6,816 research outputs found

    Post-photographic presences, or how to wear a digital cloak

    Get PDF
    This article explores some of the tensions that digital processing introduces to our understanding of photography by focusing on digital images of a Māori cloak from New Zealand held in the UCL Ethnography Collections. The complex, energetic/electrical networks established not only by digital communication technologies but also between Māori people and their taonga (treasured possessions) expand the understanding of both photographic indexicality and Runia’s definition of presence. The wairua, or spiritual energies, channelled in Māori relationships as they are transmitted through important cultural treasures creates a profound experience of co-presence in which objects are understood as simultaneous links to the past, present and future. The article argues that the experience of co-presence in both Māori engagements with important museum objects and the experience of networked digital communications technologies (including digital photographs) allows us to develop an expanded understanding of provenance, or where objects come from (and who they belong to) in museums

    An investigation to examine the most appropriate methodology to capture historical and modern preserved anatomical specimens for use in the digital age to improve access: a pilot study

    Get PDF
    Anatomico-pathological specimens constitute a valuable component of many medical museums or institutional collections but can be limited in their impact on account of both physical and intellectual inaccessibility. Further concerns relate to conservation as anatomical specimens may be subject to tissue deterioration, constraints imposed by spatial or financial limitations of the host institution, or accident-based destruction. In awareness of these issues, a simple and easily implementable methodology to increase accessibility, impact and conservation of anatomical specimens is proposed which combines photogrammetry, object virtual reality (object VR), and interactive portable document format (PDF) with supplementary historical and anatomical commentary. The methodology was developed using wet, dry, and plastinated specimens from the historical and modern collections in the Museum of Anatomy at the University of Glasgow. It was found that photogrammetry yielded excellent results for plastinated specimens and showed potential for dry specimens, while object VR produced excellent photorealistic virtual specimens for all materials visualised. Use of PDF as output format was found to allow for the addition of textual, visual, and interactive content, and as such supplemented the virtual specimen with multidisciplinary information adaptable to the needs of various audiences. The results of this small-scale pilot study indicate the beneficial nature of combining these established techniques into a methodology for the digitisation and utilisation of historical anatomical collections in particular, but also collections of material culture more broadly

    Electronic Imaging & the Visual Arts. EVA 2013 Florence

    Get PDF
    Important Information Technology topics are presented: multimedia systems, data-bases, protection of data, access to the content. Particular reference is reserved to digital images (2D, 3D) regarding Cultural Institutions (Museums, Libraries, Palace – Monuments, Archaeological Sites). The main parts of the Conference Proceedings regard: Strategic Issues, EC Projects and Related Networks & Initiatives, International Forum on “Culture & Technology”, 2D – 3D Technologies & Applications, Virtual Galleries – Museums and Related Initiatives, Access to the Culture Information. Three Workshops are related to: International Cooperation, Innovation and Enterprise, Creative Industries and Cultural Tourism

    A 4D information system for the exploration of multitemporal images and maps using photogrammetry, web technologies and VR/AR

    Full text link
    [EN] This contribution shows the comparison, investigation, and implementation of different access strategies on multimodal data. The first part of the research is structured as a theoretical part opposing and explaining the terms of conventional access, virtual archival access, and virtual museums while additionally referencing related work. Especially, issues that still persist in repositories like the ambiguity or missing of metadata is pointed out. The second part explains the practical implementation of a workflow from a large image repository to various four-dimensional applications. Mainly, the filtering of images and in the following, the orientation of images is explained. Selection of the relevant images is partly done manually but also with the use of deep convolutional neural networks for image classification. In the following, photogrammetric methods are used for finding the relative orientation between image pairs in a projective frame. For this purpose, an adapted Structure from Motion (SfM) workflow is presented, in which the step of feature detection and matching is replaced by the Radiant-Invariant Feature Transform (RIFT) and Matching On Demand with View Synthesis (MODS). Both methods have been evaluated on a benchmark dataset and performed superior than other approaches. Subsequently, the oriented images are placed interactively and in the future automatically in a 4D browser application showing images, maps, and building models Further usage scenarios are presented in several Virtual Reality (VR) and Augmented Reality (AR) applications. The new representation of the archival data enables spatial and temporal browsing of repositories allowing the research of innovative perspectives and the uncovering of historical details.Highlights:Strategies for a completely automated workflow from image repositories to four-dimensional (4D) access approaches.The orientation of historical images using adapted and evaluated feature matching methods.4D access methods for historical images and 3D models using web technologies and Virtual Reality (VR)/Augmented Reality (AR).[ES] Esta contribución muestra la comparación, investigación e implementación de diferentes estrategias de acceso a datos multimodales. La primera parte de la investigación se estructura en una parte teórica en la que se oponen y explican los términos de acceso convencional, acceso a los archivos virtuales, y museos virtuales, a la vez que se hace referencia a trabajos relacionados. En especial, se señalan los problemas que aún persisten en los repositorios, como la ambigüedad o la falta de metadatos. La segunda parte explica la implementación práctica de un flujo de trabajo desde un gran repositorio de imágenes a varias aplicaciones en cuatro dimensiones (4D). Principalmente, se explica el filtrado de imágenes y, a continuación, la orientación de las mismas. La selección de las imágenes relevantes se hace en parte manualmente, pero también con el uso de redes neuronales convolucionales profundas para la clasificación de las imágenes. A continuación, se utilizan métodos fotogramétricos para encontrar la orientación relativa entre pares de imágenes en un marco proyectivo. Para ello, se presenta un flujo de trabajo adaptado a partir de Structure from Motion, (SfM), en el que el paso de la detección y la correspondencia de entidades es sustituido por la Transformación de entidades invariante a la radiancia (Radiant-Invariant Feature Transform, RIFT) y la Correspondencia a demanda con vistas sintéticas (Matching on Demand with View Synthesis, MODS). Ambos métodos han sido evaluados sobre la base de un conjunto de datos de referencia y funcionaron mejor que otros procedimientos. Posteriormente, las imágenes orientadas se colocan interactivamente y en el futuro automáticamente en una aplicación de navegador 4D que muestra imágenes, mapas y modelos de edificios. Otros escenarios de uso se presentan en varias aplicación es de Realidad Virtual (RV) y Realidad Aumentada (RA). La nueva representación de los datos archivados permite la navegación espacial y temporal de los repositorios, lo que permite la investigación en perspectivas innovadoras y el descubrimiento de detalles históricos.The research upon which this paper is based is part of the junior research group UrbanHistory4D’s activities which has received funding from the German Federal Ministry of Education and Research under grant agreement No 01UG1630. This work was supported by the German Federal Ministry of Education and Research (BMBF, 01IS18026BA-F) by funding the competence center for Big Data “ScaDS Dresden/Leipzig”.Maiwald, F.; Bruschke, J.; Lehmann, C.; Niebling, F. (2019). Un sistema de información 4D para la exploración de imágenes y mapas multitemporales utilizando fotogrametría, tecnologías web y VR/AR. Virtual Archaeology Review. 10(21):1-13. https://doi.org/10.4995/var.2019.11867SWORD1131021Ackerman, A., & Glekas, E. (2017). Digital Capture and Fabrication Tools for Interpretation of Historic Sites. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W2, 107-114. doi:10.5194/isprs-annals-IV-2-W2-107-2017Armingeon, M., Komani, P., Zanwar, T., Korkut, S., & Dornberger, R. (2019). A Case Study: Assessing Effectiveness of the Augmented Reality Application in Augusta Raurica Augmented Reality and Virtual Reality (pp. 99-111): Springer.Artstor. (2019). Artstor Digital Library. Retrieved April 30, 2019, from https://library.artstor.orgBay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded Up Robust Features. Paper presented at the European Conference on Computer Vision, Berlin, Heidelberg.Beaudoin, J. E., & Brady, J. E. (2011). Finding visual information: a study of image resources used by archaeologists, architects, art historians, and artists. Art Documentation: Journal of the Art Libraries Society of North America, 30(2), 24-36.Beltrami, C., Cavezzali, D., Chiabrando, F., Iaccarino Idelson, A., Patrucco, G., & Rinaudo, F. (2019). 3D Digital and Physical Reconstruction of a Collapsed Dome using SFM Techniques from Historical Images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W11, 217-224. doi:10.5194/isprs-archives-XLII-2-W11-217-2019Bevilacqua, M. G., Caroti, G., Piemonte, A., & Ulivieri, D. (2019). Reconstruction of lost Architectural Volumes by Integration of Photogrammetry from Archive Imagery with 3-D Models of the Status Quo. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W9, 119-125. doi:10.5194/isprs-archives-XLII-2-W9-119-2019Bitelli, G., Dellapasqua, M., Girelli, V. A., Sbaraglia, S., & Tinia, M. A. (2017). Historical Photogrammetry and Terrestrial Laser Scanning for the 3d Virtual Reconstruction of Destroyed Structures: A Case Study in Italy. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5/W1, 113-119. doi:10.5194/isprs-archives-XLII-5-W1-113-2017Bruschke, J., Niebling, F., Maiwald, F., Friedrichs, K., Wacker, M., & Latoschik, M. E. (2017). Towards browsing repositories of spatially oriented historic photographic images in 3D web environments. Paper presented at the Proceedings of the 22nd International Conference on 3D Web Technology.Bruschke, J., Niebling, F., & Wacker, M. (2018). Visualization of Orientations of Spatial Historical Photographs. Paper presented at the Eurographics Workshop on Graphics and Cultural Heritage.Bruschke, J., & Wacker, M. (2014). Application of a Graph Database and Graphical User Interface for the CIDOC CRM. Paper presented at the Access and Understanding-Networking in the Digital Era. Session J1. The 2014 annual conference of CIDOC, the International Committee for Documentation of ICOM.Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology: John Wiley & Sons.Callieri, M., Cignoni, P., Corsini, M., & Scopigno, R. (2008). Masked photo blending: Mapping dense photographic data set on high-resolution sampled 3D models. Computers & Graphics, 32(4), 464-473.Chum, O., & Matas, J. (2005). Matching with PROSAC-progressive sample consensus. Paper presented at the Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on.Coordination and Support Action Virtual Multimodal Museum (ViMM). (2018). ViMM. Retrieved April 30, 2019, from https://www.vi-mm.eu/CultLab3D. (2019). CultLab3D. Retrieved April 30, 2019, from https://www.cultlab3d.deDeng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. Paper presented at the 2009 IEEE conference on computer vision and pattern recognition.Deutsches Archäologisches Institut (DAI). (2019). iDAI.objects arachne (Arachne). Retrieved April 30, 2019, from https://arachne.dainst.org/Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap: CRC press.Europeana. (2019). Europeana Collections. Retrieved 30.04.2019, from https://www.europeana.euEvens, T., & Hauttekeete, L. (2011). Challenges of digital preservation for cultural heritage institutions. Journal of Librarianship and Information Science, 43(3), 157-165.Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-395.Fleming‐May, R. A., & Green, H. (2016). Digital innovations in poetry: Practices of creative writing faculty in online literary publishing. Journal of the Association for Information Science and Technology, 67(4), 859-873.Franken, T., Dellepiane, M., Ganovelli, F., Cignoni, P., Montani, C., & Scopigno, R. (2005). Minimizing user intervention in registering 2D images to 3D models. The visual computer, 21(8-10), 619-628.Girardi, G., von Schwerin, J., Richards-Rissetto, H., Remondino, F., & Agugiaro, G. (2013). The MayaArch3D project: A 3D WebGIS for analyzing ancient architecture and landscapes. Literary and Linguistic Computing, 28(4), 736-753. doi:10.1093/llc/fqt059Grussenmeyer, P., & Al Khalil, O. (2017). From Metric Image Archives to Point Cloud Reconstruction: Case Study of the Great Mosque of Aleppo in Syria. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W5, 295-301. doi:10.5194/isprs-archives-XLII-2-W5-295-2017Gutierrez, M., Vexo, F., & Thalmann, D. (2008). Stepping into virtual reality: Springer Science & Business Media.Guttentag, D. A. (2010). Virtual reality: Applications and implications for tourism. Tourism Management, 31(5), 637-651.Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision: Cambridge university press.Koutsoudis, A., Arnaoutoglou, F., Tsaouselis, A., Ioannakis, G., & Chamzas, C. (2015). Creating 3D Replicas of Medium-to Large-Scale Monuments for Web-Based Dissemination Within the Framework of the 3D-Icons Project. CAA2015, 971.Li, J., Hu, Q., & Ai, M. (2018). RIFT: Multi-modal Image Matching Based on Radiation-invariant Feature Transform. arXiv preprint arXiv:1804.09493.Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91-110.Maietti, F., Di Giulio, R., Piaia, E., Medici, M., & Ferrari, F. (2018). Enhancing Heritage fruition through 3D semantic modelling and digital tools: the INCEPTION project. Paper presented at the IOP Conference Series: Materials Science and Engineering.Maiwald, F., Schneider, D., Henze, F., Münster, S., & Niebling, F. (2018). Feature Matching of Historical Images Based on Geometry of Quadrilaterals. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2, 643-650. doi:10.5194/isprs-archives-XLII-2-643-2018Maiwald, F., Vietze, T., Schneider, D., Henze, F., Münster, S., & Niebling, F. (2017). Photogrammetric analysis of historical image repositories for virtual reconstruction in the field of digital humanities. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 447.Matas, J., Chum, O., Urban, M., & Pajdla, T. (2004). Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing, 22(10), 761-767.Melero, F. J., Revelles, J., & Bellido, M. L. (2018). Atalaya3D: making universities' cultural heritage accessible through 3D technologies.Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. Paper presented at the Telemanipulator and telepresence technologies.Mishkin, D., Matas, J., & Perdoch, M. (2015). MODS: Fast and robust method for two-view matching. Computer Vision and Image Understanding, 141, 81-93.Moulon, P., Monasse, P., & Marlet, R. (2012). Adaptive structure from motion with a contrario model estimation. Paper presented at the Asian Conference on Computer Vision.Münster, S., Kamposiori, C., Friedrichs, K., & Kröber, C. (2018). Image libraries and their scholarly use in the field of art and architectural history. International journal on digital libraries, 19(4), 367-383.Niebling, F., Bruschke, J., & Latoschik, M. E. (2018). Browsing Spatial Photography for Dissemination of Cultural Heritage Research Results using Augmented Models.Niebling, F., Maiwald, F., Barthel, K., & Latoschik, M. E. (2017). 4D Augmented City Models, Photogrammetric Creation and Dissemination Digital Research and Education in Architectural Heritage (pp. 196-212). Cham: Springer International Publishing.Oliva, L. S., Mura, A., Betella, A., Pacheco, D., Martinez, E., & Verschure, P. (2015). Recovering the history of Bergen Belsen using an interactive 3D reconstruction in a mixed reality space the role of pre-knowledge on memory recollection. Paper presented at the 2015 Digital Heritage.Pani Paudel, D., Habed, A., Demonceaux, C., & Vasseur, P. (2015). Robust and optimal sum-of-squares-based point-to-plane registration of image sets and structured scenes. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision.Ross, S., & Hedstrom, M. (2005). Preservation research and sustainable digital libraries. International journal on digital libraries, 5(4), 317-324.Schindler, G., & Dellaert, F. (2012). 4D Cities: Analyzing, Visualizing, and Interacting with Historical Urban Photo Collections. Journal of Multimedia, 7(2), 124-131.Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision.Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 3, 74.Styliani, S., Fotis, L., Kostas, K., & Petros, P. (2009). Virtual museums, a survey and some issues for consideration. Journal of cultural Heritage, 10(4), 520-528.Tschirschwitz, F., Büyüksalih, G., Kersten, T., Kan, T., Enc, G., & Baskaraca, P. (2019). Virtualising an Ottoman Fortress - Laser Scanning and 3D Modelling for the Development of an Interactive, Immersive Virtual Reality Application. International archives of the photogrammetry, remote sensing and spatial information sciences, 42(2/W9).Web3D Consortium. (2019). Open Standards for Real-Time 3D Communication. Retrieved April 30, 2019, from http://www.web3d.org/Wu, C. (2013). Towards linear-time incremental structure from motion. Paper presented at the 3D Vision-3DV 2013, 2013 International conference on.Wu, Y., Ma, W., Gong, M., Su, L., & Jiao, L. (2015). A Novel Point-Matching Algorithm Based on Fast Sample Consensus for Image Registration. IEEE Geosci. Remote Sensing Lett., 12(1), 43-47.Yoon, J., & Chung, E. (2011). Understanding image needs in daily life by analyzing questions in a social Q&A site. Journal of the American Society for Information Science and Technology, 62(11), 2201-2213

    Architecture, colour and images. Ideas and designs by Friedensreich Hundertwasser

    Get PDF
    Colour, imagination, inspiration, amazement. These four words very fittingly describe the work of the Viennese artist/architect Friedrich Stowasser, better known as Hundertwasser (meaning hundred water), a master of organic thinking who between 1928 and 2000 worked and lived in Vienna, Venice and New Zealand. He uses eye-catching images to convey his ideas, forcefully expressive chromatic forms and patterns that betray a strong link with a re-interpreted geometric structure. This contribution, inspired by Hundertwasser’s works, intends to study the unique relationship between creativity, imagination and architecture based on sociological, cultural and psychological principles

    An Investigation of Holographic Technologies Applied to Contemporary Art Practice A new approach to temporal aesthetics

    Get PDF
    The works of contemporary art using audio, 35mm slide, video, film and computer- based technologies are commonly referred to as time-based media, since they have duration as a dimension. By looking at artworks which are classified in this category, it appears that temporal visual perceptual interpretations are mainly created through the use of the illusion of movement, which is primarily constituted by sequential images. In art holography, the light-based characteristic qualities of this medium compose a kinetic and interactive visual syntax, which are not seen in other imaging technologies, stating its unique creative possibilities. Thus, this study intends to employ holography as an art medium to explore its temporal properties in order to establish a new approach to time-based media art practice. To review the practice and artworks created for this study, the author recognises that the characteristic qualities of a medium is key for the development of its own aesthetic culture. Moreover, the author also identifies that the combination of both the slips form of a hologram and a portable lighting device would be fundamental elements of the suggested new approach. This approach integrates the holographic image replaying process and the Chinese bamboo slips structure to create a scroll form of an artwork presentation, which suggests a viewer to observe with an unrolling activity, section by section. The role of light in this approach is essential as it not only reconstructs the image, but also acts as an intangible guide to indicate the viewing direction, which forms a directional linear temporal expression. This study combines the suggested approach with classical Chinese poetry to create a series of experimental artworks, demonstrating that the literal and figurative meaning of the poem could possibly be elevated through the manipulation of the light source and the scroll from of the image presentation, as the former creates the holographic kinetic expression and the latter reinforces the poetic linearity. This approach could be interpreted as a time-based holographic manifestation, as it unfolds the art to the viewer over time. Furthermore, in terms of the characteristic qualities of holography, the visual expressive techniques and aesthetic features created for this study indicate that such works cannot be recreated without the use of holography. This study reveals that the irreplaceable aesthetic qualities of holography, suggesting that it could expand and diversify the creative potential of time-based media art; and the discussion of this category would not be comprehensive unless taking this medium into consideration. This study establishes a creative possibility of holography and expects the finding to lead to a greater appreciation for future time-based media art practice, thus enriching the temporal artistic expressions. Moreover, as it is practice-based, the process of the research is primarily expressed through a series of holographic artworks, and combined with written format of discussion, which is presented in this thesis. For comprehensive understanding, reading the thesis in conjunction with viewing the artworks in person is suggested, as the photographic reproduction of the holographic images in this thesis is only for illustration purpose
    corecore