116,919 research outputs found

    The New Politics of US Health Care Prices: Institutional Reconfiguration and the Emergence of All-Payer Claims Databases

    Get PDF
    Prices are a significant driver of health care cost in the United States. Existing research on the politics of health system reform has emphasized the limited nature of policy entrepreneurs’ efforts at solving the problem of rising prices through direct regulation at the state level. Yet this literature fails to account for how change agents in the states gradually reconfigured the politics of prices, forging new, transparency-based policy instruments called all-payer claims databases (APCDs), which are designed to empower consumers, purchasers, and states to make informed market and policy choices. Drawing on pragmatist institutional theory, this article shows how APCDs emerged as the dominant model for reforming health care prices. While APCD advocates faced significant institutional barriers to policy change, we show how they reconfigured existing ideas, tactical repertoires, and legal-technical infrastructures to develop a politically and technologically robust reform. Our analysis has important implications for theories of how change agents overcome structural barriers to health reform

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Astro-WISE: Chaining to the Universe

    Get PDF
    The recent explosion of recorded digital data and its processed derivatives threatens to overwhelm researchers when analysing their experimental data or when looking up data items in archives and file systems. While current hardware developments allow to acquire, process and store 100s of terabytes of data at the cost of a modern sports car, the software systems to handle these data are lagging behind. This general problem is recognized and addressed by various scientific communities, e.g., DATAGRID/EGEE federates compute and storage power over the high-energy physical community, while the astronomical community is building an Internet geared Virtual Observatory, connecting archival data. These large projects either focus on a specific distribution aspect or aim to connect many sub-communities and have a relatively long trajectory for setting standards and a common layer. Here, we report "first light" of a very different solution to the problem initiated by a smaller astronomical IT community. It provides the abstract "scientific information layer" which integrates distributed scientific analysis with distributed processing and federated archiving and publishing. By designing new abstractions and mixing in old ones, a Science Information System with fully scalable cornerstones has been achieved, transforming data systems into knowledge systems. This break-through is facilitated by the full end-to-end linking of all dependent data items, which allows full backward chaining from the observer/researcher to the experiment. Key is the notion that information is intrinsic in nature and thus is the data acquired by a scientific experiment. The new abstraction is that software systems guide the user to that intrinsic information by forcing full backward and forward chaining in the data modelling.Comment: To be published in ADASS XVI ASP Conference Series, 2006, R. Shaw, F. Hill and D. Bell, ed

    ALT-C 2010 - Conference Proceedings

    Get PDF

    Bioaugmentation for Improved Recovery of Anaerobic Digesters After Toxicant Exposure

    Get PDF
    Bioaugmentation was investigated as a method to decrease the recovery period of anaerobic digesters exposed to a transient toxic event. Two sets of laboratory-scale digesters (SRT = 10 days, OLR = 2 g COD/L-day), started with inoculum from a digester stabilizing synthetic municipal wastewater solids (MW) and synthetic industrial wastewater (WW), respectively, were transiently exposed to the model toxicant, oxygen. Bioaugmented digesters received 1.2 g VSS/L-day of an H2-utilizing culture for which the archaeal community was analyzed. Soon after oxygen exposure, the bioaugmented digesters produced 25–60% more methane than non-bioaugmented controls (p \u3c 0.05). One set of digesters produced lingering high propionate concentrations, and bioaugmentation resulted in significantly shorter recovery periods. The second set of digesters did not display lingering propionate, and bioaugmented digesters recovered at the same time as non-bioaugmented controls. The difference in the effect of bioaugmentation on recovery may be due to differences between microbial communities of the digester inocula originally employed. In conclusion, bioaugmentation with an H2-utilizing culture is a potential tool to decrease the recovery period, decrease propionate concentration, and increase biogas production of some anaerobic digesters after a toxic event. Digesters already containing rapidly adaptable microbial communities may not benefit from bioaugmentation, whereas other digesters with poorly adaptable microbial communities may benefit greatly

    Technologie RFID a Blochkchain v dodavatelském řetězci

    Get PDF
    The paper discusses the possibility of combining RFID and Blockchain technology to more effectively prevent counterfeiting of products or raw materials, and to solve problems related to production, logistics and storage. Linking these technologies can lead to better planning by increasing the transparency and traceability of industrial or logistical processes or such as efficient detection of critical chain sites.Příspěvek se zabývá možností kombinace technologií RFID a Blockchain pro účinnější zabránění padělání výrobků či surovin a řešení problémů spojených s výrobou, logistikou a skladováním. Spojení těchto technologií může vést k lepšímu plánování díky vyšší transparentnosti a sledovatelnosti průmyslových nebo logistických procesů, nebo například k efektivnímu zjišťování kritických míst řetězce
    corecore