1,015 research outputs found

    Fair Resource Allocation for OFDMA Femtocell Networks With Macrocell Protection

    Get PDF
    We consider the joint subchannel allocation and power control problem for orthogonal frequency-division multiple-access (OFDMA) femtocell networks in this paper. Specifically, we are interested in the fair resource-sharing solution for users in each femtocell that maximizes the total minimum spectral efficiency of all femtocells subject to protection constraints for the prioritized macro users. Toward this end, we present the mathematical formulation for the uplink resource-allocation problem and propose an optimal exhaustive search algorithm. Given the exponential complexity of the optimal algorithm, we develop a distributed and low-complexity algorithm to find an efficient solution for the problem. We prove that the proposed algorithm converges and we analyze its complexity. Then, we extend the proposed algorithm in three different directions, namely, downlink context, resource allocation with rate adaption for femto users, and consideration of a hybrid access strategy where some macro users are allowed to connect with nearby femto base stations (FBSs) to improve the performance of the femto tier. Finally, numerical results are presented to demonstrate the desirable performance of the proposed algorithms

    A self-organized resource allocation scheme for heterogeneous macro-femto networks

    Get PDF
    This paper investigates the radio resource management (RRM) issues in a heterogeneous macro-femto network. The objective of femto deployment is to improve coverage, capacity, and experienced quality of service of indoor users. The location and density of user-deployed femtos is not known a-priori. This makes interference management crucial. In particular, with co-channel allocation (to improve resource utilization efficiency), RRM becomes involved because of both cross-layer and co-layer interference. In this paper, we review the resource allocation strategies available in the literature for heterogeneous macro-femto network. Then, we propose a self-organized resource allocation (SO-RA) scheme for an orthogonal frequency division multiple access based macro-femto network to mitigate co-layer interference in the downlink transmission. We compare its performance with the existing schemes like Reuse-1, adaptive frequency reuse (AFR), and AFR with power control (one of our proposed modification to AFR approach) in terms of 10 percentile user throughput and fairness to femto users. The performance of AFR with power control scheme matches closely with Reuse-1, while the SO-RA scheme achieves improved throughput and fairness performance. SO-RA scheme ensures minimum throughput guarantee to all femto users and exhibits better performance than the existing state-of-the-art resource allocation schemes

    An interference-aware virtual clustering paradigm for resource management in cognitive femtocell networks

    Get PDF
    Femtocells represent a promising alternative solution for high quality wireless access in indoor scenarios where conventional cellular system coverage can be poor. They are randomly deployed by the end user, so only post deployment network planning is possible. Furthermore, this uncoordinated deployment creates severe interference to co-located femtocells, especially in dense deployments. This paper presents a new architecture using a generalised virtual cluster femtocell (GVCF) paradigm, which groups together FAP into logical clusters. It guarantees severely interfering and overlapping femtocells are assigned to different clusters. Since each cluster operates on different band of frequencies, the corresponding virtual cluster controller only has to manage its own FAPs, so the overall system complexity is low. The performance of the GVCF algorithm is analysed from both a resource availability and cluster number perspective. Simulation results conclusively corroborate the superior performance of the GVCF model in interference mitigation, particularly in high density FAP scenarios

    Open vs Closed Access Femtocells in the Uplink

    Full text link
    Femtocells are assuming an increasingly important role in the coverage and capacity of cellular networks. In contrast to existing cellular systems, femtocells are end-user deployed and controlled, randomly located, and rely on third party backhaul (e.g. DSL or cable modem). Femtocells can be configured to be either open access or closed access. Open access allows an arbitrary nearby cellular user to use the femtocell, whereas closed access restricts the use of the femtocell to users explicitly approved by the owner. Seemingly, the network operator would prefer an open access deployment since this provides an inexpensive way to expand their network capabilities, whereas the femtocell owner would prefer closed access, in order to keep the femtocell's capacity and backhaul to himself. We show mathematically and through simulations that the reality is more complicated for both parties, and that the best approach depends heavily on whether the multiple access scheme is orthogonal (TDMA or OFDMA, per subband) or non-orthogonal (CDMA). In a TDMA/OFDMA network, closed-access is typically preferable at high user densities, whereas in CDMA, open access can provide gains of more than 200% for the home user by reducing the near-far problem experienced by the femtocell. The results of this paper suggest that the interests of the femtocell owner and the network operator are more compatible than typically believed, and that CDMA femtocells should be configured for open access whereas OFDMA or TDMA femtocells should adapt to the cellular user density.Comment: 21 pages, 8 figures, 2 tables, submitted to IEEE Trans. on Wireless Communication

    Decentralized spectral resource allocation for OFDMA downlink of coexisting macro/femto networks using filled function method

    Get PDF
    For an orthogonal frequency division multiple access (OFDMA) downlink of a spectrally coexisting macro and femto network, a resource allocation scheme would aim to maximize the area spectral efficiency (ASE) subject to constraints on the radio resources per transmission interval accessible by each femtocell. An optimal resource allocation scheme for completely decentralized deployments leads however to a nonconvex optimization problem. In this paper, a filled function method is employed to find the global maximum of the optimization problem. Simulation results show that our proposed method is efficient and effective
    corecore