151,296 research outputs found

    Resource Allocation in Computer Vision

    Get PDF
    We broadly examine resource allocation in several computer vision problems. We consider human resource or computational resource constraints. Human resources, such as human operators monitoring a camera network, provide reliable information, but are typically limited by the huge amount of data to be processed. Computational resources refer to the resources used by machines, such as running time, to execute the programs. It is important to develop algorithms to make effective use of these resources in computer vision applications. We approach human resource constraints with a frame retrieval problem in a camera network. This work addresses the problem of using active inference to direct human attention in searching a camera network for people that match a query image. We find that by representing the camera network using a graphical model, we can more accurately determine which video frames match the query, and improve our ability to direct human attention. We experiment with different methods to determine from which frames to sample expert information from humans, and discover that a method that learns to predict which frame is misclassified gives the best performance. We approach the problem of allocating computational resource in a video processing task. We consider a video processing application in which we combine the outputs from two algorithms so that the budget-limited computationally more expensive algorithm is run in the most useful video frames to maximize processing performance. We model the video frames as a chain graphical model and extend a dynamic programming algorithm to determine on which frames to run the more expensive algorithm. We perform experiments on moving object detection and face detection to demonstrate the effectiveness of our approaches. Finally, we consider an idea for saving computational resources and maintaining program performance. We work on a problem of learning model complexity in latent variable models. Specifically, we learn the latent variable state space complexity in latent support vector machines using group norm regularization. We apply our method to handwritten digit recognition and object detection with deformable part models. Our approach reduces latent variable state size and performs faster inference with similar or better performance

    Numerical Representation of Directed Acyclic Graphs for Efficient Dataflow Embedded Resource Allocation

    Get PDF
    International audienceStream processing applications running on Heterogeneous Multi-Processor Systems on Chips (HMPSoCs) require efficient resource allocation and management, both at compile-time and at runtime. To cope with modern adaptive applications whose behavior can not be exhaustively predicted at compile-time, runtime managers must be able to take resource allocation decisions on-the-fly, with a minimum overhead on application performance. Resource allocation algorithms often rely on an internal modeling of an application. Directed Acyclic Graph (DAGs) are the most commonly used models for capturing control and data dependencies between tasks. DAGs are notably often used as an intermediate representation for deploying applications modeled with a dataflow Model of Computation (MoC) on HMPSoCs. Building such intermediate representation at runtime for massively parallel applications is costly both in terms of computation and memory overhead. In this paper, an intermediate representation of DAGs for resource allocation is presented. This new representation shows improved performance for run-time analysis of dataflow graphs with less overhead in both computation time and memory footprint. The performances of the proposed representation are evaluated on a set of computer vision and machine learning applications

    Optimal Control of Wireless Computing Networks

    Full text link
    Augmented information (AgI) services allow users to consume information that results from the execution of a chain of service functions that process source information to create real-time augmented value. Applications include real-time analysis of remote sensing data, real-time computer vision, personalized video streaming, and augmented reality, among others. We consider the problem of optimal distribution of AgI services over a wireless computing network, in which nodes are equipped with both communication and computing resources. We characterize the wireless computing network capacity region and design a joint flow scheduling and resource allocation algorithm that stabilizes the underlying queuing system while achieving a network cost arbitrarily close to the minimum, with a tradeoff in network delay. Our solution captures the unique chaining and flow scaling aspects of AgI services, while exploiting the use of the broadcast approach coding scheme over the wireless channel.Comment: 30 pages, journa

    Towards QoS-Based Embedded Machine Learning

    Get PDF
    Due to various breakthroughs and advancements in machine learning and computer architectures, machine learning models are beginning to proliferate through embedded platforms. Some of these machine learning models cover a range of applications including computer vision, speech recognition, healthcare efficiency, industrial IoT, robotics and many more. However, there is a critical limitation in implementing ML algorithms efficiently on embedded platforms: the computational and memory expense of many machine learning models can make them unsuitable in resource-constrained environments. Therefore, to efficiently implement these memory-intensive and computationally expensive algorithms in an embedded computing environment, innovative resource management techniques are required at the hardware, software and system levels. To this end, we present a novel quality-of-service based resource allocation scheme that uses feedback control to adjust compute resources dynamically to cope with the varying and unpredictable workloads of ML applications while still maintaining an acceptable level of service to the user. To evaluate the feasibility of our approach we implemented a feedback control scheduling simulator that was used to analyze our framework under various simulated workloads. We also implemented our framework as a Linux kernel module running on a virtual machine as well as a Raspberry Pi 4 single board computer. Results illustrate that our approach was able to maintain a sufficient level of service without overloading the processor as well as providing an energy savings of almost 20% as compared to the native resource management in Linux

    Digital Divides in Scene Recognition: Uncovering Socioeconomic Biases in Deep Learning Systems

    Full text link
    Computer-based scene understanding has influenced fields ranging from urban planning to autonomous vehicle performance, yet little is known about how well these technologies work across social differences. We investigate the biases of deep convolutional neural networks (dCNNs) in scene classification, using nearly one million images from global and US sources, including user-submitted home photographs and Airbnb listings. We applied statistical models to quantify the impact of socioeconomic indicators such as family income, Human Development Index (HDI), and demographic factors from public data sources (CIA and US Census) on dCNN performance. Our analyses revealed significant socioeconomic bias, where pretrained dCNNs demonstrated lower classification accuracy, lower classification confidence, and a higher tendency to assign labels that could be offensive when applied to homes (e.g., "ruin", "slum"), especially in images from homes with lower socioeconomic status (SES). This trend is consistent across two datasets of international images and within the diverse economic and racial landscapes of the United States. This research contributes to understanding biases in computer vision, emphasizing the need for more inclusive and representative training datasets. By mitigating the bias in the computer vision pipelines, we can ensure fairer and more equitable outcomes for applied computer vision, including home valuation and smart home security systems. There is urgency in addressing these biases, which can significantly impact critical decisions in urban development and resource allocation. Our findings also motivate the development of AI systems that better understand and serve diverse communities, moving towards technology that equitably benefits all sectors of society.Comment: 20 pages, 3 figures, 3 table

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201
    • …
    corecore