165 research outputs found

    Distinguishing Metaphysical From Epistemological Randomness

    Get PDF
    The term \u27random\u27 is used both popularly and in science in different senses. Randomness sometimes refers to our subjective epistemological inability to discern structure and other times to objective lack of structure in an observed phenomenon. This thesis argues that the best understanding of \u27random\u27 should be as a profitable heuristic, similar to imaginary numbers and potential infinities, under the rubric of epistemological randomness (ER). It further argues that positive claims of metaphysical randomness (MR) must be justified by both internality and indeterminacy. Internality acts as a criterion that controls for external causal influences in a given phenomenon. Indeterminacy requires that the expressed observable behavior be considered an absence of physical law that regulates the behavior. While paradigmatic cases (e.g. gamma radiation bursts, genetic mutation, gene mutation, and radioactive decay) are assessed as potential validation of MR, no justification is found for distinguishing quantum internally indeterminate events from wrongful ascriptions of randomness from internally determinate entities (e.g. a \u27random number sequence\u27 from π). The thesis concludes that there is no substantive reason to assert metaphysical randomness over and above epistemological randomness

    Advanced algorithms for the analysis of data sequences in Matlab

    Get PDF
    Cílem této práce je se seznámení s možnostmi programu Matlab z hlediska detailní analýzy deterministických dynamických systémů. Jedná se především o analýzu časové posloupnosti a o nalezení Lyapunových exponentů. Dalším cílem je navrhnout algoritmus umožňující specifikovat chování systému na základě znalosti příslušných diferenciálních rovnic. To znamená, nalezení chaotických systémů.This work aims to familiarize with the possibilities of Matlab in terms of detailed analysis of deterministic dynamical systems. This is essentially a analysis of time series and finding Lyapunov exponents. Another objective is to design an algorithm allowing to specify the system behavior based on knowledge of the relevant differential equations. That means finding chaotic systems.

    A Computational Model for Quantum Measurement

    Full text link
    Is the dynamical evolution of physical systems objectively a manifestation of information processing by the universe? We find that an affirmative answer has important consequences for the measurement problem. In particular, we calculate the amount of quantum information processing involved in the evolution of physical systems, assuming a finite degree of fine-graining of Hilbert space. This assumption is shown to imply that there is a finite capacity to sustain the immense entanglement that measurement entails. When this capacity is overwhelmed, the system's unitary evolution becomes computationally unstable and the system suffers an information transition (`collapse'). Classical behaviour arises from the rapid cycles of unitary evolution and information transitions. Thus, the fine-graining of Hilbert space determines the location of the `Heisenberg cut', the mesoscopic threshold separating the microscopic, quantum system from the macroscopic, classical environment. The model can be viewed as a probablistic complement to decoherence, that completes the measurement process by turning decohered improper mixtures of states into proper mixtures. It is shown to provide a natural resolution to the measurement problem and the basis problem.Comment: 24 pages; REVTeX4; published versio

    Chaos, decoherence and quantum cosmology

    Full text link
    In this topical review we discuss the connections between chaos, decoherence and quantum cosmology. We understand chaos as classical chaos in systems with a finite number of degrees of freedom, decoherence as environment induced decoherence and quantum cosmology as the theory of the Wheeler - DeWitt equation or else the consistent history formulation thereof, first in mini super spaces and later through its extension to midi super spaces. The overall conclusion is that consideration of decoherence is necessary (and probably sufficient) to sustain an interpretation of quantum cosmology based on the Wave function of the Universe adopting a Wentzel - Kramers - Brillouin form for large Universes, but a definitive account of the semiclassical transition in classically chaotic cosmological models is not available in the literature yet.Comment: 40 page

    Self Organized Multi Agent Swarms (SOMAS) for Network Security Control

    Get PDF
    Computer network security is a very serious concern in many commercial, industrial, and military environments. This paper proposes a new computer network security approach defined by self-organized agent swarms (SOMAS) which provides a novel computer network security management framework based upon desired overall system behaviors. The SOMAS structure evolves based upon the partially observable Markov decision process (POMDP) formal model and the more complex Interactive-POMDP and Decentralized-POMDP models, which are augmented with a new F(*-POMDP) model. Example swarm specific and network based behaviors are formalized and simulated. This paper illustrates through various statistical testing techniques, the significance of this proposed SOMAS architecture, and the effectiveness of self-organization and entangled hierarchies
    corecore