been proved difficult, mainly due to a high investment cost and low willingness to pay by train passengers, but also due to unused opportunities such as non-passenger services (e.g. train performance monitoring, crew services) and optimization of the resources consumed to offer Internet services. Evaluating opportunities to improve the return on investment is therefore essential towards profitability of the business case. By efficiently sharing resources amongst services, costs can be pooled over several services in order to reduce the investment cost per service. Current techno-economic evaluation models are hard to apply to cost allocation in a multi-service deployment with multiple actors and resource sharing. We therefore propose a new evaluation model and apply it to a deployment of Internet services on trains. We start with a detailed analysis of the technical architecture required to provide Internet access on trains. For each component, we investigate the impact by the different services on resource consumption. The proposed techno-economic evaluation model is then applied in order to calculate the total cost and allocate the used and unused resources to the appropriate services. In a final step, we calculate the business case for each stakeholder involved in the offering of these services. This paper details the proposed model and reports on our findings for a multi-service deployment by multiple actors. Results show important benefits for the case that considers the application of resource sharing in a multi-service, multi-actor scenario and the proposed model produces insights in the contributors to the cost per service and the unused amount of a resource. In addition, ex-ante insights in the cost flows per involved actor are obtained and the model can easily be extended to include revenue flows to evaluate the profitability per actor. As a consequence, the proposed model should be considered to support and stimulate upcoming multi-actor investment decisions for Internet-based multi-service offerings on-board trains with resource sharing

    Scalable RAN Virtualization in Multi-Tenant LTE-A Heterogeneous Networks (Extended version)

    Full text link
    Cellular communications are evolving to facilitate the current and expected increasing needs of Quality of Service (QoS), high data rates and diversity of offered services. Towards this direction, Radio Access Network (RAN) virtualization aims at providing solutions of mapping virtual network elements onto radio resources of the existing physical network. This paper proposes the Resources nEgotiation for NEtwork Virtualization (RENEV) algorithm, suitable for application in Heterogeneous Networks (HetNets) in Long Term Evolution-Advanced (LTE-A) environments, consisting of a macro evolved NodeB (eNB) overlaid with small cells. By exploiting Radio Resource Management (RRM) principles, RENEV achieves slicing and on demand delivery of resources. Leveraging the multi-tenancy approach, radio resources are transferred in terms of physical radio Resource Blocks (RBs) among multiple heterogeneous base stations, interconnected via the X2 interface. The main target is to deal with traffic variations in geographical dimension. All signaling design considerations under the current Third Generation Partnership Project (3GPP) LTE-A architecture are also investigated. Analytical studies and simulation experiments are conducted to evaluate RENEV in terms of network's throughput as well as its additional signaling overhead. Moreover we show that RENEV can be applied independently on top of already proposed schemes for RAN virtualization to improve their performance. The results indicate that significant merits are achieved both from network's and users' perspective as well as that it is a scalable solution for different number of small cells.Comment: 40 pages (including Appendices), Accepted for publication in the IEEE Transactions on Vehicular Technolog
    corecore