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Abstract—For an orthogonal frequency division multiple 
access (OFDMA) downlink of a spectrally coexisting macro 
and femto network, a resource allocation scheme would aim 
to maximize the area spectral efficiency (ASE) subject to 
constraints on the radio resources per transmission interval 
accessible by each femtocell. An optimal resource allocation 
scheme for completely decentralized deployments leads 
however to a nonconvex optimization problem. In this 
paper, a filled function method is employed to find the 
global maximum of the optimization problem. Simulation 
results show that our proposed method is efficient and 
effective. 

I. INTRODUCTION 
Mobile user equipments (UEs) have become 

increasingly important in our daily lives and mobile 
operators have been spending a lot of money to meet the 
growing customer demands. However, most current 
cellular networks suffer from poor indoor network 
coverage and cellsite usage saturation. As a consequence, 
mobile operators face poor customer retain-ability and 
increasing churn. One cost-effective solution for mobile 
operators to improve coverage and offload macrocell 
traffic as well as to reduce churn is the emerging femtocell 
paradigm. Typically, a large number of femtocell access 
points (FAPs) [1] are overlaid on macrocells. Each FAP 
provides high data-rate connections to UEs within a short 
range using the same radio access technology as the 
macrocell overlay. As OFDMA has been considered in the 
downlink for next generation wireless networks [2]-[3], 
OFDMA based femtocells are widely expected to deliver 
massive improvements in coverage and capacity [1]. 

A pertinent challenge for mobile operators is to viably 
deploy femtocells within coverage of macrocells. As 
FAPs are likely to be deployed by end users, the total 
number and locations of active FAPs are a priori 
unknown to mobile operators. Therefore, interference 
caused by femtocells cannot be managed using 
conventional network planning methods, and interference 
avoidance strategies [4] are preferred over mutual 
interference suppression strategies for femtocells. Intercell 
interference in the hierarchical macro/femto network is 
closely related to the femtocell access policy, which 
defines the way how a femtocell allows or restricts its 
usage to users [4]. This paper will thus focus on the closed 

access femtocell, which serves a group of authorized UEs 
only, since the closed access policy is preferred by 
subscribers of the femtocell [5]. 

OFDMA radio resources are partitioned into resource 
blocks (RBs) in the time and frequency domains [15]. To 
mitigate intercell interference, frequency reuse [6]-[8] and 
intercell coordination [9], [10] schemes have been studied 
in OFDMA macro networks. A centralized downlink 
frequency planning across femtocells and macrocells was 
proposed in [11], but the large number of femtocells 
significantly complicates the centralized optimization 
process. 

The spectrum allocation policy in [12] avoids cross-tier 
interference by assigning orthogonal spectrum resources 
to the macrocell and femtocell tiers and diminishes femto-
to-femto interference by allowing each femtocell to access 
only a random subset of the spectrum resources that are 
assigned to the femtocell tier. Specifically for each 
transmission time interval, a macrocell can use all the 
available RBs, while each femtocell randomly selects a 
subset of the available RBs for transmissions [12]. As a 
result, the average number of interfering femtocells in 
each RB is reduced. The size of each RB subset per 
transmission interval is determined based on optimizing 
the throughput per cell and ASE [12]. To optimize such a 
decentralized resource allocation leads to a nonconvex 
optimization problem, the global maximum of which is 
very difficult to find. Therefore, existing works [12]-[14] 
on decentralized resource allocation for the OFDMA 
downlink of macro/femto networks reduce to evaluate all 
possible values of the fraction of radio resources per 
transmission interval accessible by each femtocell. 

In this paper, we employ the filled function method 
[20]-[25] for solving the global maximum of the 
optimization problem. Our proposed method only needs to 
evaluate the stationary points of the cost function, thereby 
significantly reduces the total number of evaluation 
points, and the computational complexity for finding the 
globally optimal solution of the optimization problem is 
much lower than the that of scheme in [12]. 

The rest of the paper is organized as follows. The 
problem formulation and the filled function method are 
presented in Section II and Section III, respectively. 
Simulation results are discussed in Section IV. Finally, 
conclusions are drawn in Section V. 
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II. PROBLEM FORMULATION 
Consider an OFDMA downlink of a spectrally 

coexisting macro/femto network. It is assumed that the 
macro base station (BS) 0  is located in the middle of the 
macrocell and co-channel interference from neighboring 
macrocell transmissions is ignored, as extending the work 
to the more general case would be cumbersome [17]. 
Denote the radius of a hexagonal macrocell as Mr  and the 
number of outdoor macro UEs randomly distributed over 
the macrocell coverage area as MU . Closed access 
femtocells are randomly underlaid to the macrocell and 
the location of the FAPs is a stationary Poisson point 
process (SPPP) [16] on . The spatial intensity of FAPs 
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λ  is defined as the average number of femtocells per 
unit area. The radius of each femtocell is Fr . The number 
of indoor UEs to be served by each femtocell is . If the 
average number of femtocells per macrocell is , then 
total number of UEs served by the coexisting macro/femto 
network is given by . 
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The basic resource unit that is addressable for OFDMA 

transmissions is an RB. RB is a two dimensional block in 
the time and frequency domain. In the third generation 
partnership project (3GPP) standard release 8 [15], an RB 
has a time duration of 1 ms and spans either 12 subcarriers 
with a subcarrier bandwidth of 15 kHz or 24 subcarriers 
with a subcarrier bandwidth of 7.5 kHz. Intracell 
interference is avoided by maintaining the orthogonality 
among co-cell UEs in OFDMA networks [12], [18]; that 
is, maintaining one scheduled UE per RB in each cell. Not 
to clutter subsequent analysis, it is assumed that a macro 
BS or an FAP assigns equal transmission power all over 
RBs for a given transmission interval [12]. Since cellular 
networks are typically interference limited, thermal noise 
at the receiver is neglected in this paper. 

As in [12], we assume that the macrocell and femtocells 
are allocated with orthogonal spectrum resources and 
there is not macro-to-femto or femto-to-macro 
interference. Therefore, we can focus on the decentralized 
resource allocation between femtocells only. Let the total 
number of distinct RBs available to femtocells for each 
transmission time interval be +∈ZF . Each FAP is only 
allowed to use the available +∈ZK  ( FK ≤ ) RBs for 
downlink transmissions in each transmission time interval. 
For ease of implementation, the value of K  is assumed to 
be the same for all femtocells. Define the fraction of radio 
resources per transmission interval accessible by each 
femtocell as Fρ . That is 

F
K

F =ρ . (1) 

Obviously, 10 ≤≤ Fρ . When 1=Fρ , each femtocell can 
access all the available RBs. 

If each femtocell chooses the K  distinct RBs 
independently and with equal probability, then the 
probability of a femtocell selecting a given RB for 
transmission is Fρ . This implies that the average number 
of interfering femtocells in each RB is effectively reduced. 
Hence, both femto to macro and femto to femto 
interferences are diminished. 

Define the total number of discrete rates that an 
adaptive modulation is realizing as , the Shannon 

gap of QAM modulations [12] as Ψ , the boundaries of 
the range of signal interference ratio (SIR) as 

0>L

lΓ  for 
{ }Ll ,,1 L∈  and the transmission rates as  for lb
{ }Ll ,,1 L∈ . When the received SIR lies in [ )1, +ΓΓ ll  for 
{ }Ll ,,1 L∈ , the BS or FAP decides the transmission rate 

according to 
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+= l
lb  (b/s/Hz). (2) 

For a given RB, denote the received SIR of a femto UE 
as , the distance from an interfering  to the 
femto UE as

 

FSIR iFAP

iXF
, the path loss exponent on the link from 

the home FAP to the femto UE as Fα , the path loss 
exponent on the link from an interfering  to the femto 
UE as FF

iFAP
α , the exponentially distributed channel power 

between interfering femtocell 0FAP and user 0  as 0 , the 
exponentially distributed channel power between 
interfering femtocell iFAP and user  as H 0 , the indoor 
lognormal shadowing experienced by user 0  as 

H

0 i

0Θ  and 
the lognormal shadowing experienced by user  as 

i0

iFAP
Θ . Here, it is assumed that both 0Θ  and i0Θ  are 
independent and lognormally distributed. Let the mean 
and the standard deviation of the logarithmic distribution 
of 0Θ  be μ  and σ , respectively, and that of i0Θ  be iμ  
and iσ , respectively, that is ( )22

0 ,LN~ σζζμΘ  and 
( )22

0 ,LN~ iii σζζμΘ , where 10ln1.0≡ζ  is a scaling 
constant. Denote the index set corresponding to the 
lognormal shadowing experienced by user  as iFAP Φ . φ  
is the wall penetration loss. Then we have 

∑
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For the worst case scenario, it is assumed that all femto 
UEs are located on the edge of their home femtocells and 
there are wall penetration losses for links from an 
interfering FAP to the femto UE of interest. 

The product of the shadowing and fading appearing in 
the numerator and denominator of (3), leads to a 
composite lognormal exponential distribution that is 
assumed to obey the following assumption: 
i) The distribution of a composite lognormal exponential is 

modeled as lognormal distribution using Turkmani’s 
approximation [19]. 

Using the above assumptions, 0Θ  and 0  are 
approximated by a lognormal random variable denoted as 

H

0ψ . Similarly, iΘ  and  are approximated by a 
lognormal random variable denoted as 

iH

i0ψ . Then, (3) can 
be simplified as 
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Allowing the cumulative distribution function (CDF) of 
the SIR of the femtocell to be calculated as 
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where 
FF

2
α

δ ≡f
, Iψ  is the equivalent value of iψ  Φ∈∀i , 

( ) ff rEk Iff
δαδψπλ F

F≡ ,  and ( )⋅
0ψE ( )f

IE δψ  are the expected 
value with respect to 0ψ  and Iψ , respectively. Hence, the 
expected throughput of femtocell is 
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and the ASE is 
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Hence, the decentralized spectrum resource allocation 
problem can be formulated as the following optimization 
problem: 
Problem ( ) P ′

Fρ
max  ( FF )ρASE , (8a) 

subject to 10 ≤< Fρ . (8b) 
This maximization problem is further equivalent to the 
following minimization problem: 
Problem ( ) P

Fρ
min  ( FF )ρASE− , (9a) 

subject to 10 ≤< Fρ . (9b) 

SOLUTION METHOD III. 
The optimal decentralized resource allocation problem 

defined in Problem (P) is actually a nonconvex 
optimization problem. In this paper, a filled function 
method [20]-[25] is employed for solving the global 
minimum of Problem (P). 

A filled function [20]-[25] is a function for which (1) 
the current local minimum of the original cost function is 
the current local maximum of the filled function; (2) the 
whole current basin of the original cost function is a part 
of the current hill of the filled function; (3) the filled 
function has no stationary point in any higher basins of the 
original cost function; and (4) there exists a local 
minimum of the filled function which is in a lower basin 
of the original cost function. 

Some terminologies related to filled functions have 
been used above. Notably, a basin of a function is defined 
as the subset of the domain of the optimization variables 
such that any points in this subset will give the same local 
minimum of the function via conventional gradient based 
optimization methods. Furthermore, a hill of a function is 
defined as the subset of the domain of the optimization 
variables such that any points in this subset will give the 
same local maximum of the function via conventional 
gradient based optimization methods. Also, a higher basin 
of a function is a basin of the function with the cost value 
of the local minimum of the basin is higher than that of 
the current basin of the function. Finally, a lower basin of 
a function is a basin of the function with the cost value of 
the local minimum of the basin is lower than that of the 
current basin of the function. 

Due to property 1), by evaluating the filled function at a 
point slightly deviated from the current local minimum of 
the original cost function; a lower filled function value is 
obtained. Hence, the filled function could kick away from 
the current local minimum of the original cost function. 
Due to properties (2)-(4), the current local minimum of 
the filled function is neither in the current basin nor any 
higher basins of the original cost function. Hence, the 
current local minimum of the filled function is in a lower 
basin of the original cost function. As a result, by solving 
the next local minimum of the originally cost function 
searching at the neighborhood around the current local 
minimum of the filled function, a better local minimum of 
the original cost function is obtained. If the original cost 
function contains finite number of local minima, then the 
global minimum of the original cost function will be 
eventually reached. 

The following algorithm is proposed for solving the 
global minimum of Problem (P): 
Algorithm 
Step 1: Initialize a minimum improvement factor ε , an 

accepted error ε ′ , an initial search point 
1,

~
Fρ , a 

positive number R  and an iteration index 1=n . 
Step 2: Solve a local minimum of the following 

optimization Problem ( ) using a conventional 
gradient based approach with the initial search 
point 

fP

nF ,
~ρ . 

Problem ( ) 
fP

Fρ
min

 
(9a), 

subject to  (9b) 
and ( ) ( ) ( ) 0ASE1~ASE , ≤−− FFnFF ρερ , (9c) 

where ( ) ( ) ( ) 0ASE1~ASE , ≤−− FFnFF ρερ  is the constraint 
function we imposed. Denote the obtained local minimum 
as . ∗

nF ,ρ

Step 3: Solve a local minimum of the following 
optimization Problem ( H ) using a conventional 
gradient based approach with the initial search 
point . 

P

∗
nF ,ρ

Problem ( ) HP

Fρ
min

 ( ) ( ) ( ) ( )∗∗ −−
+−≡

nFF
T

nFF

FFF
R

H
,,

1ASE
ρρρρ

ρρ ,(10a) 



subject to  (9b) 
and ( ) ( ) ( ) 0ASE1ASE , ≤−−∗

FFnFF ρερ , (10b) 

where ( FH )ρ  is the filled function we define and 
( ) ( ) ( ) 0ASE1ASE , ≤−−∗

FFnFF ρερ  is the constraint function 
we imposed. Denote the obtained local minimum as 

1,
~

+nFρ . Increment the value of n . 

Step 4: Iterate Step 2 and Step 3 until 
( ) ( ) ερρ ′≤− ∗

−
∗

1,, ASEASE nFFnFF
. Take the final 

value of  as the global minimum of Problem 
(P). 

∗
nF ,ρ

Step 1 is an initialization of the proposed algorithm. In 
order not to terminate the algorithm when the convergence 
of the algorithm is slow and to have a high accuracy of the 
solution, both ε  and ε ′  should be chosen as small values. 
Also, as 

1,
~

Fρ  is an initial search point of the optimization 
algorithm, this initial search point should be in the feasible 
set. Moreover, as R  is a positive number, it controls the 
spread of the hill of ( FH )ρ  at . A large value of ∗

nF ,ρ R  
will result in a wide spread of the hill of ( FH )ρ  at  
and vice versa. Since the local minima of nonconvex 
optimization problems could be located very close 
together, the spread of the hill of 

∗
nF ,ρ

( FH )ρ  at  should 
be small and 

∗
nF ,ρ

R  should be chosen as a small positive 
number. Step 2 is to find a local minimum of 

F ( )FρASE−

fP
. As the constraint (9c) is imposed on the 

Problem ( ), the obtained ASE is guaranteed to be larger 
than that corresponding to nF ,

~ρ . Similarly, Step 3 is to 
find a local minimum of ( FH )ρ . As the constraint (10b) 
is imposed on the Problem ( ), the obtained ASE is 
guaranteed to be larger than that corresponding to . 
Step 4 is a termination test procedure. If the difference of 
the ASEs between two consecutive iterations is smaller 
than a certain bound 

HP
∗

nF ,ρ

ε′ , then the algorithm is terminated. 
It has been discussed before that the filled function 

method has to satisfy four properties. As R  is a positive 
number and  is in the denominator of ∗

nF ,ρ ( )FH ρ , 

( ) +∞→FH ρ  as . Hence,  is the global 
maximum of 

∗→ nFF ,ρρ ∗
nF ,ρ

( FH )ρ  and property (1) is guaranteed to be 
satisfied. As the constraint (10b) is imposed on the 
Problem ( HP ), when a new local minimum of ( )FH ρ  is 
found, this new local minimum of ( FH )ρ  will not be 
located at  and the ASE evaluated at ∗

nF ,ρ 1,
~

+nFρ  will 
guarantee to be larger than that at . Hence, properties 
(2)-(4) are guaranteed to be satisfied. As a result, the 
proposed algorithm guarantees to reach the global 
minimum of Problem (P). 

∗
nF ,ρ

Compared to existing works in which all possible 
values of the fraction of radio resources per transmission 
interval accessible by each femtocell are evaluated [12], 
our proposed method only evaluates the stationary points 
of the cost function. As the total number of evaluation 
points is reduced significantly, the computational effort 
for solving the globally optimal solution of the 
optimization problem is significantly reduced. 

COMPUTER NUMERICAL SIMULATIONS IV. 
In order to have a fair comparison between our 

proposed method and the scheme in [12], the same sets of 
parameter values used in [12] are employed in our 
simulations. These include, , 8=L 5714.0=fδ , 

( ) 3.01012 ×−=Γ l
l  for 8,,2,1 L=l , 0=μ dB, dB, 42 =σ

0=iμ dB Φ∈∀i , dB ,  
and 

122 =iσ Φ∈∀i 5106405.4 −×=fλ

( )f
If Ek δψ×= 0813.0  for ,  

and 
10=fN 4103202.2 −×=fλ

( )f
If Ek δψ×= 4065.0  for , and 

 and 
50=fN

4106405.4 −×=fλ ( )f
If Ek δψ×= 813.0  for 100=fN . 

Besides, for the proposed filled function method, 
 and  are chosen because they are small 

enough for most applications, and 
610−=′=εε 310−=R

5.0~
1, =Fρ  is chosen 

because it is the midpoint in the feasible region. 
In [12], the tested range of Fρ  is from 01.0=Fρ  to 

1=Fρ , and a step size of  is used. Accordingly, there 
are a hundred points to be evaluated in this test range. By 
using our proposed filled-function-based algorithm, we 
obtain the same set of optimal values of F

01.0

ρ  as those 
obtained in [12]. That is, 1=Fρ  for , 10=fN 55.0=Fρ  
for 50=fN  and 3.0=Fρ  for . Moreover, it 
takes only one iteration for our proposed method to reach 
the globally optimal solution for the above values of . 
Therefore, our proposed method is more efficient than the 
one discussed in [12]. 

100=fN

fN

CONCLUSIONS V. 
In this paper, a filled function method is employed for 

deriving the globally optimal decentralized resource 
allocation scheme for OFDMA downlink of a coexisting 
macro/femto network. The ASE is maximized subject to a 
constraint on the radio resources per transmission interval 
accessible by each femtocell. As the proposed method 
only evaluates the stationary points of the cost function, 
the computational effort for solving the globally optimal 
solution of the optimization problem is significantly 
reduced. 
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