79 research outputs found

    A comprehensive survey on radio resource management in 5G HetNets: current solutions, future trends and open issues

    Get PDF
    The 5G network technologies are intended to accommodate innovative services with a large influx of data traffic with lower energy consumption and increased quality of service and user quality of experience levels. In order to meet 5G expectations, heterogeneous networks (HetNets) have been introduced. They involve deployment of additional low power nodes within the coverage area of conventional high power nodes and their placement closer to user underlay HetNets. Due to the increased density of small-cell networks and radio access technologies, radio resource management (RRM) for potential 5G HetNets has emerged as a critical avenue. It plays a pivotal role in enhancing spectrum utilization, load balancing, and network energy efficiency. In this paper, we summarize the key challenges i.e., cross-tier interference, co-tier interference, and user association-resource-power allocation (UA-RA-PA) emerging in 5G HetNets and highlight their significance. In addition, we present a comprehensive survey of RRM schemes based on interference management (IM), UA-RA-PA and combined approaches (UA-RA-PA + IM). We introduce a taxonomy for individual (IM, UA-RA-PA) and combined approaches as a framework for systematically studying the existing schemes. These schemes are also qualitatively analyzed and compared to each other. Finally, challenges and opportunities for RRM in 5G are outlined, and design guidelines along with possible solutions for advanced mechanisms are presented

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    Hybrid generalized non-orthogonal multiple access for the 5G wireless networks.

    Get PDF
    Master of Science in Computer Engineering. University of KwaZulu-Natal. Durban, 2018.The deployment of 5G networks will lead to an increase in capacity, spectral efficiency, low latency and massive connectivity for wireless networks. They will still face the challenges of resource and power optimization, increasing spectrum efficiency and energy optimization, among others. Furthermore, the standardized technologies to mitigate against the challenges need to be developed and are a challenge themselves. In the current predecessor LTE-A networks, orthogonal frequency multiple access (OFDMA) scheme is used as the baseline multiple access scheme. It allows users to be served orthogonally in either time or frequency to alleviate narrowband interference and impulse noise. Further spectrum limitations of orthogonal multiple access (OMA) schemes have resulted in the development of non-orthogonal multiple access (NOMA) schemes to enable 5G networks to achieve high spectral efficiency and high data rates. NOMA schemes unorthogonally co-multiplex different users on the same resource elements (RE) (i.e. time-frequency domain, OFDMA subcarrier, or spreading code) via power domain (PD) or code domain (CD) at the transmitter and successfully separating them at the receiver by applying multi-user detection (MUD) algorithms. The current developed NOMA schemes, refered to as generalized-NOMA (G-NOMA) technologies includes; Interleaver Division Multiple Access (IDMA, Sparse code multiple access (SCMA), Low-density spreading multiple access (LDSMA), Multi-user shared access (MUSA) scheme and the Pattern Division Multiple Access (PDMA). These protocols are currently still under refinement, their performance and applicability has not been thoroughly investigated. The first part of this work undertakes a thorough investigation and analysis of the performance of the existing G-NOMA schemes and their applicability. Generally, G-NOMA schemes perceives overloading by non-orthogonal spectrum resource allocation, which enables massive connectivity of users and devices, and offers improved system spectral efficiency. Like any other technologies, the G-NOMA schemes need to be improved to further harvest their benefits on 5G networks leading to the requirement of Hybrid G-NOMA (G-NOMA) schemes. The second part of this work develops a HG-NOMA scheme to alleviate the 5G challenges of resource allocation, inter and cross-tier interference management and energy efficiency. This work develops and investigates the performance of an Energy Efficient HG-NOMA resource allocation scheme for a two-tier heterogeneous network that alleviates the cross-tier interference and improves the system throughput via spectrum resource optimization. By considering the combinatorial problem of resource pattern assignment and power allocation, the HG-NOMA scheme will enable a new transmission policy that allows more than two macro-user equipment’s (MUEs) and femto-user equipment’s (FUEs) to be co-multiplexed on the same time-frequency RE increasing the spectral efficiency. The performance of the developed model is shown to be superior to the PD-NOMA and OFDMA schemes

    Energy and throughput efficient strategies for heterogeneous future communication networks

    Get PDF
    As a result of the proliferation of wireless-enabled user equipment and data-hungry applications, mobile data traffic has exponentially increased in recent years.This in-crease has not only forced mobile networks to compete on the scarce wireless spectrum but also to intensify their power consumption to serve an ever-increasing number of user devices. The Heterogeneous Network (HetNet) concept, where mixed types of low-power base stations coexist with large macro base stations, has emerged as a potential solution to address power consumption and spectrum scarcity challenges. However, as a consequence of their inflexible, constrained, and hardware-based configurations, HetNets have major limitations in adapting to fluctuating traffic patterns. Moreover, for large mobile networks, the number of low-power base stations (BSs) may increase dramatically leading to sever power consumption. This can easily overwhelm the benefits of the HetNet concept. This thesis exploits the adaptive nature of Software-defined Radio (SDR) technology to design novel and optimal communication strategies. These strategies have been designed to leverage the spectrum-based cell zooming technique, the long-term evolution licensed assisted access (LTE-LAA) concept, and green energy, in order to introduce a novel communication framework that endeavors to minimize overall network on-grid power consumption and to maximize aggregated throughput, which brings significant benefits for both network operators and their customers. The proposed strategies take into consideration user data demands, BS loads, BS power consumption, and available spectrum to model the research questions as optimization problems. In addition, this thesis leverages the opportunistic nature of the cognitive radio (CR) technique and the adaptive nature of the SDR to introduce a CR-based communication strategy. This proposed CR-based strategy alleviates the power consumption of the CR technique and enhances its security measures according to the confidentiality level of the data being sent. Furthermore, the introduced strategy takes into account user-related factors, such as user battery levels and user data types, and network-related factors, such as the number of unutilized bands and vulnerability level, and then models the research question as a constrained optimization problem. Considering the time complexity of the optimum solutions for the above-mentioned strategies, heuristic solutions were proposed and examined against existing solutions. The obtained results show that the proposed strategies can save energy consumption up to 18%, increase user throughput up to 23%, and achieve better spectrum utilization. Therefore, the proposed strategies offer substantial benefits for both network operators and users

    Security for 5G Mobile Wireless Networks

    Get PDF
    The advanced features of 5G mobile wireless network systems yield new security requirements and challenges. This paper presents a comprehensive survey on security of 5G wireless network systems compared to the traditional cellular networks. The paper starts with a review on 5G wireless networks particularities as well as on the new requirements and motivations of 5G wireless security. The potential attacks and security services with the consideration of new service requirements and new use cases in 5G wireless networks are then summarized. The recent development and the existing schemes for the 5G wireless security are presented based on the corresponding security services including authentication, availability, data confidentiality, key management and privacy. The paper further discusses the new security features involving different technologies applied to 5G such as heterogeneous networks, device-to-device communications, massive multiple-input multiple-output, software defined networks and Internet of Things. Motivated by these security research and development activities, we propose a new 5G wireless security architecture, based on which the analysis of identity management and flexible authentication is provided. As a case study, we explore a handover procedure as well as a signaling load scheme to show the advantage of the proposed security architecture. The challenges and future directions of 5G wireless security are finally summarized

    Intelligent and Efficient Ultra-Dense Heterogeneous Networks for 5G and Beyond

    Get PDF
    Ultra-dense heterogeneous network (HetNet), in which densified small cells overlaying the conventional macro-cells, is a promising technique for the fifth-generation (5G) mobile network. The dense and multi-tier network architecture is able to support the extensive data traffic and diverse quality of service (QoS) but meanwhile arises several challenges especially on the interference coordination and resource management. In this thesis, three novel network schemes are proposed to achieve intelligent and efficient operation based on the deep learning-enabled network awareness. Both optimization and deep learning methods are developed to achieve intelligent and efficient resource allocation in these proposed network schemes. To improve the cost and energy efficiency of ultra-dense HetNets, a hotspot prediction based virtual small cell (VSC) network is proposed. A VSC is formed only when the traffic volume and user density are extremely high. We leverage the feature extraction capabilities of deep learning techniques and exploit a long-short term memory (LSTM) neural network to predict potential hotspots and form VSC. Large-scale antenna array enabled hybrid beamforming is also adaptively adjusted for highly directional transmission to cover these VSCs. Within each VSC, one user equipment (UE) is selected as a cell head (CH), which collects the intra-cell traffic using the unlicensed band and relays the aggregated traffic to the macro-cell base station (MBS) in the licensed band. The inter-cell interference can thus be reduced, and the spectrum efficiency can be improved. Numerical results show that proposed VSCs can reduce 55%55\% power consumption in comparison with traditional small cells. In addition to the smart VSCs deployment, a novel multi-dimensional intelligent multiple access (MD-IMA) scheme is also proposed to achieve stringent and diverse QoS of emerging 5G applications with disparate resource constraints. Multiple access (MA) schemes in multi-dimensional resources are adaptively scheduled to accommodate dynamic QoS requirements and network states. The MD-IMA learns the integrated-quality-of-system-experience (I-QoSE) by monitoring and predicting QoS through the LSTM neural network. The resource allocation in the MD-IMA scheme is formulated as an optimization problem to maximize the I-QoSE as well as minimize the non-orthogonality (NO) in view of implementation constraints. In order to solve this problem, both model-based optimization algorithms and model-free deep reinforcement learning (DRL) approaches are utilized. Simulation results demonstrate that the achievable I-QoSE gain of MD-IMA over traditional MA is 15%15\% - 18%18\%. In the final part of the thesis, a Software-Defined Networking (SDN) enabled 5G-vehicle ad hoc networks (VANET) is designed to support the growing vehicle-generated data traffic. In this integrated architecture, to reduce the signaling overhead, vehicles are clustered under the coordination of SDN and one vehicle in each cluster is selected as a gateway to aggregate intra-cluster traffic. To ensure the capacity of the trunk-link between the gateway and macro base station, a Non-orthogonal Multiplexed Modulation (NOMM) scheme is proposed to split aggregated data stream into multi-layers and use sparse spreading code to partially superpose the modulated symbols on several resource blocks. The simulation results show that the energy efficiency performance of proposed NOMM is around 1.5-2 times than that of the typical orthogonal transmission scheme
    corecore