116,357 research outputs found

    Proof systems for propositional modal logic

    Get PDF
    In classical propositional logic (CPL) logical reasoning is formalised as logical entailment and can be computed by means of tableau and resolution proof procedures. Unfortunately CPL is not expressive enough and using first order logic (FOL) does not solve the problem either since proof procedures for these logics are not decidable. Modal propositional logics (MPL) on the other hand are both decidable and more expressive than CPL. It therefore seems reasonable to apply tableau and resolution proof systems to MPL in order to compute logical entailment in MPL. Although some of the principles in CPL are present in MPL, there are complexities in MPL that are not present in CPL. Tableau and resolution proof systems which address these issues and others will be surveyed here. In particular the work of Abadi & Manna (1986), Chan (1987), del Cerro & Herzig (1988), Fitting (1983, 1990) and Gore (1995) will be reviewed.ComputingM. Sc. (Computer Science

    Clausal Resolution for Modal Logics of Confluence

    Get PDF
    We present a clausal resolution-based method for normal multimodal logics of confluence, whose Kripke semantics are based on frames characterised by appropriate instances of the Church-Rosser property. Here we restrict attention to eight families of such logics. We show how the inference rules related to the normal logics of confluence can be systematically obtained from the parametrised axioms that characterise such systems. We discuss soundness, completeness, and termination of the method. In particular, completeness can be modularly proved by showing that the conclusions of each newly added inference rule ensures that the corresponding conditions on frames hold. Some examples are given in order to illustrate the use of the method.Comment: 15 pages, 1 figure. Preprint of the paper accepted to IJCAR 201

    Deciding regular grammar logics with converse through first-order logic

    Full text link
    We provide a simple translation of the satisfiability problem for regular grammar logics with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment of first-order logic. This translation is theoretically interesting because it translates modal logics with certain frame conditions into first-order logic, without explicitly expressing the frame conditions. A consequence of the translation is that the general satisfiability problem for regular grammar logics with converse is in EXPTIME. This extends a previous result of the first author for grammar logics without converse. Using the same method, we show how some other modal logics can be naturally translated into GF2, including nominal tense logics and intuitionistic logic. In our view, the results in this paper show that the natural first-order fragment corresponding to regular grammar logics is simply GF2 without extra machinery such as fixed point-operators.Comment: 34 page

    OMA analysis of a launcher under operational conditions with time-varying properties

    Get PDF
    The objective of the paper is the investigation of the capability of Operational Modal Analysis approaches to deal with time-varying system in the low-frequency domain. Specifically, the problem of the identification of the dynamic properties of a launch-vehicle, working under actual operative conditions, is studied. Two OMA methods are considered: the Frequency Domain Decomposition and the Hilbert Transform Method. It is demonstrated that both OMA approaches allow the time-tracking of modal parameters, namely, natural frequencies, damping ratios and mode shapes, from the response accelerations only recorded during actual flight tests of a launcher characterized by a large mass variation due to fuel burning typical of the first phase of the flight

    Introduction to Iltis: An Interactive, Web-Based System for Teaching Logic

    Full text link
    Logic is a foundation for many modern areas of computer science. In artificial intelligence, as a basis of database query languages, as well as in formal software and hardware verification --- modelling scenarios using logical formalisms and inferring new knowledge are important skills for going-to-be computer scientists. The Iltis project aims at providing a web-based, interactive system that supports teaching logical methods. In particular the system shall (a) support to learn to model knowledge and to infer new knowledge using propositional logic, modal logic and first-order logic, and (b) provide immediate feedback and support to students. This article presents a prototypical system that currently supports the above tasks for propositional logic. First impressions on its use in a second year logic course for computer science students are reported

    Reference resolution in multi-modal interaction: Preliminary observations

    Get PDF
    In this paper we present our research on multimodal interaction in and with virtual environments. The aim of this presentation is to emphasize the necessity to spend more research on reference resolution in multimodal contexts. In multi-modal interaction the human conversational partner can apply more than one modality in conveying his or her message to the environment in which a computer detects and interprets signals from different modalities. We show some naturally arising problems but do not give general solutions. Rather we decide to perform more detailed research on reference resolution in uni-modal contexts to obtain methods generalizable to multi-modal contexts. Since we try to build applications for a Dutch audience and since hardly any research has been done on reference resolution for Dutch, we give results on the resolution of anaphoric and deictic references in Dutch texts. We hope to be able to extend these results to our multimodal contexts later

    On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high Reynolds number flow over an Ahmed body

    Full text link
    We investigate a hierarchy of eddy-viscosity terms in POD Galerkin models to account for a large fraction of unresolved fluctuation energy. These Galerkin methods are applied to Large Eddy Simulation data for a flow around the vehicle-like bluff body call Ahmed body. This flow has three challenges for any reduced-order model: a high Reynolds number, coherent structures with broadband frequency dynamics, and meta-stable asymmetric base flow states. The Galerkin models are found to be most accurate with modal eddy viscosities as proposed by Rempfer & Fasel (1994). Robustness of the model solution with respect to initial conditions, eddy viscosity values and model order is only achieved for state-dependent eddy viscosities as proposed by Noack, Morzynski & Tadmor (2011). Only the POD system with state-dependent modal eddy viscosities can address all challenges of the flow characteristics. All parameters are analytically derived from the Navier-Stokes based balance equations with the available data. We arrive at simple general guidelines for robust and accurate POD models which can be expected to hold for a large class of turbulent flows.Comment: Submitted to the Journal of Fluid Mechanic
    • …
    corecore