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Abstract—We consider the joint subchannel allocation and power
control problem for orthogonal frequency-division multiple-
access (OFDMA) femtocell networks in this paper. Specifically,
we are interested in the fair resource-sharing solution for users
in each femtocell that maximizes the total minimum spectral
efficiency of all femtocells subject to protection constraints for
the prioritized macro users. Toward this end, we present the
mathematical formulation for the uplink resource-allocation
problem and propose an optimal exhaustive search algorithm.
Given the exponential complexity of the optimal algorithm, we
develop a distributed and low-complexity algorithm to find an
efficient solution for the problem. We prove that the proposed
algorithm converges and we analyze its complexity. Then, we
extend the proposed algorithm in three different directions,
namely, downlink context, resource allocation with rate adaption
for femto users, and consideration of a hybrid access strategy
where some macro users are allowed to connect with nearby femto
base stations (FBSs) to improve the performance of the femto
tier. Finally, numerical results are presented to demonstrate the
desirable performance of the proposed algorithms.

Index Terms—Femtocell networks, interference management,
orthogonal frequency-division multiple access (OFDMA), power
control, resource allocation, subchannel assignment (SA).

I. INTRODUCTION

MASSIVE deployment of small cells such as femtocells
provides an important solution to fundamentally im-

prove the indoor throughput and coverage performance of
wireless cellular networks [1]. Moreover, fourth-generation
(4G) and beyond cellular networks are based on orthogonal
frequency-division multiple access (OFDMA) that provides
flexibility in radio resource management and robustness against
adverse effects of multipath fading [2]. Hence, the design of an
OFDMA femtocell tier so that it can coexist efficiently with
the existing macrocell tier is an important research topic. One
particular challenge in realizing this objective stems from the
fact that femtocells are randomly deployed and they operate on
the same frequency band with the macrocell tier, which can cre-
ate strong cross-tier interference to the macrocells. Therefore,
to successfully deploy the femtocell network, it is required to
resolve many technical challenges, which range from resource
allocation and synchronization [3] to protection of existing
macrocells against cross-tier interference from femtocells [4].
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There have been some existing works studying the resource
allocation for OFDMA-based femtocell networks [5]–[12]. In
[5], spectrum sharing and access control strategies are proposed
for femtocell networks by using the water-filling algorithm
and game theory technique. The authors in [6] propose two
methods to mitigate the uplink interference for OFDMA femto-
cell networks. In the first method, femtocell user equipments
(FUEs) that produce strong interference to macrocell user
equipments (MUEs) are only allowed to use dedicated subchan-
nels, whereas the remaining FUEs can utilize all subchannels
assigned for the femto tier. In the second method, an auction-
based algorithm is devised to optimize the channel assignment
for both tiers to mitigate the co-tier interference. Interference
avoidance and resource-allocation issues for OFDMA femto-
cell networks are also studied in [7] where a greedy algorithm
is developed to enable self-organization of femtocells. In [8],
Cheung et al. study the network performance where the macro-
cells and femtocells utilize separate sets of subchannels or
share the whole spectrum under both open- and closed-access
strategies. The quality-of-service (QoS)-aware admission con-
trol design for OFDMA femtocells is conducted in [9]. All these
existing works, however, do not consider power control in their
proposed resource-allocation algorithms.

In [10], an adaptive femtocell interference management algo-
rithm comprising three control loops that run continuously and
separately at macro and femto base stations (MBS and FBS)
to determine initial femto maximum power, to decide target
signal-to-interference-plus-noise ratios (SINRs) for FUEs, and
to control the transmission power, respectively, is developed.
However, subchannel assignment (SA) is not studied, and the
maximum power constraint for each user is not considered in
this paper. Spectrum sharing and power allocation (PA) are
investigated in [11] and [12]. In particular, [11] aims to enhance
the energy efficiency, whereas the main design objective of
[12] is to achieve user-level fairness for cognitive femtocells.
However, the algorithms developed in [11] and [12] do not
provide QoS guarantees for users of both network tiers.

In this paper, we study the joint subchannel and PA prob-
lem for femtocell networks considering fairness for FUEs in
each femtocell, protection of MUEs, and maximum power
constraints. To the best of our knowledge, none of the ex-
isting works on the OFDMA-based femtocell network jointly
consider all these design issues. In particular, we make the
following contributions.

1) We formulate the uplink fair subchannel and PA problem,
study its optimal structure, and present an algorithm
to find its optimal solution. To overcome the exponen-
tial complexity of the centralized optimal exhaustive
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search algorithm, we then develop a distributed and low-
complexity resource-allocation algorithm. The proposed
algorithm iteratively updates the SAs at each femtocell
based on carefully designed assignment weights and
transmission power values for the subchannels accord-
ingly. We prove the convergence of the proposed algo-
rithm and analyze its complexity.

2) We extend the proposed solution in three important direc-
tions. Specifically, we show how the proposed resource-
allocation algorithm can be adapted for the downlink
context. Moreover, we develop a distributed algorithm
for the scenario where FUEs in different femtocells are
allowed to choose different target rates per subchannel
to better adapt to the network interference. Finally, we
extend the proposed algorithm to implement the hybrid
spectrum access where some MUEs are permitted to
connect to nearby FBSs.

3) Numerical results are presented to demonstrate the ef-
ficacy of the proposed algorithms and their relative
performance compared with the optimal algorithm. In
particular, we demonstrate the impacts of target rates
per subchannel (i.e., modulation schemes), maximum
power values, rate adaptation, and hybrid access on the
performance of the femtocell network.

The remainder of this paper is organized as follows. We
describe the system model and the uplink problem formulation
in Section II. In Section III, we present both optimal exhaustive
search and suboptimal resource-allocation algorithms. Exten-
sions for the downlink scenario, adaptive-rate transmission, and
hybrid access control are described in Section IV. Numerical
results are presented in Section V followed by conclusion in
Section VI. Key notations used in this paper are summarized in
Table III.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the OFDMA-based two-tier macrocell–
femtocell network where users of both tiers share the spectrum
comprising N subchannels. We assume that there are Mf FUEs
served by (K − 1) FBSs, which are underlaid by one macrocell
serving Mm MUEs. Let Uk be the set of user equipments (UEs)
in the kth cell, i.e., they are served by the base station (BS) k of

the corresponding tier. For convenience, let Um
Δ
= U1 represent

the set of MUEs and Uf
Δ
= ∪K

k=2Uk = {Mm + 1, . . . ,Mm +
Mf} denote the set of all FUEs. In addition, let U and B
be the sets of all UEs and BSs, respectively. Then, we have
U = Um ∪ Uf = {1, 2, . . . ,M} and B = {1, 2, . . . ,K}, where
BS 1 is assumed to be the MBS and Bf = {2, . . . ,K} denotes
the set of all FBSs.

We assume the fixed BS association for all UEs of both tiers
in the network (i.e., each UE is served by a fixed BS in the
corresponding tier) to present the problem formulation here.
Relaxation of this assumption under the hybrid access design
will be considered in Section IV. Now, let bi ∈ B denote the
BS serving UE i, and let N = {1, 2, . . . , N} be the set of all
orthogonal subchannels. We assume that there is no interference

among transmissions on different subchannels. We consider a
system with full frequency reuse where all N subchannels are
allocated for UEs in all cells of either tier. To describe the
SAs, let A ∈ �M×N be the SA matrix for all M UEs over N
subchannels where

A(i, n)=ani =

{
1, if subchannel n is assigned for UE i
0, otherwise.

(1)

We assume that a subchannel can be allocated to, at most, one
UE in any cell. Then, we have∑

i∈Uk

ani ≤ 1, ∀k ∈ B and ∀n ∈ N . (2)

These constraints will be applied to all resource-allocation
problems studied in this paper.

B. Physical-Layer Model

We assume that M -ary quadrature amplitude modulation
(M -QAM) is adopted for communications on each subchannel
where the constellation size s for s-QAM is chosen from a pre-
determined set M. To guarantee acceptable performance when
a constellation size s is adopted on a particular subchannel, we
need to ensure that the SINR on that subchannel is not smaller
than a corresponding target SINR value γ̄(s). To determine
γ̄(s), let f(γ(s)) be the expression of bit error rate (BER) for
SINR γ(s) when the constellation size s is adopted. Suppose
we want to maintain the BER to be not greater than a target
value P e. Then, the SINR must satisfy the following for the
constellation size s:

γ(s) ≤ γ̄(s) = f−1(P e) (3)

where f−1(.) denotes the inverse function of the BER function
f(.). To demonstrate this calculation, suppose that M -QAM
modulation with square signal constellations (i.e., s-QAM

where s ∈ M
Δ
= {4, 16, 64, 256, . . . , smax} = {22σ|σ is a pos-

itive integer and σ ≤ 1/2 log2 smax}) is employed. According
to [13], the BER of the s-QAM scheme with Gray encoding can
be approximated as

f(γ(s)) ≈ xsQ

(√
ysγ(s)

)
, s ∈ M (4)

where Q(.) stands for the Q-function, xs=2(1−1/
√
s)/ log2s,

ys = 3/2(s− 1), and γ(s) is the SINR. Using the result in
(3), the target SINR for the s-QAM modulation scheme can be
calculated as

γ̄(s) =

[
Q−1(P e/xs)

]2
ys

, s ∈ M (5)

where P e is the target BER value. We assume that ideal Nyquist
data pulses are used where the symbol rate on each subchannel
is equal to BW/N , where BW is the total bandwidth of N sub-
channels. Then, if s-QAM modulation scheme is employed, the
spectral efficiency per 1 Hz of system bandwidth is log2 s/N
(in bits per second per hertz).
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C. Uplink Resource-Allocation Problem

Let pni represent the transmission power of UE i over the
subchannel n in the uplink where pni ≥ 0. We impose the
following constraints on the total transmission power values:

N∑
n=1

pni ≤ Pmax
i , i ∈ U (6)

where Pmax
i is the maximum transmission power of UE i.

Similar to the SAs, we define P as an M ×N PA matrix
where P(i, n) = pni . For convenience, we also define partitions
of SA and PA matrices A and P as follows. In particular, let
Ak,Pk ∈ �|Uk |×N represent the SA and PA matrices for UEs
in cell k over N subchannels, respectively.

Let hn
ij and ηni be the channel power gain from UE j to BS

i and the noise power at BS i over subchannel n, respectively.
Then, for a given SA and PA solution, i.e., given A and P, the
SINR achieved at BS bi due to the transmission of UE i over
subchannel n can be written as

Γn
i (A,P)

ani h
n
bii

pni∑
j 
∈Ubi

anj h
n
bij

pnj + ηnbi
=

ani p
n
i

Ini (A,P)
(7)

where Ini (A,P) is the effective interference corresponding to
UE i on subchannel n, which is defined as

Ini (A,P)
Δ
=

∑
j 
∈Ubi

anj h
n
bij

pnj + ηnbi
hn
bii

. (8)

We assume that SAs for MUEs have been determined by a
certain mechanism and fixed, whereas PAs over the correspond-
ing subchannels for MUEs are updated to cope with the cross-
tier interference due to transmissions of FUEs. This means
that A1 is fixed while we need to determine Ak, 2 ≤ k ≤ K
and the corresponding PAs. This assumption is quite natural
since the macro tier has been deployed before the introduction
of the femto tier; therefore, it would be more reasonable to keep
the existing subchannel allocation mechanism and solution in
the macro tier unchanged.

To protect the QoS of the licensed MUEs, we wish to main-
tain a predetermined target SINR γ̄n

i for each of its assigned
subchannel n. Specifically, we have the following constraints
for the MUEs:

Γn
i (A,P) ≥ γ̄n

i , if ani = 1, ∀i ∈ Um (9)

where γ̄n
i = γ̄(sm), which is calculated as in (3) if MUE i

employs sm-QAM modulation scheme.
For FUEs, we assume that they all employ sf-QAM for

a predetermined sf . Then, the spectral efficiency (in bits per
second per hertz) achieved by FUE i on one subchannel can be
written as

rni (A,P) =

{
0, if Γn

i (A,P) < γ̄n
i

rf , if Γn
i (A,P) ≥ γ̄n

i
(10)

where rf = (1/N) log2 s
f , and γ̄n

i = γ̄(sf), which is calculated
as in (3). Note that we have assumed that FUEs in all femtocells
employ the same constellation size sf for ease of exposition. We

will discuss the more general case in Section IV. In practice,
we typically choose sf ≥ sm since FUEs can achieve higher
transmission rates on each subchannel than MUEs due to their
short distance to the associated FBS. This is indeed equivalent
to γ̄(sf) ≥ γ̄(sm). In the analysis, we mostly use the same
notation γ̄n

i to refer to the required target SINR for FUEs or
MUEs where γ̄n

i = γ̄(sf) for ∀i ∈ Uf and γ̄n
i = γ̄(sm) for ∀i ∈

Um. Now, we can express the total spectral efficiency achieved
by UE i for given SA and PA matrices A and P as

Ri(A,P) =

N∑
n=1

rni (A,P). (11)

To impose the max–min fairness for all FUEs associated with
the same FBS, we define the minimum spectral efficiency of
femtocell k as the smallest value of spectral efficiency values
of all FUEs in that femtocell, e.g.,

R(k)(A,P) = min
i∈Uk

Ri(A,P). (12)

The uplink resource-allocation problem for FUEs can be
formulated as follows:

max
(A,P)

∑
2≤k≤K

R(k)(A,P) =
∑

2≤k≤K

min
i∈Uk

Ri(A,P) (13)

s.t. constraints (2), (6), (9). (14)

Therefore, the objective of this uplink resource-allocation
problem aims to balance between attaining an equal rate for
FUEs in each femtocell (max–min fairness [25]) and high
total femtocell spectral efficiency subject to SA constraints,
FUE power constraints, and protection constraints for MUEs.
Note that the SINR constraints for FUEs are embedded in the
calculation of FUE spectral efficiency in (10). The resource-
allocation problem (13) and (14) can be transformed into a
standard mixed integer program, which is, therefore, NP-hard.

III. OPTIMAL AND SUBOPTIMAL ALGORITHMS

Here, we study the feasibility of a particular SA solution,
which reveals the optimal structure of the optimization problem
(13) and (14) based on which we develop optimal and subopti-
mal algorithms.

A. Feasibility of an SA Solution

The resource-allocation problem (13) and (14) involves find-
ing a joint SA and PA solution. For a certain SA solution
represented by matrix A satisfying the SA constraints (2), we
can indeed find its “best” PA and verify its feasibility with
respect to the constraints in (14). In particular, we wish to
maintain the SINR constraints for FUEs and MUEs in (10) and
(9), respectively. Specifically, for each subchannel n, we need
to maintain SINR constraints Γn

i (A,P) ≥ γ̄n
i for both MUEs

and FUEs that are allocated with this subchannel.
Now, let Un = {i ∈ U|ani 
= 0} = {n1, . . . , ncn} denote the

set of UEs of both tiers that are assigned subchannel n and
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cn = |Un| be the number of elements in set Un. Then, the SINR
constraints for UEs in set Un, i.e., Γn

i (A,P) ≥ γ̄n
i , i ∈ Un, can

be rewritten in a matrix form as

(In −GnHn)p ≤ gn (15)

where gn=[gnn1
, . . . , gnncn

]T with gni = ηnbi γ̄
n
i /h

n
bii

, In is cn×
cn identity matrix, Gn = diag{γ̄n

n1
, . . . , γ̄n

ncn
}, pn=[pnn1

, . . . ,

pnncn
]T , and Hn is a cn × cn matrix defined as

[
Hn

i,j

]
=

{
0, if j = i
hn
bni

nj

hn
bni

ni

, if j 
= i. (16)

To study feasible solutions for inequality (15), we recall
some standard results due to the Perron–Frobenius theorem
[14], [22], [23] and their application to the power control
problem [17]. Let λi be the ith eigenvalue of matrix GnHn and
ρ(GnHn) = maxi|λi| be the maximum value of the modulus
of all eigenvalues (i.e., the spectral radius of GnHn). The
results in the Perron–Frobenius theorem can be applied for non-
negative matrix GnHn, which is the case for our model since
all power channel gains, noise power values, and target SINRs
are real and nonnegative numbers. Specifically, the Perron–
Frobenius theorem implies the following fact, which has been
clearly stated in [17].

Fact: If GnHn has nonnegative elements, the following
statements are equivalent.

1) There exists a nonnegative power vector pn such that
(In −GnHn)pn ≥ gn.

2) ρ(GnHn) ≤ 1.
3) (I−GnHn)−1 =

∑∞
k=0(G

nHn)k exists and is positive
elementwise.

From these results, if ρ(GnHn) ≤ 1, then we can find a
solution of (In −GnHn)pn = gn (i.e., the equality case of the
considered inequality) as

pn� = (I−GnHn)−1gn (17)

which is also the Pareto-optimal solution of (In −GnHn)
pn ≥ gn where Pareto optimality means that any feasible solu-
tion pn for the inequality (In −GnHn)pn ≥ gn is not smaller
than pn� elementwise (i.e., there exists no feasible solution pn

for (In −GnHn)pn ≥ gn so that pni ≤ pn�i , ∀i and pnj < pn�j
for some j). These results have been used in [17] and several
references therein.

In addition, this Pareto-optimal power vector can be achieved
at the equilibrium by employing the following well-known
distributed Foschini–Miljanic power updates [16], [17]:

pni (l + 1) := pni (l)
γ̄n
i

Γn
i (l)

= Ini (l)γ̄
n
i (18)

where Γn
i (l) and Ini (l) are the SINR and effective interference

achieved by UE i in iteration l, respectively. If there is no fea-
sible solution for (15) (when ρ(GnHn) > 1), the transmission
power values due to (18) will increase to infinity [16], [17].
Now, we are ready to state one important result for a given SA
solution A that satisfies the SA constraints (2) in the following
proposition.

Proposition 1: Suppose that we can find a finite Pareto-
optimal PA solution pn on the subchannel n for the consid-
ered SA A, which is given in (17) (i.e., the spectrum radius
ρ(GnHn) < 1, ∀n). Then, the underlying SA A is feasible
if these Pareto-optimal PA vectors pn satisfy the power con-
straints in (6).

Proof: The Pareto-optimal PA solution pn on each sub-
channel n requires the minimum power values in the elemen-
twise sense for all UEs, which are assigned subchannel n, to
meet their SINR requirements. Therefore, the considered SA
solution A is feasible if and only if the corresponding Pareto-
optimal PA solutions pn on all N subchannels satisfy the power
constraints in (6). Therefore, we have completed the proof of
the proposition. �

Since the number of possible SAs is finite, the result in this
proposition pays the way to develop the optimal exhaustive
search algorithm, which is presented in the following.

B. Optimal Algorithm

1) Exhaustive Search Algorithm: Based on the results in
Section III-A, we can find the optimal solution for the resource-
allocation problem (13) and (14) by performing exhaustive
search as follows. For a fixed and feasible A1,1 let Ω{A} be the
list of all potential SA solutions that satisfy the SA constraints
(2) and the fairness condition

∑
n∈N ani =

∑
n∈N anj = τk for

all FUEs i, j ∈ Uk. Then, we sort the list Ω{A} in the decreas-
ing order of

∑K
k=2 τk to obtain the sorted list Ω∗{A}. Then,

the feasibility of each SA solution in the list Ω∗{A} can be
verified, as presented in Section III-A. Among all feasible SA
solutions, the feasible one achieving the highest value of the
objective function (13) and its corresponding PA solution given
in (17) is the optimal solution of the optimization problem (13)
and (14).

2) Complexity Analysis: The complexity of the exhaustive
search algorithm can be determined by calculating the number
of the elements in the list Ω∗{A} and the complexity involved
in the feasibility verification for each of them. The number of
the elements in Ω∗{A}, i.e., the number of potential SAs, is
the product of the number of potential SAs for all femtocells,
which satisfy the “fairness condition.” Therefore, the number
of potential SAs can be calculated as

T =
K∏

k=2

ηk∑
τk=0

Mk−1∏
i=0

Cτk
N−iτk

=

K∏
k=2

ηk∑
τk=0

N !

(τk!)Mk(N −Mkτk)!
≈ O

(
(N !)(K−1)

)
(19)

where ηk = 
N/Mk� represents for the largest integer less
than or equal to N/Mk, and Cn

m = m!/n!(m− n)! denotes the
“m-choose-n” operation. According to Section III-A, the com-
plexity of the feasibility verification for each potential SA

1The SA solution for MUEs corresponding to A1 is feasible if there exists a
PA solution that satisfies the constraints in (9) when there is no femto tier.

Authorized licensed use limited to: University of Luxembourg. Downloaded on May 12,2021 at 09:20:04 UTC from IEEE Xplore.  Restrictions apply. 



1392 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 3, MARCH 2014

mainly depends on the eigenvalue calculation of the corre-
sponding matrix and solving the linear system to find the PA
solution for each subchannel. It requires O(K3) to calculate the
eigenvalues of GnHn [18] and O(K3) to obtain pn by solving
a system of linear equations [19]. Therefore, the complexity
of the optimal exhaustive search algorithm is O(K3 ×N ×
(N !)(K−1)), which is exponential in the numbers of subchan-
nels and FBSs. This optimal exhaustive search algorithm will
serve as a benchmark to evaluate the low-complexity algorithm
developed in the following.

C. Suboptimal and Distributed Algorithm

To resolve the exponential complexity of the centralized
optimal algorithm presented in Section III-B, we develop a
low-complexity and distributed resource-allocation algorithm.
To achieve max–min fairness as required by the objective
function (13), our algorithm aims to assign the maximum
equal number of subchannels to FUEs in each femtocell and
to perform Pareto-optimal PA for FUEs and MUEs on each
subchannel so that they meet the SINR constraints in (10) and
(9). To achieve this design goal, we propose a novel subchannel
allocation weight metric so that high weights are assigned for
“bad allocations” requiring large transmission power values and
vice versa.

The proposed resource-allocation algorithm is described in
detail in Algorithm 1. The key operation in this algorithm is
the iterative weight-based SA that is performed in parallel at all
femtocells. The SA weight for each subchannel and FUE pair
is defined as the multiplication of the estimated transmission
power and a scaling factor capturing the quality of the corre-
sponding allocation. Specifically, each UE i in cell k estimates
the transmission power on subchannel n in each iteration l
of the algorithm by using the Foschini–Miljanic power update
given in (18) as follows:

pn,min
i = Ini (l)γ̄

n
i . (20)

The effective interference Ini (l) given in (8) can be estimated by
UE i as follows. The serving BS of UE i estimates the power
channel gain hn

bii
on subchannel n from this user to itself and

transmits this channel state information to UE i. In addition, the
BS of UE i measures the total received power on subchannel
n due to both desired and interfering signals, as well as the
Gaussian noise, which is then sent back to UE i. UE i can
calculate Ini (l) easily by using the gathered information (i.e.,
its transmission power, power channel gain to the BS, and the
total received power at the BS) according to (8). We propose
the following assignment weight for FUE i on subchannel n in
cell k as

wn
i = χn

i p
n,min
i (21)

where the scaling factor χn
i is defined as follows:

χn
i =

⎧⎪⎨
⎪⎩

αn
i , if pn,min

i ≤ Pmax
i

τk

αn
i θ

n
i , if Pmax

i

τk
< pn,min

i ≤ Pmax
i

αn
i δ

n
i , if Pmax

i < pn,min
i

(22)

where τk denotes the number of subchannels assigned for each
FUE in femtocell k; αn

i ≥ 1 is a factor, which helps maintain
SINR constraints of MUEs (i.e., it is increased if assigning
subchannel n to FUE i tends to result in violation of the
SINR constraint of the corresponding MUE); and θni , δ

n
i ≥ 1

are another factors that are set higher if the assignment of
subchannel n for FUE i tends to require transmission power
larger than the average power per subchannel (i.e., Pmax

i /τk)
and the maximum power budget (i.e., Pmax

i ), respectively. We
will set δni as δni = μiθ

n
i where μi = N in Algorithm 1. Given

the weights defined for each FUE i, femtocell k finds the SA
for its FUEs by solving the following problem:

min
Ak

∑
i∈Uk

∑
n∈N

ani w
n
i

s.t.
∑
n∈N

ani = τk, ∀i ∈ Uk. (23)

This problem aims to find an assignment matrix Ak for which
each FUE in femtocell k is assigned τk subchannels with
minimum total weight (i.e., to attain low-power SAs). The
optimization problem (23) can be transformed into the standard
matching problem (for example, between “jobs” and “employ-
ees”) as follows. Suppose we create τk virtual “employees” for
each FUE in femtocell k, then we can consider the matching
problem between τkMk virtual “employees” (virtual FUEs) and
N “jobs” (subchannels). In particular, FUE i is equivalent to τk
virtual FUEs {i1, . . . , iτk}. Let the edge vniu (u ∈ {1, . . . , τk})
between subchannel n and virtual FUE iu represent the assign-
ment of that subchannel to the corresponding FUE. Then, the
weight wn

iu
of the edge vniu is equal to wn

i . After performing
this transformation, the SA solution of the problem (23) can be
found by using the standard Hungarian algorithm [20]. After
running the Hungarian algorithm, if there exists a virtual FUE
iu, u ∈ {1, . . . , τk}, being matched with subchannel n, then
we have ani = 1; otherwise, we set ani = 0. For further inter-
pretation of Algorithm 1, let Wk(l) denote the total minimum
weight due to the optimal solution of (23). The main operations
of Algorithm 1 can be summarized as follows.

1) In steps 2–10, the MBS needs to estimate the effective
interference on all subchannels and calculates the trans-
mission power values for the corresponding MUEs by
using (20). Then, the MBS checks the power constraints
(6) for its associated MUEs. For MUEs that can main-
tain the power constraints (6), the MBS will send the
newly calculated transmission power values to them so
that MUEs can update their power values accordingly
(step 5). Otherwise, if the power constraint of any MUE
is violated, the MBS will scale down the transmission
power values to maintain the power constraints (step 7)
and send the corresponding transmission power values to
its MUEs. In addition, the MBS will inform all FBSs,
which will find the FUE creating the largest interference
to the victim MUE on the subchannel with the largest
transmission power; then, we increase the parameter α

n∗
i

m∗
i

corresponding to this FUE and subchannel pair by a factor
of 2 (steps 8 and 9). This can be realized by allowing the
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MBS to request nearby FBSs to report the transmission
power on the victim subchannel based on which the MBS
can identify and request the most interfering FUE m∗

i to

update its parameter α
n∗
i

m∗
i
. The signaling required by these

operations can be accommodated by the wired backhaul
links [e.g., digital subscriber line (DSL) links].

2) In steps 15–20, each femtocell that has any FUEs’ power
constraints being violated in the previous iteration solves
the SA problem (23) with the current weight values to
update its SA solution. In addition, FBS k decreases
the target number of assigned subchannels τk by one
if the optimal total weight Wk(l) of the problem (23)
satisfies the condition in step 17. Each FBS can complete
all required tasks in these steps since it knows current
transmission power values and scaling factors χn

i of its
FUEs based on which it can calculate all SA weights.

3) In step 12, each FBS estimates the effective interference
on all subchannels and calculates the transmission power
values for its FUEs by using (20). Then, each FBS will
check the power constraints of its FUEs using the newly
calculated transmission power values. For FUEs that have
their power constraints satisfied, the corresponding FBS
will send the newly calculated transmission power values
to them so that they can update power values accord-
ingly (steps 22 and 23). For any FUE that has its power
constraint violated, its FBS scales down the transmission
power values to meet the power constraints (step 25)
and increase the θ

n∗
i

i parameter for the most interfering
subchannel by a factor of 2 (steps 26 and 27). In both
cases, each FBS must send the transmission power levels
on all subchannels to the corresponding FUEs by using
available control channels.

It can be observed that Algorithm 1 can be implemented
distributively. In fact, the signaling information required in
steps 8 and 9 must be sent over the wired backhaul link. In
addition, each BS of either tier only needs to collaborate with
its associated UEs to conduct all required tasks in other steps
where the required signaling is sent over the air by using
available control channels.

Algorithm 1 Distributed Uplink Resource Allocation

1: Initialization
• Set pi(0) = 0 for all UE i, i ∈ Uf , feasible A1.
• Set τk = 
N/|Uk|� and �k = 0 for all k ∈ Bf .
• Set αn

i = θni = 1, μi = N , ∀i ∈ Uf , n ∈ N .
2: For the macrocell:
3: MBS estimates Ini (l) and calculates pn,min

i for each MUE
i as in (20). Let βi =

∑
n∈N ani (l)p

n,min
i /Pmax

i .
4: if βi ≤ 1 then
5: Set pni (l + 1) = ani (l)p

n,min
i , ∀n ∈ N .

6: else if βi > 1 then
7: Set pni (l + 1) = ani (l)p

n,min
i /βi, ∀n ∈ N

8: Find n∗
i = arg max

n∈N ,cn>1
ani (l)p

n,min
i ; m∗

i =

argmax
m∈Uf

a
n∗
i

m (l)p
n∗
i

m (l)h∗
1m

9: Set α
n∗
i

m∗
i
= 2α

n∗
i

m∗
i

and �bm∗
i

= 0.

10: end if
11: For each femtocell k ∈ Bf :
12: Each FBS k estimates Ini (l) and calculates pn,min

i for
each FUE i as in (20).

13: if �k = 1 then
14: Keep Ak(l) = Ak(l − 1)
15: else if �k = 0 then
16: Calculate SA weights wn

iu
between N and ∪i∈Uk

{i1,
. . . , iτk} as in (22), and run Hungarian algorithm with
{wn

iu
} to obtain Wk(l) and Ak(l).

17: if Wk(l) > V
∑

i∈Uk
Pmax
i then

18: Set τk := τk − 1.
19: end if
20: end if
21: Let βi =

∑
n∈N ani (l)p

n,min
i /Pmax

i .
22: if βi ≤ 1 then
23: Set pni (l + 1) = ani (l)p

n,min
i , ∀n ∈ N and �k,i = 1.

24: else if βi > 1 then
25: Set pni (l + 1) = ani (l)p

n,min
i /βi, ∀n ∈ N

26: Find n∗
i = argmax

n∈N
ani (l)p

n,min
i

27: Set θ
n∗
i

i = 2θ
n∗
i

i and �k,i = 0.
28: end if
29: Set �k =

∏
i∈Uk

�k,i.
30: Let l := l + 1, return to step 2 until convergence.

D. Convergence and Complexity Analysis of Algorithm 1

1) Convergence Analysis: The convergence of Algorithm 1
is stated in the following.

Proposition 2: Algorithm 1 converges to a feasible solution
(A,P) of the optimization problem (13) and (14).

Proof: To prove this proposition, we will consider two
possible scenarios. For the first scenario, there exists an itera-
tion after which the scaling factors χn

i for SA weights given
in (22) do not change. According to Algorithm 1, after this
iteration, the SA solution will remain unchanged. In addi-
tion, Algorithm 1 simply updates transmission power values
pn,min
i for all UEs on their assigned subchannels by using the

Foschini–Miljanic power updates. The authors in [16] have
shown that these power updates indeed converge, which implies
the convergence of Algorithm 1.

Now, suppose that the scaling factors χn
i are still changed

over iterations, we will prove that the system will ultimately
evolve into the first scenario previously discussed. First, it
can be verified that the power pn,min

i given in (20) is lower
bounded by γ̄n

i η
n
bi
/hn

bii
. Therefore, if the scaling factors χn

i

keep increasing over iterations, then the total weight Wk(l)
returned by the assignment problem (23) will increase over
iterations as well. Therefore, there exist some femtocells k
that decrease their number of assigned subchannels τk over
iterations (see steps 17–19 of Algorithm 1). Since initial values
of all τk are finite, this process will terminate after a finite
number of iterations. Then, the system will be in the first
scenario discussed above; therefore, Algorithm 1 converges.
Therefore, we have completed the proof of the proposition. �
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TABLE I
SUMMARY OF EXISTING ALGORITHMS

2) Complexity Analysis and Comparison With Existing Algo-
rithms: It is observed that the major complexity of Algorithm 1
is involved in solving the SA by using the Hungarian method
in step 16. According to [20], the complexity of the Hungarian
algorithm is O(N3). Therefore, the complexity of our proposed
algorithm is O(K ×N3) for each iteration. However, the local
SAs can be performed in parallel at all (K − 1) femtocells.
Therefore, the runtime complexity of our algorithm is O(N3)
multiplied by the number of required iterations, which is quite
moderate according to our simulation results (i.e., tens of
iterations).

For comparison purposes, we summarize how existing
resource-allocation formulations and algorithms for two-tier
macro–femto networks cover different design aspects in Table I
where we write NA for the convergence and complexity aspects
if they are not analyzed in these existing works. As we can
see, the existing works consider different optimization objec-
tives and cover some design issues although none of them
accounts for all aspects. Our proposed algorithm captures all
design aspects except the downlink scenario. Moreover, only
Zhang et al. [27] and we consider the power constraints in our
resource allocation. However, Zhang et al. aim to maximize the
total throughput of the femtocell network while constraining
the cross-tier interference from FUEs to the MBS. In their
work, the co-tier interference among femtocells is assumed to
be part of the noise power, which is not explicitly managed.
Given their comparable design and our proposed algorithm, we
will conduct performance comparison for the two algorithms in
terms of throughput and fairness in Section V.

IV. FURTHER EXTENSIONS

A. Downlink Resource Allocation

For the downlink context, we can use the same notations
as in the uplink system. However, hn

ij and ηni are the power
channel gain from BS j to UE i and the noise power at UE
i, respectively. In the downlink system, we need to impose the
power constraints for the BSs instead of UEs as follows:∑

i∈Uk

∑
n∈N

pni ≤ Pmax
BS,k, k ∈ B (24)

where Pmax
BS,k is the maximum power of BS k. Then, the down-

link resource-allocation problem can be formulated as

max
(A,P)

∑
2≤k≤K

R(k)(A,P) (25)

s.t. constraints(2), (9), (24). (26)

We can employ Algorithm 1 to find a feasible solution of this
problem with only some changes in the scaling factor χn

i of the
assignment weight wn

i = χn
i p

n,min
i as follows:

χn
i =

{
αn
i , if pn,min

i ≤ Pmax
BS,bi

∞, if pn,min
i > Pmax

BS,bi.

(27)

In fact, the structure of power constraints in the downlink
context is less complicated than those in the uplink setting since
we only need to maintain the total power constraint for each BS
instead of all UEs connected with each BS. This explains the
simpler structure of (27) compared with that of (22).

The signaling requirements for the downlink case are a bit
different from those in the uplink one, which is described
in the following. To complete the tasks in steps 2–10, each
MUE needs to estimate the current effective interference on
their allocated subchannels based on which the MUE cal-
culates the transmission power values on the corresponding
subchannels. All MUEs then send the updated transmission
power values to the MBS. The MBS updates the transmission
power values on all subchannels accordingly if the power
constraint (24) is satisfied (see step 5). Otherwise, if the
power constraint of the MBS is violated, the MBS scales
down transmission power values on all subchannels by a factor
β1 =

∑
n∈N

∑
i∈U1

ani (l)p
n,min
i /Pmax

BS,1 to maintain the power
constraint. In addition, the MBS informs all FBSs, which will
find the FUE creating the largest interference to the victim
MUE and increase parameter α

n∗
i

m∗
i

by a factor of 2 (see steps
8 and 9). Here, the victim MUE i is the one that is allocated
subchannels n∗

i satisfying n∗
i = argmaxn∈N ,cn>1 a

n
i (l)p

n,min
i .

The signaling in these tasks can be realized as follows.
MUEs report the new transmission power values of their sub-
channels to the MBS via a control channel. In addition, the
MBS requests nearby FBSs to report the transmission power
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values on subchannel n∗
i , and based on this, the MBS can

identify and request the most interfering FUE m∗
i on sub-

channel n∗
i to update its parameter α

n∗
i

m∗
i

by using the wired
backhaul links (e.g., DSL links). In steps 15–20, each FBS
can complete all required tasks in these steps by requiring its
FUEs to report newly calculated transmission power values
based on which it can calculate all SA weights. Note that
each FBS knows the current values of scaling factor χn

i of the
SA weights. The required signaling between FUEs and their
corresponding FBSs can be accommodated by using available
wireless control channels. Finally, each FBS that has its power
constraint satisfied updates its transmission power (see steps 22
and 23). In addition, any FBS k that has its power constraint
violated scales down transmission power values by a factor
βk =

∑
n∈N

∑
i∈Uk

ani (l)p
n,min
i /Pmax

BS,k and increases the θ
n∗
i

i

parameter for the subchannel with largest transmission power
by a factor of 2 (see steps 26 and 27).

B. Adaptive-Rate Resource Allocation

We can relax the fixed-rate assumption and enable FUEs in
each femtocell k to choose any constellation size (modulation
scheme) sk ∈ M for transmissions on their assigned subchan-
nels. The target SINRs for different modulation schemes sk-
QAM γ̄(sk) can be calculated as in (3). Hence, for a given
(sk, τk), the minimum spectral efficiency achieved by each
FUE in femtocell k is

R(k)(sk, τk) = rkτk (28)

where τk is the number of subchannels assigned for each FUE
in femtocell k, and rk = log2 sk/N . The resource-allocation
problem for this adaptive-rate context is the same with (13)
and (14) except that different femtocells k can choose different
constellation sizes sk ∈ M. Hence, we have the following
SINR constraints for each FUE i connected with FBS bi:

Γn
i (A,P) ≥ γ̄(sbi), ∀i ∈ Uf , sbi ∈ M. (29)

The equal number of subchannels assigned to each FUE in
femtocell k is at most 
N/Mk�, and the maximum spectral
efficiency of each subchannel is r̄ = log2 smax/N , where smax

is the maximum allowable constellation size in M. Hence,
the maximum spectral efficiency achieved by any FUE is
r̄
N/Mk�.

Resource-allocation algorithm for this adaptive-rate setting
can be performed by slightly adapting Algorithm 1, which is
described in Algorithm 2. We list and sort all possible couples
(sk, τk) in the decreasing order of their R(k)(sk, τk) = rkτk
to obtain a sorted list Θk. Then, the weight-based SAs can be
performed by iteratively updating (sk, τk) for all femtocells in
the same order of the sorted list. In particular, if the current pair
(sk, τk) of any femtocell k results in violation of the condition,
as specified in step 10 of Algorithm 2, then we update the
pair (sk, τk) by the next one in the list Θk (i.e., the element
(tk + 1) in the sorted list Θk is chosen), which has lower value
of R(k)(sk, τk). These updates are intuitive since the search
space for this adaptive-rate setting comprises both the number

of subchannels assigned for each FUE τk and the modulation
scheme represented by sk. These operations are repeated until
convergence.

Algorithm 2 Adaptive-Rate Resource Allocation

1: Initialization
• Set p(0)i = 0 for all UE i, i ∈ Uf , feasible A1.
• Set tk = 1 and �k = 0 for all k ∈ Bf .
• Set μi = 2, αn

i = 1, ∀i ∈ Uf , n ∈ N .
2: For the macrocell:
3: Update power values for MUEs and αn

i factors as in
steps 3–9 of Algorithm 1.

4: For each femtocell k ∈ Bf :
5: FBS k estimates Ini (l) and calculates pn,min

i for each FUE

i using (20) based on the target SINR γ̄(s
(tk)
k ).

6: if �k = 1 then
7: Keep Ak(l) = Ak(l − 1)
8: else if �k = 0 then
9: Calculate SA weights wn

iu
between N and ∪i∈Uk

{i1,
. . . , i

τ
(tk)

k

}, as in (22), and run Hungarian algorithm

with {wn
iu
} to obtain Wk(l) and Ak(l).

10: if Wk(l) > V
∑

i∈Uk
Pmax
i then

11: Set tk := tk + 1, θni = 1, ∀i ∈ Uk, n ∈ N .
12: end if
13: end if
14: Update power values for FUEs and factors as steps 21–

29 of Algorithm 1.
15: Set l := l + 1, return to step 2 until convergence.

C. Resource Allocation With Hybrid Access

We can extend the considered problem to implement a hybrid
access strategy, which can maintain the required QoS of MUEs
while enhancing the performance of the femtocell tier. It can
be observed that in the proposed algorithms (Algorithms 1 and
2), there may exist femtocells that do not utilize all available
subchannels since doing so may prevent them from maintain-
ing the target SINRs for all FUEs and MUEs. Therefore, it
may be beneficial if we allow MUEs that potentially create
and/or suffer from strong cross-tier interference from nearby
femtocells to change their connections from the MBS to nearby
FBS. However, this can only be performed if the subchannels
assigned to the underlying MUE are not utilized by the target
femtocell.

We present the resource-allocation algorithm with rate adap-
tation under such hybrid access in Algorithm 3. To interpret the
operations of this algorithm, we first give definitions of involved
quantities and parameters in the following. Let bi(l) and Ni(l)
be the BS of UE i and the set of its assigned subchannels in
iteration l, respectively. Note that we have assumed that each
MUE has a fixed set of assigned subchannels and FUEs have
fixed associated FBSs. Therefore, we have bi(l) = bi for each
FUE i and Ni(l) = Ni for each MUE i as specified by A1. In
addition, we can estimate the total required transmission power
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over the assigned subchannels of MUE i that is connected with
BS k as

Pi,k = γ̄(sm)
∑
n∈Ni

Ini,k(l) (30)

where Ini,k(l) is the effective interference corresponding to
MUE i for its connection with BS k on subchannel n, which
can be calculated as in (8). MUE i can determine Pi,k for
each potential FBS k by estimating Ini,k(l) on each assigned
subchannel n. This can be realized as we have discussed in the
paragraph below (20). For the SA in any iteration l, we define
the set of potential FBSs for MUE i as follows:

Bi(l) = {k|k ∈ Bf ,Ni ⊆ N/ ∪j∈Uk
Nj(l − 1)

Pi,k < min(Pi,1, P
max
i ), |Ni| ≤ Qk} (31)

where Qk is the number of unused subchannels at FBS k in
the underlying iteration. Here, Bi(l) is the set of FBSs whose
set of unused subchannels contains the set Ni of MUE i;
connection between MUE i and the underlying FBS requires
less power than connection between MUE i and the MBS. We
also define the set Um,k(l) = {i ∈ Um|bi(l) = k}, which is the
set of MUEs connecting with BS k in iteration l.

Algorithm 3 Adaptive-Rate Resource Allocation With
Hybrid Access

1: Initialization: Set parameters as step 1 of Algorithm 2 and
Qk = 0, ∀k ∈ Bf .

2: For the macrocell:
3: Estimate Pi,k, update Bi(l), set B = ∪i∈Um,1(l)Bi(l).
4: if B = ∅ then
5: Go to step 10.
6: else if B 
= ∅ then
7: Find (k�, i�) = argmini∈Um,1(l) mink∈Bi

Pi,k.
8: Set bi�(l) = k�, Qk� = Qk� − |Ni� |, �k� = 0, and go

back to step 3.
9: end if
10: Update power values and all parameters as in steps 3–10

of Algorithm 1.
11: For each femtocell k ∈ Bf :
12: Update the subchannel, PA, and other parameters for all

FUEs in cell k as steps 5–14 of Algorithm 2 where the
Hungarian algorithm is run for the set of subchannels
N/ ∪i∈Um,k(l) Ni and the set of virtual UEs ∪i∈Uk

{i1,
. . . , i

τ
(tk)

k

}.

13: if tk changes then
14: Set Qk = N − τ

(tk)
k Mk, bi(l + 1) = 1, ∀i ∈ Um,k(l).

15: else if tk does not change then
16: Set Qk=N−

∑
i,bi(l)=k

|Ni(l)|, bi(l+1)=k, ∀i∈Um,k(l).

17: end if
18: Let l := l + 1, return to step 2 until convergence.

Fig. 1. Macrocell–femtocell networks used in the simulation.

In Algorithm 3, we do not change existing associations
between any FBS k and its corresponding MUEs until the
chosen pair (sk, τk) in this femtocell is updated (i.e., the next
pair (sk, τk) in the sorted list Θk is chosen). Specifically, if tk
is updated (i.e., in step 13), then all MUEs currently connected
with FBS k are forced to change their connections back to the
MBS (see step 14); otherwise, we maintain the BS associations
of all MUEs as they are (see steps 15 and 16). In addition, only
MUEs currently connecting with the MBS (i.e., any MUE i with
bi(l) equal to 1) are allowed to change their BS association in
iteration l. In particular, the couple of FBS and MUE requiring
the smallest transmission power will be chosen for association
in each iteration (see step 7). Other operations corresponding to
SA, PA, and updates of various parameters are performed as in
Algorithm 2.

Algorithm 3 can be implemented as follows. To complete the
tasks in steps 3–9, each MUE i upon estimating Pi,k for all po-
tential FBSs k ∈ Bi will send a connection request to the FBS
that requires the minimum power (i.e., mink∈Bi

Pi,k) together
with the value of Pi,k. If a particular FBS k receives several
connection requests, then the FBS will grant the connection
to only one MUE with the smallest value of Pi,k. Signaling
information needed to exchange the connection request and
granting messages can be accommodated by available control
channels. In steps 13 and 14, if the next pair (sk, τk) with index
tk in the sorted list Θk in femtocell k is chosen (i.e., tk is
increased by one), then FBS k simply requests all associated
MUEs to change their connections back to the MBS. Otherwise,
if tk remains unchanged, then FBS k simply updates parameter
Qk based on the new SA assignment decisions in step 12.

V. NUMERICAL RESULTS

We obtain numerical results for two different networks (with
a small and large number of femtocells and UEs) to evaluate
the efficacy of our proposed algorithms. The network setting
and UE placement for our simulations are shown in Fig. 1,
where MUEs and FUEs are randomly located inside circles of
radii of r1 = 1000 m and r2 = 30 m, respectively. The power
channel gains hn

ij are generated by considering both Rayleigh
fading, which is represented by an exponentially distributed
random variable with the mean value of one, and the path
loss Lij = Ai log10(dij) +Bi + C log10(fc/5) +WL× nij ,
where dij is the distance from UE j to BS i; (Ai, Bi) are
set as (36, 40) and (25, 45) for MBS and FBSs, respectively;

Authorized licensed use limited to: University of Luxembourg. Downloaded on May 12,2021 at 09:20:04 UTC from IEEE Xplore.  Restrictions apply. 



NGUYEN HA AND BAO LE: RESOURCE ALLOCATION FOR OFDMA FEMTOCELL NETWORKS WITH PROTECTION 1397

TABLE II
TARGET SINRS FOR DIFFERENT CONSTELLATION SIZES

WITH TARGET BER P e = 10−3

Fig. 2. Total minimum spectral efficiency for small network under optimal
and suboptimal algorithms for sm = 4, WL = 5 dB, and Pmax

m = Pmax
f

=

0.01 W.

C = 20; fc = 2.5 GHz; WL is the wall-loss parameter; and nij

is the number of walls between BS i and UE j. This path-loss
model is chosen according to the general form of the path-loss
formula in [24], which is suggested by the WINNER II channel
modeling project. The noise power is set as ηi = 10−13 W,
∀i ∈ B.

To obtain simulation results, we use two modulation schemes
(4- and 16-QAM) for MUEs and five modulation schemes (4-,
16-, 64-, 256-, and 1024-QAM) for FUEs. Moreover, we choose
the target BER P e = 10−3 whose target SINRs corresponding
to different modulation schemes, which can be calculated by
using (5), are given in Table II. Each simulation result is
obtained by taking the average over 20 different runs where, for
each run, UEs are randomly located and a feasible SA matrix
for MUEs A1 is chosen so that each MUE is assigned N/M1

subchannels.

A. Performance of Proposed Algorithms

In Fig. 2, we show the total minimum spectral efficiency of
all femtocells [i.e., the optimal objective value of (13)] versus
the constellation size of FUEs (sf) for the small network due
to both optimal and suboptimal algorithms (see Algorithm 1),
which are presented in Section III. As shown, for the low
constellation sizes (i.e., low target SINRs), Algorithm 1 can
achieve almost the same spectral efficiency as the optimal
algorithm, whereas for higher values of sf , Algorithm 1 results
in just slightly lower spectral efficiency than that due to the
optimal algorithm. Moreover, when we increase the value of
parameter V , a slightly better performance can be achieved.
We then plot the minimum number of subchannels assigned for
FUEs and the average SINRs over assigned subchannels versus
iteration index for the small network in Fig. 3. This figure shows
the convergence of Algorithm 1 in terms of both user SINR and
number of assigned subchannels per FUE.

Fig. 3. Minimum number of subchannels assigned for FUEs and average
SINRs versus iteration index where sm = 4, sf = 256, WL = 5 dB, and
Pmax
m = Pmax

f
= 0.01 W.

Fig. 4. Total minimum spectral efficiency versus QAM constellation size of
femtocells with Pmax

m = Pmax
f

= 0.01 W.

Fig. 4 shows the total femtocell minimum spectral efficiency
versus the QAM constellation size, which is obtained by run-
ning Algorithm 1 for the large network. This figure shows
that the total minimum spectral efficiency increases and then
decreases as femtocell constellation size increases; it decreases
as the constellation size of MUEs increases. These results
can be interpreted as follows. Higher constellation sizes have
higher target SINRs, which require higher transmission power
and produce more interference to other users in the network.
Therefore, the power constraints of FUEs and MUEs are more
likely to be violated for higher constellation sizes (e.g., 254
or 1024), which limits the number of subchannels allocated
for each FUE. Moreover, for low modulation levels (therefore,
low target SINRs of FUEs), the spectral efficiency on each
assigned subchannel increases with the increasing modulation
level, whereas the number of subchannels assigned for each
FUE does not decrease too much. Moreover, the total minimum
spectral efficiency of femtocells increases with the increasing
wall-loss value WL. This is because the higher wall loss
reduces both co-tier and cross-tier interference to users of
both tiers.

In Figs. 5 and 6, we plot the total femtocell minimum spectral
efficiency versus the maximum power of FUEs (Pmax

f ) and
MUEs (Pmax

m ), respectively, for different modulation levels
of MUEs (the modulation scheme of FUEs is 256-QAM).
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Fig. 5. Total minimum spectral efficiency versus Pmax
f

for the large network

with sf = 256, WL = 5 dB, and Pmax
m = 0.01 W.

Fig. 6. Total minimum spectral efficiency versus Pmax
m for the large network

with sf = 256, WL = 5 dB, and Pmax
f

= 0.01 W.

These figures show that the total minimum spectral efficiency
increases with the increase in maximum power budgets Pmax

f or
Pmax
m . However, this value is saturated as the maximum power

budgets Pmax
f or Pmax

m become sufficiently large. In addition,
as the number of MUEs increases, the total femtocell minimum
spectral efficiency increases due to the better diversity gain
offered by the macro tier.

In Fig. 7, we show the total minimum spectral efficiency of
femtocells versus the QAM constellation sizes for the downlink
by running the resource-allocation algorithm with the power
constraints (24) and SA weights (27). This figure shows that the
proposed algorithm works well for the downlink system where
these results are similar to those for the uplink case presented
in Fig. 4.

Fig. 8 presents the total minimum spectral efficiency of
femtocells versus the wall-loss parameter WL achieved by the
fixed-rate algorithm (i.e., Algorithm 1) and the adaptive-rate
algorithm (i.e., Algorithm 2) whose results are indicated by
“Max-Fixed Rate” and “Multi-Rate” in this figure, respectively.
In Algorithm 2, each femtocell can choose one best modulation
scheme among five schemes (sf = 4, 16, 64, 256, and1024),
whereas Algorithm 1 employs the maximum modulation level
for all femtocells. This figure demonstrates that the great per-
formance gain can be achieved by exploiting the adaptive-rate
feature in performing resource allocation for FUEs.

Fig. 7. Total minimum spectral efficiency of femtocells in the downlink with
WL = 5 dB, Pmax

BS,m
= 0.2 W, and Pmax

BS,f
= 0.05 W.

Fig. 8. Total minimum spectral efficiency versus wall loss for Algorithm 2
with Pmax

m = Pmax
f

= 0.01 W.

In Fig. 9, we show the total minimum spectral efficiency
of all femtocells versus Pmax

f under the hybrid and closed-
access strategies, which are obtained by Algorithms 3 and
2, respectively. These results correspond to the large network
with 32 MUEs and WL = 5 dB. As shown, the hybrid access
strategy achieves higher performance than that under closed-
access scheme. Moreover, the performance gap between two
strategies becomes larger with increasing maximum power
budget of FUEs. Under the closed access, the total spectral
efficiency of femtocells is indeed limited by MUEs that are
located far away from the MBS and close to some FBSs. The
hybrid access strategy enables these victim MUEs to connect
with nearby FBSs, which mitigates this problem and increases
the spectral efficiency of the femto tier.

B. Performance Comparison With Zhang’s Algorithm [27]

Performance comparison between our proposed algorithm
and that in [27] is presented in the following. To obtain the
simulation results in Fig. 10, the spectral efficiency of each
FUE is obtained by running Zhang’s algorithm and calculating
the spectral efficiency by using the fixed-rate formula (10). In
Fig. 10, we show the total spectral efficiency of all FUEs in
all femtocells due to Zhang’s algorithm [27] and Algorithm 1
as we vary the QAM constellation size of each FUE sf . This
figure shows that, for a fixed constellation size employed
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Fig. 9. Total minimum spectral efficiency versus Pmax
f

under the adaptive-
rate and hybrid access strategies for Pmax

m = 0.01 W, M1 = 32, and WL =
5 dB.

Fig. 10. Total spectral efficiency versus QAM constellation size of FUEs with
Pmax
m = Pmax

f
= 0.01 W.

by MUEs, the total spectral efficiency achieved by Zhang’s
algorithm is lower than ours for low values of sf , whereas
Zhang’s algorithm results in slightly higher spectral efficiency
than our algorithm for larger values of sf . The slightly better
performance of Zhang’s algorithm comes at the cost of severely
unfair resource sharing among FUEs, as we will show in
Fig. 12. It is worth recalling that Zhang et al. aim to maximize
the total throughput without considering user fairness, while
our formulation focuses on achieving an equal rate for FUEs
in each femtocell (i.e., max–min fairness).

Fig. 11 shows the total spectral efficiency of Zhang’s algo-
rithm and our proposed algorithms with rate adaptation (i.e.,
Algorithm 2) as we vary the maximum power of each FUE
Pmax
f . Here, the spectral efficiency of FUEs under Zhang’s

algorithm is calculated by using the adaptive-rate formula (29).
As evident, the total spectral efficiency due to Zhang’s algo-
rithm is higher than ours for low values of Pmax

f , but Zhang’s
algorithm performs worse compared with our algorithm if
Pmax
f becomes sufficiently large. The superior performance of

Zhang’s algorithm in the low-power regime is again due to
its unfair resource-sharing nature. In fact, Zhang’s algorithm
does not account for the co-tier interference among femto-
cells, which explains why it performs worse compared with
our algorithm in the high-power regime. This is because the

Fig. 11. Total spectral efficiency versus maximum power of each FUE with
Pmax
m = 0.01 W.

Fig. 12. Fairness index versus maximum power of each FUE with Pmax
m =

0.01 W.

transmission power values of FUEs increase with the larger
power budget, which results in higher femtocell co-tier inter-
ference. The high co-tier interference degrades the performance
of Zhang’s algorithm since this type of interference is not
managed in their work.

To compare the fairness of Zhang’s and our proposed algo-
rithms, we present the average fairness index achieved by FUEs
in each femtocell, which is calculated as [26]

FIk =

(
Mk∑
i=1

Ri

)2 /
Mk

(
Mk∑
i=1

R2
i

)
. (32)

This fairness index is widely employed in the literature to
evaluate the level of fairness achieved by resource-allocation
algorithms where an algorithm is fairer if its fairness index is
higher and close to the maximum value of one and vice versa.
Fig. 12 shows the average fairness index achieved by Zhang’s
and our proposed algorithms. As is evident, our algorithm
provides maximum fairness for FUEs in each femtocell (since
the rates of FUEs in each femtocell are equal), whereas the
average fairness index of Zhang’s algorithm is around 0.5–0.6,
which is quite low. This implies that Zhang’s algorithm may
result in big differences in the rates achieved FUEs in each
femtocell, which is not very desirable. Considering that the total
spectral efficiency due to Zhang’s and our proposed algorithms
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TABLE III
SUMMARY OF KEY NOTATIONS

is not much different, whereas Zhang’s algorithm is highly
unfair, we would conclude that our proposed algorithms better
balance between the throughput and fairness compared with
Zhang’s algorithm.

VI. CONCLUSION

We have proposed centralized optimal and distributed
resource-allocation algorithms that maximize the total mini-
mum spectral efficiency of the femtocell network while ensur-

ing fairness among FUEs and QoS protection for all MUEs.
Moreover, the proposed algorithm has been extended for three
scenarios, namely, downlink context, adaptive-rate systems
where FUEs in each femtocell can adaptively choose one in
a predetermined set of modulation schemes, and hybrid access
design where MUEs can associate with nearby FBSs to improve
the performance of the femto tier. Extensive numerical results
have been presented to demonstrate the impacts of different
system parameters on the network performance and the efficacy
of our proposed resource-allocation algorithms.
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