2,713 research outputs found

    Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations

    Get PDF
    Stochastic Galerkin methods for non-affine coefficient representations are known to cause major difficulties from theoretical and numerical points of view. In this work, an adaptive Galerkin FE method for linear parametric PDEs with lognormal coefficients discretized in Hermite chaos polynomials is derived. It employs problem-adapted function spaces to ensure solvability of the variational formulation. The inherently high computational complexity of the parametric operator is made tractable by using hierarchical tensor representations. For this, a new tensor train format of the lognormal coefficient is derived and verified numerically. The central novelty is the derivation of a reliable residual-based a posteriori error estimator. This can be regarded as a unique feature of stochastic Galerkin methods. It allows for an adaptive algorithm to steer the refinements of the physical mesh and the anisotropic Wiener chaos polynomial degrees. For the evaluation of the error estimator to become feasible, a numerically efficient tensor format discretization is developed. Benchmark examples with unbounded lognormal coefficient fields illustrate the performance of the proposed Galerkin discretization and the fully adaptive algorithm

    A direct method for the Boltzmann equation based on a pseudo-spectral velocity space discretization

    Full text link
    A deterministic method is proposed for solving the Boltzmann equation. The method employs a Galerkin discretization of the velocity space and adopts, as trial and test functions, the collocation basis functions based on weights and roots of a Gauss-Hermite quadrature. This is defined by means of half- and/or full-range Hermite polynomials depending whether or not the distribution function presents a discontinuity in the velocity space. The resulting semi-discrete Boltzmann equation is in the form of a system of hyperbolic partial differential equations whose solution can be obtained by standard numerical approaches. The spectral rate of convergence of the results in the velocity space is shown by solving the spatially uniform homogeneous relaxation to equilibrium of Maxwell molecules. As an application, the two-dimensional cavity flow of a gas composed by hard-sphere molecules is studied for different Knudsen and Mach numbers. Although computationally demanding, the proposed method turns out to be an effective tool for studying low-speed slightly rarefied gas flows
    corecore