6 research outputs found

    Clustering Based Dynamic Bandwidth Allocation in HC-RAN

    Get PDF
    A wireless network is composed of several independent nodes or gadgets that communicate mutually through a wireless link. The most destructive challenge encountered in a wireless network is bandwidth allocation because it defines the amount the network will cost and how effectively it will function. The most cutting-edge network architecture in the present wireless communication system, cluster-based heterogeneous cloud radio access networks (HC-RANs), is what powers cloud computing in heterogeneous networks. In this research, we proposed an HC-RANs that may optimize energy consumption for wireless data transfer in the multi-hop device to device scenario. The proposed scheme offers bandwidth allocation in wireless environments where there are concerns about significant user mobility over the course of a given time. The above design, we used clustering with joint beam formation for the down link of heterogeneous cloud radio access network (HC-RAN), developed design to improved amount of FBS. Result outcomes helped in calculating Critical bandwidth usage (CBU)

    Power Management Strategies in Energy-Harvesting Wireless Sensor Networks

    Get PDF
    Power management strategies are extremely important in Wireless Sensor Networks (WSNs). The objective is to make the nodes operate as long as possible. In the same context, in this article, our aim is to provide the optimal transmission power to maximize the network lifetime using the Orthogonal Multiple Access Channel (OMAC) in Harvesting System (HS). We consider that the nodes have direct communication with a Fusion Center (FC) with causal Channel Side Information (CSI) at the sender and receiver.We begin the analysis by considering a single transmitter node powered by a rechargeable battery with limited capacity energy. Afterward, we generalize the analysis with M transmitter nodes. In both cases, the transmitters are able to harvest energy from nature.Eventually, we show the viability of our approach in simulations results

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    A prospective look: key enabling technologies, applications and open research topics in 6G networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is mainly driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks, which are expected to bring transformative changes to this premise. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. In particular, the present paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a comprehensive study of the 6G vision and outlining seven of its disruptive technologies, i.e., mmWave communications, terahertz communications, optical wireless communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss the associated requirements, key challenges, and open research problems. These discussions are thereafter used to open up the horizon for future research directions
    corecore