6 research outputs found

    Resonating Experiences of Self and Others enabled by a Tangible Somaesthetic Design

    Get PDF
    Digitalization is penetrating every aspect of everyday life including a human's heart beating, which can easily be sensed by wearable sensors and displayed for others to see, feel, and potentially "bodily resonate" with. Previous work in studying human interactions and interaction designs with physiological data, such as a heart's pulse rate, have argued that feeding it back to the users may, for example support users' mindfulness and self-awareness during various everyday activities and ultimately support their wellbeing. Inspired by Somaesthetics as a discipline, which focuses on an appreciation of the living body's role in all our experiences, we designed and explored mobile tangible heart beat displays, which enable rich forms of bodily experiencing oneself and others in social proximity. In this paper, we first report on the design process of tangible heart displays and then present results of a field study with 30 pairs of participants. Participants were asked to use the tangible heart displays during watching movies together and report their experience in three different heart display conditions (i.e., displaying their own heart beat, their partner's heart beat, and watching a movie without a heart display). We found, for example that participants reported significant effects in experiencing sensory immersion when they felt their own heart beats compared to the condition without any heart beat display, and that feeling their partner's heart beats resulted in significant effects on social experience. We refer to resonance theory to discuss the results, highlighting the potential of how ubiquitous technology could utilize physiological data to provide resonance in a modern society facing social acceleration.Comment: 18 page

    ‘Squeaky/Pain’: Cultivating Disturbing Experiences and Perspective Transition for Somaesthetic Interactions

    Get PDF
    Through an exemplary design case study, we look at how mediating bodily disturbances and cultivating perspective transition from first-to second-person perspective amplifies somaesthetic awareness. The paper focuses on the less explored aspect of soma design, which is the mediation of disturbing experiences that disrupt the everyday flow i.e., pain. The design process illustrated a transition between first- and second-person perspectives to cultivate and externalize the experience with pain as a wearable bodily interaction. The externalized pain experience was translated into an interactive wearable, ‘Squeaky/Pain’, that augments the wearer’s somaesthetic awareness via sound, tactile, and kinesthetic sensations. This paper makes two main contributions to soma design: introducing the implications of disturbing experiences for augmenting somaesthetic awareness and exemplifying how inner bodily disturbances can be materialized through the cultivation of first-and second-person perspectives

    Resonating experiences of self and others enabled by a tangible somaesthetic design

    Get PDF
    Digitalization is penetrating every aspect of everyday life including a human's heart beating, which can easily be sensed by wearable sensors and displayed for others to see, feel, and potentially "bodily resonate" with. Previous work in studying human interactions and interaction designs with physiological data, such as a heart's pulse rate, have argued that feeding it back to the users may, for example support users' mindfulness and self-awareness during various everyday activities and ultimately support their wellbeing. Inspired by Somaesthetics as a discipline, which focuses on an appreciation of the living body's role in all our experiences, we designed and explored mobile tangible heart beat displays, which enable rich forms of bodily experiencing oneself and others in social proximity. In this paper, we first report on the design process of tangible heart displays and then present results of a field study with 30 pairs of participants. Participants were asked to use the tangible heart displays during watching movies together and report their experience in three different heart display conditions (i.e., displaying their own heart beat, their partner's heart beat, and watching a movie without a heart display). We found, for example that participants reported significant effects in experiencing sensory immersion when they felt their own heart beats compared to the condition without any heart beat display, and that feeling their partner's heart beats resulted in significant effects on social experience. We refer to resonance theory to discuss the results, highlighting the potential of how ubiquitous technology could utilize physiological data to provide resonance in a modern society facing social acceleration

    Shared User Interfaces of Physiological Data: Systematic Review of Social Biofeedback Systems and Contexts in HCI

    Get PDF
    As an emerging interaction paradigm, physiological computing is increasingly being used to both measure and feed back information about our internal psychophysiological states. While most applications of physiological computing are designed for individual use, recent research has explored how biofeedback can be socially shared between multiple users to augment human-human communication. Reflecting on the empirical progress in this area of study, this paper presents a systematic review of 64 studies to characterize the interaction contexts and effects of social biofeedback systems. Our findings highlight the importance of physio-temporal and social contextual factors surrounding physiological data sharing as well as how it can promote social-emotional competences on three different levels: intrapersonal, interpersonal, and task-focused. We also present the Social Biofeedback Interactions framework to articulate the current physiological-social interaction space. We use this to frame our discussion of the implications and ethical considerations for future research and design of social biofeedback interfaces.Comment: [Accepted version, 32 pages] Clara Moge, Katherine Wang, and Youngjun Cho. 2022. Shared User Interfaces of Physiological Data: Systematic Review of Social Biofeedback Systems and Contexts in HCI. In CHI Conference on Human Factors in Computing Systems (CHI'22), ACM, https://doi.org/10.1145/3491102.351749

    Resonating experiences of self and others enabled by a tangible somaesthetic design

    No full text
    Digitalization is penetrating every aspect of everyday life including a human's heart beating, which can easily be sensed by wearable sensors and displayed for others to see, feel, and potentially "bodily resonate" with. Previous work in studying human interactions and interaction designs with physiological data, such as a heart's pulse rate, have argued that feeding it back to the users may, for example support users' mindfulness and self-awareness during various everyday activities and ultimately support their wellbeing. Inspired by Somaesthetics as a discipline, which focuses on an appreciation of the living body's role in all our experiences, we designed and explored mobile tangible heart beat displays, which enable rich forms of bodily experiencing oneself and others in social proximity. In this paper, we first report on the design process of tangible heart displays and then present results of a field study with 30 pairs of participants. Participants were asked to use the tangible heart displays during watching movies together and report their experience in three different heart display conditions (i.e., displaying their own heart beat, their partner's heart beat, and watching a movie without a heart display). We found, for example that participants reported significant effects in experiencing sensory immersion when they felt their own heart beats compared to the condition without any heart beat display, and that feeling their partner's heart beats resulted in significant effects on social experience. We refer to resonance theory to discuss the results, highlighting the potential of how ubiquitous technology could utilize physiological data to provide resonance in a modern society facing social acceleration

    Resonating experiences of self and others enabled by a tangible somaesthetic design

    No full text
    Digitalization is penetrating every aspect of everyday life including a human's heart beating, which can easily be sensed by wearable sensors and displayed for others to see, feel, and potentially "bodily resonate" with. Previous work in studying human interactions and interaction designs with physiological data, such as a heart's pulse rate, have argued that feeding it back to the users may, for example support users' mindfulness and self-awareness during various everyday activities and ultimately support their wellbeing. Inspired by Somaesthetics as a discipline, which focuses on an appreciation of the living body's role in all our experiences, we designed and explored mobile tangible heart beat displays, which enable rich forms of bodily experiencing oneself and others in social proximity. In this paper, we first report on the design process of tangible heart displays and then present results of a field study with 30 pairs of participants. Participants were asked to use the tangible heart displays during watching movies together and report their experience in three different heart display conditions (i.e., displaying their own heart beat, their partner's heart beat, and watching a movie without a heart display). We found, for example that participants reported significant effects in experiencing sensory immersion when they felt their own heart beats compared to the condition without any heart beat display, and that feeling their partner's heart beats resulted in significant effects on social experience. We refer to resonance theory to discuss the results, highlighting the potential of how ubiquitous technology could utilize physiological data to provide resonance in a modern society facing social acceleration
    corecore