9,266 research outputs found

    Service-Oriented Bandwidth Borrowing Scheme for Mobile Multimedia Wireless Networks

    Full text link
    Multimedia applications (audio phone, video on demand, video conference, file transfer, etc.) will be integrated into future mobile communication systems. Bandwidth is the most critical resource in mobile multimedia wireless networks. Due to mobile user mobility and limited bandwidth in the mobile wireless communications networks, the quality-of-service (QoS) guarantee becomes very complicated for multimedia applications. Therefore, the available bandwidth of wireless networks should be managed in the most efficient manner. In order to provide mobile hosts (MHs) with highly satisfying degree of QoS in mobile communication systems, new and efficient bandwidth allocation schemes must be developed. In this paper, we propose and evaluate a novel scheme for bandwidth borrowing in mobile multimedia wireless networks. We employ a service-oriented bandwidth borrowing strategy to reduce the overhead of bandwidth reconfiguration and to satisfy QoS requirements of ongoing MHs in cellular systems. Furthermore, we design efficient call admission control algorithms for different multimedia services. The QoS guarantees can be maintained at a comfortable level in cellular systems. Simulation results show that our proposed scheme outperform the previously proposed scheme

    JOINT CALL ADMISSION CONTROL FOR MULTI-MODE TERMINALS IN HETEROGENEOUS CELLULAR NETWORKS

    Get PDF
    The heterogeneous networks are the Next Generation Wireless Networks (NWGN).The presence of heterogeneous networks leads to the necessity of multi-mode terminals i.e. single mode, dual mode, triple mode, quad-mode etc. based on number of RATs in the heterogeneous networks which results in varying mobile capability. The main problem with the heterogeneous networks is the unfairness in allocation of radio resources. In the same heterogeneous network single-mode terminals (Low-capability mobile terminals) experience high blocking probability compared to quad-mode terminals (High-capability mobile terminals) in the same network. To reduce this problem of unfair allocation of radio resources a Terminal Modality Based Joint Call Admission Control (TJCAC) Algorithm has been proposed. In this proposed algorithm the call admission decisions take into account modality (capability) of the mobile terminal, Load on each RAT and Terminal Support Index of each RAT during resource allocation. We have proposed an analytical model to evaluate the performance of the algorithm and show that there is a decrease in the call blocking and dropping probabilities

    Efficient resource allocation and call admission control in high capacity wireless networks

    Get PDF
    Resource Allocation (RA) and Call Admission Control (CAC) in wireless networks are processes that control the allocation of the limited radio resources to mobile stations (MS) in order to maximize the utilization efficiency of radio resources and guarantee the Quality of Service (QoS) requirements of mobile users. In this dissertation, several distributed, adaptive and efficient RA/CAC schemes are proposed and analyzed, in order to improve the system utilization while maintaining the required QoS. Since the most salient feature of the mobile wireless network is that users are moving, a Mobility Based Channel Reservation (MBCR) scheme is proposed which takes the user mobility into consideration. The MBCR scheme is further developed into PMBBR scheme by using the user location information in the reservation making process. Through traffic composition analysis, the commonly used assumption is challenged in this dissertation, and a New Call Bounding (NCB) scheme, which uses the number of channels that are currently occupied by new calls as a decision variable for the CAC, is proposed. This dissertation also investigates the pricing as another dimension for RA/CAC. It is proven that for a given wireless network there exists a new call arrival rate which can maximize the total utility of users, while maintaining the required QoS. Based on this conclusion, an integrated pricing and CAC scheme is proposed to alleviate the system congestion

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable públic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Joint call admission control and resource allocation for H.264 SVC transmission over OFDMA networks

    Get PDF
    corecore