3,315 research outputs found

    A Time-driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing

    Full text link
    Compared to traditional distributed computing environments such as grids, cloud computing provides a more cost-effective way to deploy scientific workflows. Each task of a scientific workflow requires several large datasets that are located in different datacenters from the cloud computing environment, resulting in serious data transmission delays. Edge computing reduces the data transmission delays and supports the fixed storing manner for scientific workflow private datasets, but there is a bottleneck in its storage capacity. It is a challenge to combine the advantages of both edge computing and cloud computing to rationalize the data placement of scientific workflow, and optimize the data transmission time across different datacenters. Traditional data placement strategies maintain load balancing with a given number of datacenters, which results in a large data transmission time. In this study, a self-adaptive discrete particle swarm optimization algorithm with genetic algorithm operators (GA-DPSO) was proposed to optimize the data transmission time when placing data for a scientific workflow. This approach considered the characteristics of data placement combining edge computing and cloud computing. In addition, it considered the impact factors impacting transmission delay, such as the band-width between datacenters, the number of edge datacenters, and the storage capacity of edge datacenters. The crossover operator and mutation operator of the genetic algorithm were adopted to avoid the premature convergence of the traditional particle swarm optimization algorithm, which enhanced the diversity of population evolution and effectively reduced the data transmission time. The experimental results show that the data placement strategy based on GA-DPSO can effectively reduce the data transmission time during workflow execution combining edge computing and cloud computing

    Towards In-Transit Analytics for Industry 4.0

    Full text link
    Industry 4.0, or Digital Manufacturing, is a vision of inter-connected services to facilitate innovation in the manufacturing sector. A fundamental requirement of innovation is the ability to be able to visualise manufacturing data, in order to discover new insight for increased competitive advantage. This article describes the enabling technologies that facilitate In-Transit Analytics, which is a necessary precursor for Industrial Internet of Things (IIoT) visualisation.Comment: 8 pages, 10th IEEE International Conference on Internet of Things (iThings-2017), Exeter, UK, 201

    On the Fly Orchestration of Unikernels: Tuning and Performance Evaluation of Virtual Infrastructure Managers

    Full text link
    Network operators are facing significant challenges meeting the demand for more bandwidth, agile infrastructures, innovative services, while keeping costs low. Network Functions Virtualization (NFV) and Cloud Computing are emerging as key trends of 5G network architectures, providing flexibility, fast instantiation times, support of Commercial Off The Shelf hardware and significant cost savings. NFV leverages Cloud Computing principles to move the data-plane network functions from expensive, closed and proprietary hardware to the so-called Virtual Network Functions (VNFs). In this paper we deal with the management of virtual computing resources (Unikernels) for the execution of VNFs. This functionality is performed by the Virtual Infrastructure Manager (VIM) in the NFV MANagement and Orchestration (MANO) reference architecture. We discuss the instantiation process of virtual resources and propose a generic reference model, starting from the analysis of three open source VIMs, namely OpenStack, Nomad and OpenVIM. We improve the aforementioned VIMs introducing the support for special-purpose Unikernels and aiming at reducing the duration of the instantiation process. We evaluate some performance aspects of the VIMs, considering both stock and tuned versions. The VIM extensions and performance evaluation tools are available under a liberal open source licence
    corecore