7,489 research outputs found

    Reservoir cross-over in entanglement dynamics

    Full text link
    We study the effects of spontaneous emission on the entanglement dynamics of two qubits interacting with a common Lorentzian structured reservoir. We assume that the qubits are initially prepared in a Bell-like state. We focus on the strong coupling regime and study the entanglement dynamics for different regions of the spontaneous emission decay parameter. This investigation allows us to explore the cross-over between common and independent reservoirs in entanglement dynamics

    Influence of modal loss on the quantum state generation via cross-Kerr nonlinearity

    Full text link
    In this work we investigate an influence of decoherence effects on quantum states generated as a result of the cross-Kerr nonlinear interaction between two modes. For Markovian losses (both photon loss and dephasing), a region of parameters when losses still do not lead to destruction of non-classicality is identified. We emphasize the difference in impact of losses in the process of state generation as opposed to those occurring in propagation channel. We show moreover, that correlated losses in modern realizations of schemes of large cross-Kerr nonlinearity might lead to enhancement of non-classicality.Comment: To appear in PR

    Spin-Mediated Consciousness: Theory, Experimental Studies, Further Development & Related Topics

    Full text link
    We postulate that consciousness is intrinsically connected to quantum spin since the latter is the origin of quantum effects in both Bohm and Hestenes quantum formulisms and a fundamental quantum process associated with the structure of space-time. Applying these ideas to the particular structures and dynamics of the brain, we have developed a detailed model of quantum consciousness. We have also carried out experiments from the perspective of our theory to test the possibility of quantum-entangling the quantum entities inside the brain with those of an external chemical substance. We found that applying magnetic pulses to the brain when an anaesthetic was placed in between caused the brain to feel the effect of said anaesthetic as if the test subject had actually inhaled the same. We further found that drinking water exposed to magnetic pulses, laser light or microwave when an anaesthetic was placed in between also causes brain effects in various degrees. Additional experiments indicate that the said brain effect is indeed the consequence of quantum entanglement. Recently we have studied non-local effects in simple physics systems. We have found that the pH value, temperature and gravity of a liquid in the detecting reservoirs can be non-locally affected through manipulating another liquid in a remote reservoir quantum-entangled with the former. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity can change against local gravity. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated liquid and discuss the profound implications of these results. This paper now also includes materials on further development of the theory and related topics.Comment: 92 pages; expanded content; minor corrections; for additional information, please visit http://quantumbrain.or

    Entangling two distant nanocavities via a waveguide

    Full text link
    In this paper, we investigate the generation of continuous variable entanglement between two spatially-separate nanocavities mediated by a coupled resonator optical waveguide in photonic crystals. By solving the exact dynamics of the cavity system coupled to the waveguide, the entanglement and purity of the two-mode cavity state are discussed in detail for the initially separated squeezing inputs. It is found that the stable and pure entangled state of the two distant nanocavities can be achieved with the requirement of only a weak cavity-waveguide coupling when the cavities are resonant with the band center of the waveguide. The strong couplings between the cavities and the waveguide lead to the entanglement sudden death and sudden birth. When the frequencies of the cavities lie outside the band of the waveguide, the waveguide-induced cross frequency shift between the cavities can optimize the achievable entanglement. It is also shown that the entanglement can be easily manipulated through the changes of the cavity frequencies within the waveguide band.Comment: 8 pages, 8 figure

    Entanglement generated between a single atom and a laser pulse

    Full text link
    We quantify the entanglement generated between an atom and a laser pulse in free space. We find that the entanglement calculated using a simple closed-system Jaynes-Cummings Hamiltonian is in remarkable agreement with a full open-system calculation, even though the free-space geometry is far from the strong coupling regime of cavity QED. We explain this result using a simple model in which the atom couples weakly to the laser while coupling strongly to the vacuum. Additionally we place an upper bound on the total entanglement between the atom and all paraxial modes using a quantum trajectories unravelling. This upper bound provides a benchmark for atom-laser coupling.Comment: 8 pages, 4 figure

    Decoherence induced by a phase-damping reservoir

    Full text link
    A phase damping reservoir composed by NN-bosons coupled to a system of interest through a cross-Kerr interaction is proposed and its effects on quantum superpo sitions are investigated. By means of analytical calculations we show that: i-) the reservoir induces a Gaussian decay of quantum coherences, and ii-) the inher ent incommensurate character of the spectral distribution yields irreversibility . A state-independent decoherence time and a master equation are both derived an alytically. These results, which have been extended for the thermodynamic limit, show that nondissipative decoherence can be suitably contemplated within the EI D approach. Finally, it is shown that the same mechanism yielding decoherence ar e also responsible for inducing dynamical disentanglement.Comment: 8 pages, 3 figure
    corecore