3,479 research outputs found

    Enhanced Smartphone Spectroscopy via High-throughput Computational Slit

    Get PDF
    High-performance spectroscopy is often limited by its portability, size, and cost, therefore limiting its reach into various applications that may benefit from it. In this paper, we present a low-cost, low-complexity slitless smartphone-based spectrometer that can be useful for carrying out field studies. Omitting a slit in a spectrometer means loss of spectral resolution in conventional spectrographs; however, we overcome this limitation via the use of a high-throughput computational slit to produce spectra with enhanced spectral resolution and enhanced signal-to-noise characteristics

    The Maunakea Spectroscopic Explorer Book 2018

    Full text link
    (Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is intended as a concise reference guide to all aspects of the scientific and technical design of MSE, for the international astronomy and engineering communities, and related agencies. The current version is a status report of MSE's science goals and their practical implementation, following the System Conceptual Design Review, held in January 2018. MSE is a planned 10-m class, wide-field, optical and near-infrared facility, designed to enable transformative science, while filling a critical missing gap in the emerging international network of large-scale astronomical facilities. MSE is completely dedicated to multi-object spectroscopy of samples of between thousands and millions of astrophysical objects. It will lead the world in this arena, due to its unique design capabilities: it will boast a large (11.25 m) aperture and wide (1.52 sq. degree) field of view; it will have the capabilities to observe at a wide range of spectral resolutions, from R2500 to R40,000, with massive multiplexing (4332 spectra per exposure, with all spectral resolutions available at all times), and an on-target observing efficiency of more than 80%. MSE will unveil the composition and dynamics of the faint Universe and is designed to excel at precision studies of faint astrophysical phenomena. It will also provide critical follow-up for multi-wavelength imaging surveys, such as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation Very Large Array.Comment: 5 chapters, 160 pages, 107 figure

    Dual-spectral interferometric sensor for quantitative study of protein-DNA interactions

    Full text link
    Thesis (Ph.D.)--Boston UniversityThe maintenance and functions of the genome are facilitated by DNA-binding proteins, whose specific binding mechanisms are not yet fully understood. Recently, it was discovered that the recognition and capture ofDNA conformational flexibility and deformation by DNA-binding proteins serve as an indirect readout mechanism for specific recognition and facilitate important cellular functions. Various biophysical techniques have been employed to elucidate this conformational specificity of protein-DNA interactions. These techniques are not sufficiently high-throughput to perform systematic investigation ofvarious protein-DNA complexes and their functions. Microarray-based high-throughput methods enable large-scale and comprehensive evaluation of the binding affmities of protein-DNA interactions, but do not provide conformational information. In this dissertation, we developed a tool that enables high-throughput quantification of both conformational specificity and binding affinity of protein-DNA interactions. Our approach is to combine quantitative detection of DNA conformational change and protein-DNA binding in a DNA microarray format. The DNA conformational change is measured by spectral self-interference fluorescence microscopy that determines surface-immobilized DNA conformation by measuring axial height offluorophores tagged to specific nucleotides. The amount of bound protein and DNA are measured by white light reflectance spectroscopy that quantifies molecular surface densities by measuring bioniolecule layer thicknesses. By implementing a dual-spectral imaging configuration, we can perform the two independent interferometric measurements in parallel using two separate spectral bandwidths. [TRUNCATED

    LEMUR: Large European Module for solar Ultraviolet Research. European contribution to JAXA's Solar-C mission

    Get PDF
    Understanding the solar outer atmosphere requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1" and 0.3"), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 17 and 127 nm. The LEMUR slit covers 280" on the Sun with 0.14" per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km/s or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.Comment: 35 pages, 14 figures. To appear on Experimental Astronom

    Dual-spectral interferometric sensor for quantitative study of protein-DNA interactions

    Full text link
    Thesis (Ph.D.)--Boston UniversityThe maintenance and functions of the genome are facilitated by DNA-binding proteins, whose specific binding mechanisms are not yet fully understood. Recently, it was discovered that the recognition and capture ofDNA conformational flexibility and deformation by DNA-binding proteins serve as an indirect readout mechanism for specific recognition and facilitate important cellular functions. Various biophysical techniques have been employed to elucidate this conformational specificity of protein-DNA interactions. These techniques are not sufficiently high-throughput to perform systematic investigation ofvarious protein-DNA complexes and their functions. Microarray-based high-throughput methods enable large-scale and comprehensive evaluation of the binding affmities of protein-DNA interactions, but do not provide conformational information. In this dissertation, we developed a tool that enables high-throughput quantification of both conformational specificity and binding affinity of protein-DNA interactions. Our approach is to combine quantitative detection of DNA conformational change and protein-DNA binding in a DNA microarray format. The DNA conformational change is measured by spectral self-interference fluorescence microscopy that determines surface-immobilized DNA conformation by measuring axial height offluorophores tagged to specific nucleotides. The amount of bound protein and DNA are measured by white light reflectance spectroscopy that quantifies molecular surface densities by measuring bioniolecule layer thicknesses. By implementing a dual-spectral imaging configuration, we can perform the two independent interferometric measurements in parallel using two separate spectral bandwidths. [TRUNCATED
    • …
    corecore